Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T12:49:04.799Z Has data issue: false hasContentIssue false

Chapter Ten - Drought as a driver of tropical tree species regeneration dynamics and distribution patterns

Published online by Cambridge University Press:  05 June 2014

Liza S. Comita
Affiliation:
The Ohio State University
Bettina M. J. Engelbrecht
Affiliation:
University of Bayreuth
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

Tropical forests harbour the most diverse plant communities on Earth. This high diversity makes it particularly challenging to understand and predict how these communities will be altered by changing climatic conditions. However, doing so is imperative since, like other systems, tropical forests have experienced and are predicted to experience increases in CO2 and temperature, as well as large shifts in precipitation patterns (Bawa & Markham 1995; IPCC 2007; Malhi & Phillips 2004). Nonetheless, studies of how tropical species will respond to climate change are scarce (e.g. Colwell et al. 2008; Miles, Grainger & Phillips 2004).

One of the main consequences of global climate change projected for the tropics is shifts in rainfall patterns (Hulme & Viner 1998). Models have predicted changes in annual rainfall up to 3000 mm per year, and changes in dry season length of up to several months in the tropics (Cox et al. 2000; Hulme & Viner 1998; Neelin et al. 2006). Projections differ hugely among tropical regions, and both increases and decreases are expected (Hulme & Viner 1998; IPCC 2007; Neelin et al. 2006). Global climate models are converging on projecting significant decreases in mean rainfall in Central and South America, while increases are expected in tropical Africa and Southeast Asia, although considerable uncertainty in rainfall projections still exists (IPCC 2007). Increases in extreme weather events (e.g. droughts, intense precipitation) are also expected in tropical regions (IPCC 2007). Increased frequency of El Niño events (Timmermann et al. 1999) would also affect rainfall patterns in the tropics, since El Niño is associated with extreme climatic events including drought and flooding. At regional scales, changes in climate are also likely to result from land-use change, with large-scale deforestation and habitat fragmentation leading to drier conditions (Costa & Foley 2000; Hoffmann, Schroeder & Jackson 2003; Malhi et al. 2008).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACP (2011) ACP Physical Monitoring Downloads.
Allan, R., Lindesay, J. & Parker, D. E. (1996) El Niño, Southern Oscillation and Climatic Variability. Silver Spring, MD: Aubrey Books Intl Ltd.Google Scholar
Allen, C. D., Macalady, A. K., Chenchouni, H. et al. (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.CrossRefGoogle Scholar
Arndt, S. K., Clifford, S. C., Wanek, W., Jones, H. G. & Popp, M. (2001) Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology, 21, 705–715.CrossRefGoogle ScholarPubMed
Ashton, P. S. (1993) The community ecology of Asian rainforests, in relation to catastrophic events. Journal of Biosciences, 18, 501–514.CrossRefGoogle Scholar
Ashton, P. H. S., Gunatilleke, C. V. S. & Gunatilleke, I. (1995) Seedling survival and growth of four Shorea species in a Sri Lankan rainforest. Journal of Tropical Ecology, 11, 263–279.CrossRefGoogle Scholar
Asquith, N. M. & Mejia-Chang, M. (2005) Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390.CrossRefGoogle Scholar
Baltzer, J. L., Davies, S. J., Bunyavejchewin, S. & Noor, N. S.M. (2008) The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula. Functional Ecology, 22, 221–231.CrossRefGoogle Scholar
Baltzer, J. L., Davies, S. J., Noor, N. S.M., Kassim, A. R. & LaFrankie, J. V. (2007) Geographical distributions in tropical trees: can geographical range predict performance and habitat association in co-occurring tree species?Journal of Biogeography, 34, 1916–1926.CrossRefGoogle Scholar
Bawa, K. S. & Markham, A. (1995) Climate change and tropical forests. Trends in Ecology & Evolution, 10, 348–349.CrossRefGoogle ScholarPubMed
Bebber, D., Brown, N. & Speight, M. (2002) Drought and root herbivory in understorey Parashorea Kurz (Dipterocarpaceae) seedlings in Borneo. Journal of Tropical Ecology, 18, 795–801.CrossRefGoogle Scholar
Bebber, D. P., Brown, N. D. & Speight, M. R. (2004) Dipterocarp seedling population dynamics in Bornean primary lowland forest during the 1997–8 El Niño–Southern Oscillation. Journal of Tropical Ecology, 20, 11–19.CrossRefGoogle Scholar
Becker, P. (1992) Seasonality of rainfall and drought in Brunei Darussalam. Brunei Museum Journal, 7, 99–109.Google Scholar
Becker, P., Rabenold, P. E., Idol, J. R. & Smith, A. P. (1988) Water potential gradients for gaps and slopes in a Panamanian tropical moist forests dry season. Journal of Tropical Ecology, 4, 173–184.CrossRefGoogle Scholar
Becker, P. & Wong, M. (1993) Drought-induced mortality in tropical heath forest. Journal of Tropical Forest Science, 5, 416–419.Google Scholar
Biaou, S. S. H., Holmgren, M., Sterck, F. J. & Mohren, G. M. J. (2011) Stress-driven changes in the strength of facilitation on tree seedling establishment in West African woodlands. Biotropica, 43, 23–30.CrossRefGoogle Scholar
Blain, D. & Kellman, M. (1991) The effect of water supply on tree seed germination and seedling survival in a tropical seasonal forest in Veracruz, Mexico. Journal of Tropical Ecology, 7, 69–83.CrossRefGoogle Scholar
Bonal, D. & Guehl, J. M. (2001) Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Functional Ecology, 15, 490–496.CrossRefGoogle Scholar
Bongers, F., Poorter, L. & Hawthorne, W. D. (2004) The forests of Upper Guinea: gradients in large species composition. In Biodiversity of West African forests. An Ecological Atlas of Woody Plant Species (eds. Poorter, L., Bongers, F., Kouame, F. N. & Hawthorne, W. D.), pp. 41–52. Oxford, UK: CABI Publishing.CrossRefGoogle Scholar
Bongers, F., Poorter, L., Van Rompaey, R. & Parren, M. P. E. (1999) Distribution of twelve moist forest canopy tree species in Liberia and Cote d’Ivoire: response curves to a climatic gradient. Journal of Vegetation Science, 10, 371–382.CrossRefGoogle Scholar
Borchert, R. (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75, 1437–1449.CrossRefGoogle Scholar
Brenes-Arguedas, T., Coley, P. D. & Kursar, T. A. (2009) Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology, 90, 1751–1761.CrossRefGoogle ScholarPubMed
Brenes-Arguedas, T., Rios, M., Rivas-Torres, G. et al. (2008) The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos, 117, 1453–1460.CrossRefGoogle Scholar
Brenes-Arguedas, T., Roddy, A. B., Coley, P. D. & Kursar, T. A. (2011) Do differences in understory light contribute to species distributions along a tropical rainfall gradient?Oecologia, 166, 443–456.CrossRefGoogle ScholarPubMed
Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and Environment, 26, 443–450.CrossRefGoogle Scholar
Bunker, D. E. & Carson, W. P. (2005) Drought stress and tropical forest woody seedlings: effect on community structure and composition. Journal of Ecology, 93, 794–806.CrossRefGoogle Scholar
Bunker, D. E., DeClerck, F., Bradford, J. C. et al. (2005) Species loss and aboveground carbon storage in a tropical forest. Science, 310, 1029–1031.CrossRefGoogle Scholar
Burlyn, E. M. & Kaufmann, M. R. (1973) The osmotic potential of Polyethylene Glycol 6000. Plant Physiology, 51, 914–916.Google Scholar
Burslem, D. F. R. P., Grubb, P. J. & Turner, I. M. (1996) Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. Biotropica, 28, 636–648.CrossRefGoogle Scholar
Cao, K. F. (2000) Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture. Journal of Tropical Ecology, 16, 101–116.CrossRefGoogle Scholar
Chen, T. H. H. & Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250–257.CrossRefGoogle ScholarPubMed
Chesson, P. L. & Warner, R. R. (1981) Environmental variability promotes coexistence in lottery competitive systems. American Naturalist, 117, 923–943.CrossRefGoogle Scholar
Chiariello, N. R., Field, C. B. & Mooney, H. A. (1987) Midday wilting in a tropical pioneer tree. Functional Ecology, 1, 3–11.CrossRefGoogle Scholar
Choat, B., Sack, L. & Holbrook, N. M. (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 175, 686–698.CrossRefGoogle ScholarPubMed
Clark, J. S., Lewis, M., McLachlan, J. S. & HilleRisLambers, J. (2003) Estimating population spread: what can we forecast and how well?Ecology, 84, 1979–1988.CrossRefGoogle Scholar
Clinebell, R. R., Phillips, O. L., Gentry, A. H., Stark, N. & Zuuring, H. (1995) Prediction of Neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation, 4, 56–90.CrossRefGoogle Scholar
Coley, P. D. (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53, 209–233.CrossRefGoogle Scholar
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258–261.CrossRefGoogle ScholarPubMed
Comita, L. S. & Engelbrecht, B. M. J. (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology, 90, 2755–2765.CrossRefGoogle Scholar
Condit, R. (1998) Ecological implications of changes in drought patterns: Shifts in forest composition in Panama. Climatic Change, 39, 413–427.CrossRefGoogle Scholar
Condit, R., Hubbell, S. P. & Foster, R. B. (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65, 419–439.CrossRefGoogle Scholar
Condit, R., Hubbell, S. P. & Foster, R. B. (1996) Changes in tree species abundance in a Neotropical forest: Impact of climate change. Journal of Tropical Ecology, 12, 231–256.CrossRefGoogle Scholar
Connell, J. H. (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds. den Boer, P. J. & Gradwell, G. R.), pp. 298–312. Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation.Google Scholar
Costa, M. H. & Foley, J. A. (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. Journal of Climate, 13, 18–34.2.0.CO;2>CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
Cruz-Rodríguez, J. A. & López-Mala, L. (2004) Demography of the seedling bank of Manilkara zorpota (L). Royen in a subtropical rain forest of Mexico. Plant Ecology, 172, 227–235.CrossRefGoogle Scholar
Currie, D. J. & Paquin, V. (1987) Large-scale biogeographical patterns of species richness of trees. Nature, 329, 326–327.CrossRefGoogle Scholar
da Costa, A. C. L., Galbraith, D., Almeida, S. et al. (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytologist, 187, 579–591.CrossRefGoogle ScholarPubMed
Davidar, P., Puyravaud, J. P. & Leigh, E. G. (2005) Changes in rain forest tree diversity, dominance and rarity across a seasonality gradient in the Western Ghats, India. Journal of Biogeography, 32, 493–501.CrossRefGoogle Scholar
Davidar, P., Rajagopal, B., Mohandass, D. et al. (2007) The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Global Ecology and Biogeography, 16, 510–518.CrossRefGoogle Scholar
Daws, M. I., Bolton, S., Burslem, D., Garwood, N. C. & Mullins, C. E. (2007) Loss of desiccation tolerance during germination in neo-tropical pioneer seeds: Implications for seed mortality and germination characteristics. Seed Science Research, 17, 273–281.CrossRefGoogle Scholar
Daws, M. I., Crabtree, L. M., Dalling, J. W., Mullins, C. E. & Burslem, D. (2008) Germination responses to water potential in Neotropical pioneers suggest large-seeded species take more risks. Annals of Botany, 102, 945–951.CrossRefGoogle ScholarPubMed
Daws, M. I., Garwood, N. C. & Pritchard, H. W. (2005) Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panama: some ecological implications. Functional Ecology, 19, 874–885.CrossRefGoogle Scholar
Daws, M. I., Garwood, N. C. & Pritchard, H. W. (2006) Prediction of desiccation sensitivity in seeds of woody species: A probabilistic model based on two seed traits and 104 species. Annals of Botany, 97, 667–674.CrossRefGoogle ScholarPubMed
Daws, M. I., Mullins, C. E., Burslem, D., Paton, S. R. & Dalling, J. W. (2002) Topographic position affects the water regime in a semideciduous tropical forest in Panama. Plant and Soil, 238, 79–90.CrossRefGoogle Scholar
Daws, M. I., Pearson, T. R. H., Burslem, D., Mullins, C. E. & Dalling, J. W. (2005) Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecology, 179, 93–105.CrossRefGoogle Scholar
de Gouvenain, R. L., Kobe, R. K. & Silander, J. A. (2007) Partitioning of understorey light and dry-season soil moisture gradients among seedlings of four rain-forest tree species in Madagascar. Journal of Tropical Ecology, 23, 569–579.CrossRefGoogle Scholar
Delissio, L. J. & Primack, R. B. (2003) The impact of drought on the population dynamics of canopy-tree seedlings in an aseasonal Malaysian rain forest. Journal of Tropical Ecology, 19, 489–500.CrossRefGoogle Scholar
Delissio, L. J., Primack, R. B., Hall, P. & Lee, H. S. (2002) A decade of canopy-tree seedling survival and growth in two Bornean rain forests: Persistence and recovery from suppression. Journal of Tropical Ecology, 18, 645–658.CrossRefGoogle Scholar
Eamus, D. & Prior, L. (2001) Ecophysiology of trees of seasonally dry tropics: Comparisons among phenologies. Advances in Ecological Research, 32, 113–197.CrossRefGoogle Scholar
Engelbrecht, B. M. J., Comita, L. S., Condit, R. et al. (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–82.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Dalling, J. W., Pearson, T. R. H. et al. (2006) Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia, 148, 258–269.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J. & Kursar, T. A. (2003) Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136, 383–393.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Kursar, T. A. & Tyree, M. T. (2005) Drought effects on seedling survival in a tropical moist forest. Trees-Structure and Function, 19, 312–321.CrossRefGoogle Scholar
Engelbrecht, B. M. J., Wright, S. J. & De Steven, D. (2002) Survival and ecophysiology of tree seedlings during El Niño drought in a tropical moist forest in Panama. Journal of Tropical Ecology, 18, 569–579.CrossRefGoogle Scholar
Enquist, B. J. & Enquist, C. A. F. (2011) Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Global Change Biology, 17, 1408–1424.CrossRefGoogle Scholar
ESP (2011) BCI Physical Monitoring Downloads.
Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. (2011) Directional changes in the species composition of a tropical forest. Ecology, 92, 871–882.CrossRefGoogle ScholarPubMed
Fine, P. V. A., Mesones, I. & Coley, P. D. (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663–665.CrossRefGoogle ScholarPubMed
Fisher, B. L., Howe, H. F. & Wright, S. J. (1991) Survival and growth of Virola surinamensis yearlings: water augmentation in gap and understory. Oecologia, 86, 292–297.CrossRefGoogle ScholarPubMed
Garwood, N. C. (1983) Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs, 53, 159–181.CrossRefGoogle Scholar
Gentry, A. H. (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.CrossRefGoogle Scholar
Gerhardt, K. (1996) Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. Forest Ecology and Management, 82, 33–48.CrossRefGoogle Scholar
Gibbons, J. M. & Newbery, D. M. (2003) Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest. Plant Ecology, 164, 1–18.CrossRefGoogle Scholar
Gilbert, G. S., Harms, K. E., Hamill, D. N. & Hubbell, S. P. (2001) Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panama. Oecologia, 127, 509–516.CrossRefGoogle ScholarPubMed
Givnish, T. J. (1999) On the causes of gradients in tropical tree diversity. Journal of Ecology, 87, 193–210.CrossRefGoogle Scholar
Green, J. J. & Newbery, D. M. (2002) Reproductive investment and seedling survival of the mast-fruiting rain forest tree, Microberlinia bisulcata A.Chev. Plant Ecology, 162, 169–183.CrossRefGoogle Scholar
Grubb, P. J. (1977) The maintenance of species-richness in plant communities: the importance of regeneration niche. Biological Reviews of the Cambridge Philosophical Society, 52, 107–145.CrossRefGoogle Scholar
Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Esufali, S. et al. (2006) Species-habitat associations in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology, 22, 371–384.CrossRefGoogle Scholar
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloch, K. A. (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.CrossRefGoogle ScholarPubMed
Hall, J. B. & Swaine, M. D. (1981) Distribution and Ecology of Vascular Plants in a Tropical Rain Forest: Forest Vegetation in Ghana. Geobotany Vol. 1. The Hague, Netherlands; Boston, MA: Dr W. Junk Publishers.CrossRefGoogle Scholar
Harms, K. E., Condit, R., Hubbell, S. P. & Foster, R. B. (2001) Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot. Journal of Ecology, 89, 947–959.CrossRefGoogle Scholar
Harper, J. L. (1977) Population Biology of Plants. London: Academic Press.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V. et al. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.CrossRefGoogle Scholar
Hedges, L. V., Gurevitch, J. & Curtis, P. S. (1999) The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156.CrossRefGoogle Scholar
Hoffmann, W. A., Schroeder, W. & Jackson, R. B. (2003) Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research, 108, ACL4–1–11.CrossRefGoogle Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. (1971) Forest Environments in Tropical Life Zones. Oxford: Pergamon Press.Google Scholar
Hooper, D. U. & Vitousek, P. M. (1997) The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302–1305.CrossRefGoogle Scholar
Hsiao, T. C. (1973) Plant responses to water stress. Annual Review of Plant Physiology, 24, 519–570.CrossRefGoogle Scholar
Hubbell, S. P. (1998) The maintenance of diversity in a Neotropical tree community: conceptual issues, current evidence, and challenges ahead. In Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies (eds. , D. F. & Comiskey, J. A.), pp. 17–44. Pearl River, NY: Parthenon Publishing.Google Scholar
Hubbell, S. P. & Foster, R. B. (1983) Diversity of canopy trees in a Neotropical forest and implications for conservation. In Tropical Rain Forest: Ecology and Management (eds. Sutton, S. L., Whitmore, T. C. & Chadwick, A. C.), pp. 25–41. Oxford: Blackwell Scientific.Google Scholar
Hubbell, S. P., Foster, R. B., O’Brien, S. T. et al. (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science, 283, 554–557.CrossRefGoogle Scholar
Hulme, M. & Viner, D. (1998) A climate change scenario for the tropics. Climatic Change, 39, 145–176.CrossRefGoogle Scholar
IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Jackson, P. C., Cavelier, J., Goldstein, G., Meinzer, F. C. & Holbrook, N. M. (1995) Partitioning of water resources among plants of a lowland tropical forest. Oecologia, 101, 197–203.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1970) Herbivores and number of tree species in tropical forests. American Naturalist, 104, 501–528.CrossRefGoogle Scholar
Jarvis, P. G. & Jarvis, M. S. (1963) The water relations of tree seedlings I. Growth and water use in relations to soil water potential. Physiologia Plantarum, 16, 215–235.Google Scholar
John, R., Dalling, J. W., Harms, K. E. et al. (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA, 104, 864–869.CrossRefGoogle ScholarPubMed
Kerstiens, G. (1996a) Cuticular water permeability and its physiological significance. Journal of Experimental Botany, 47, 1813–1832.CrossRefGoogle Scholar
Kerstiens, G. (1996b) Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. Plant Cuticules (ed. Kerstiens, G.), pp. 121–134. Oxford: BIOS Scientific Publisher Ltd.Google Scholar
Kreft, H. & Jetz, W. (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA, 104, 5925–5930.CrossRefGoogle ScholarPubMed
Kursar, T. A., Engelbrecht, B. M. J., Burke, A. et al. (2009) Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Functional Ecology, 23, 93–102.CrossRefGoogle Scholar
Kursar, T. A., Engelbrecht, B. M. J. & Tyree, M. T. (2003) Soil moisture release curves for two tropical forests having similar rainfall but distinct tree communities. Ecological Society of America Annual Meeting Abstracts, 88, 193–194.Google Scholar
Larcher, W. (2003) Physiological Plant Ecology, 4th edn. Berlin: Springer.CrossRefGoogle Scholar
Lewis, S. L. & Tanner, E. V. J. (2000) Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology, 81, 2525–2538.CrossRefGoogle Scholar
Lieberman, D. & Li, M. (1992) Seedling recruitment patterns in tropical dry forest in Ghana. Journal of Vegetation Science, 3, 375–382.CrossRefGoogle Scholar
Lopez, O. R. & Kursar, T. A. (2007) Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests. Oecologia, 154, 35–43.CrossRefGoogle ScholarPubMed
Malhi, Y., Aragao, L., Galbraith, D. et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences USA, 106, 20610–20615.CrossRefGoogle ScholarPubMed
Malhi, Y. & Phillips, O. L. (2004) Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 359, 549–555.CrossRefGoogle ScholarPubMed
Malhi, Y., Roberts, J. T., Betts, R. A. et al. (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169–172.CrossRefGoogle ScholarPubMed
Markesteijn, L., Iraipi, J., Bongers, F. & Poorter, L. (2010) Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. Journal of Tropical Ecology, 26, 497–508.CrossRefGoogle Scholar
Markesteijn, L. & Poorter, L. (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97, 311–325.CrossRefGoogle Scholar
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 34, 137–148.CrossRefGoogle ScholarPubMed
Marod, D., Kutintara, U., Tanaka, H. & Nakashizuka, T. (2002) The effects of drought and fire on seed and seedling dynamics in a tropical seasonal forest in Thailand. Plant Ecology, 161, 41–57.CrossRefGoogle Scholar
Mayle, F. E. & Power, M. J. (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society Series B, 363, 1829–1838.CrossRefGoogle ScholarPubMed
McLaren, K. P. & McDonald, M. A. (2003) The effects of moisture and shade on seed germination and seedling survival in a tropical dry forest in Jamaica. Forest Ecology and Management, 183, 61–75.CrossRefGoogle Scholar
Medina, E. (1999) Tropical forests: diversity and function of dominant lifeforms. In Handbook of Functional Plant Ecology (eds. Pugnaire, F. & Vallejo, M. I.), pp. 407–448. New York: Marcel Dekker.Google Scholar
Merchant, A., Tausz, M., Arndt, S. K. & Adams, M. A. (2006) Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell and Environment, 29, 2017–2029.CrossRefGoogle ScholarPubMed
Metz, M. R., Comita, L. S., Chen, Y. Y. et al. (2008) Temporal and spatial variability in seedling dynamics: a cross-site comparison in four lowland tropical forests. Journal of Tropical Ecology, 24, 9–18.CrossRefGoogle Scholar
Miles, L., Grainger, A. & Phillips, O. (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Global Ecology and Biogeography, 13, 553–565.CrossRefGoogle Scholar
Mulkey, S. S., Smith, A. P., Wright, S. J., Machado, J. L. & Dudley, R. (1992) Contrasting leaf phenotypes control seasonal variation in water-loss in a tropical forest shrub. Proceedings of the National Academy of Sciences USA, 89, 9084–9088.CrossRefGoogle Scholar
Mulkey, S. S. & Wright, S. J. (1996) Influence of seasonal drought on the carbon balance of tropical forest plants. In Tropical Forest Plant Ecophysiology (eds. Mulkey, S. S., Chazdon, R. L. & Smith, A. P.), pp. 217–243. New York: Chapman & Hall.CrossRefGoogle Scholar
Mulkey, S. S., Wright, S. J. & Smith, A. P. (1993) Comparative physiology and demography of 3 Neotropical forest shrubs: alternative shade-adaptive character syndromesOecologia, 96, 526–536.CrossRefGoogle ScholarPubMed
Myers, M. A. & Kitajima, K. (2007) Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 95, 383–395.CrossRefGoogle Scholar
Nakagawa, M., Tanaka, K., Nakashizuka, T. et al. (2000) Impact of severe drought associated with the 1997–1998 El Niño in a tropical forest in Sarawak. Journal of Tropical Ecology, 16, 355–367.CrossRefGoogle Scholar
Neelin, J. D., Munnich, M., Su, H., Meyerson, J. E. & Holloway, C. E. (2006) Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences USA, 103, 6110–6115.CrossRefGoogle ScholarPubMed
Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 2259–2269.CrossRefGoogle Scholar
Newbery, D. M., Campbell, E. J. F., Proctor, J. & Still, M. J. (1996) Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey. Vegetatio, 122, 193–220.CrossRefGoogle Scholar
Padilla, F. M. & Pugnaire, F. I. (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21, 489–495.CrossRefGoogle Scholar
Paine, C. E. T., Harms, K. E. & Ramos, J. (2009) Supplemental irrigation increases seedling performance and diversity in a tropical forest. Journal of Tropical Ecology, 25, 171–180.CrossRefGoogle Scholar
Palmiotto, P. A., Davies, S. J., Vogt, K. A. et al. (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology, 92, 609–623.CrossRefGoogle Scholar
Parolin, P., Lucas, C., Piedade, M. T. F. & Wittmann, F. (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Annals of Botany, 105, 129–139.CrossRefGoogle ScholarPubMed
Paz, H. (2003) Root/shoot allocation and root architecture in seedlings: Variation among forest sites, microhabitats, and ecological groups. Biotropica, 35, 318–332.CrossRefGoogle Scholar
Pearson, T. R. H., Burslem, D. F. R. P., Goeriz, R. E. & Dalling, J. W. (2003) Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought, and herbivory on growth and survival. Oecologia, 137, 456–465.CrossRefGoogle ScholarPubMed
Phillips, O. L., Aragao, L., Lewis, S. L. et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344–1347.CrossRefGoogle ScholarPubMed
Phillips, O. L., van der Heijden, G., Lewis, S. L. et al. (2010) Drought-mortality relationships for tropical forests. New Phytologist, 187, 631–646.CrossRefGoogle ScholarPubMed
Poorter, L., Bongers, F., Kouame, F. N. & Hawthorne, W. D. (2004) Biodiversity of West African Forests: An Ecological Atlas of Woody Plant Species. Oxford: CABI Publishing.CrossRefGoogle Scholar
Poorter, L., Bongers, F. & Lemmens, R. H. M. J. (2004) West African forests; introduction. In Biodiversity of West African Forests. An Ecological Atlas of Woody Plant Species (eds. Poorter, L., Bongers, F., Kouame, F. N. & Hawthorne, W. D.), pp. 5–14., Oxford: CABI Publishing.CrossRefGoogle Scholar
Poorter, L. & Hayashida-Oliver, Y. (2000) Effects of seasonal drought on gap and understorey seedlings in a Bolivian moist forest. Journal of Tropical Ecology, 16, 481–498.CrossRefGoogle Scholar
Poorter, L. & Markesteijn, L. (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica, 40, 321–331.CrossRefGoogle Scholar
Potts, M. D. (2003) Drought in a Bornean everwet rain forest. Journal of Ecology, 91, 467–474.CrossRefGoogle Scholar
Pyke, C. R., Condit, R., Aguilar, S. & Lao, S. (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science, 12, 553–566.CrossRefGoogle Scholar
Quesada, M., Sanchez-Azofeifa, G. A., Alvarez-Anorve, M. et al. (2009) Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 258, 1014–1024.CrossRefGoogle Scholar
Rascher, U., Bobich, E. G., Lin, G. H. et al. (2004) Functional diversity of photosynthesis during drought in a model tropical rainforest – the contribution of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange. Plant, Cell and Environment, 27, 1239–1256.CrossRefGoogle Scholar
Reich, P. B. & Borchert, R. (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology, 72, 61–74.CrossRefGoogle Scholar
Russo, S. E., Zhang, L. & Tan, S. (2012) Covariation between understorey light environments and soil resources in Bornean mixed dipterocarp rain forest. Journal of Tropical Ecology 28, 33–44.CrossRefGoogle Scholar
Sack, L. (2004) Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?Oikos, 107, 110–127.CrossRefGoogle Scholar
Slik, J. W. F. (2004) El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120.CrossRefGoogle ScholarPubMed
Slik, J. W. F., Poulsen, A. D., Ashton, P. S. et al. (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography, 30, 1517–1531.CrossRefGoogle Scholar
Slot, M. & Poorter, L. (2007) Diversity of tropical tree seedling responses to drought. Biotropica, 39, 683–690.CrossRefGoogle Scholar
Snow, M. D. & Tingey, D. T. (1985) Evaluation of a system for the imposition of plant water stress. Plant Physiology 77, 602–607.CrossRefGoogle ScholarPubMed
Sombroek, W. (2001) Spatial and temporal patterns of Amazon rainfall – Consequences for the planning of agricultural occupation and the protection of primary forests. Ambio, 30, 388–396.CrossRefGoogle ScholarPubMed
Svenning, J. C. (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55–65.CrossRefGoogle Scholar
Swaine, M. D. (1996) Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology, 84, 419–428.CrossRefGoogle Scholar
Tanner, E. V. J. & Barberis, I. M. (2007) Trenching increased growth, and irrigation increased survival of tree seedlings in the understorey of a semi-evergreen rain forest in Panama. Journal of Tropical Ecology, 23, 257–268.CrossRefGoogle Scholar
ter Steege, H. (1994) Flooding and drought tolerance in seeds and seedlings of two Mora species segregated along a soil hydrological gradient in the tropical rain-forest of Guyana. Oecologia, 100, 356–367.CrossRefGoogle ScholarPubMed
ter Steege, H., Pitman, N., Sabatier, D. et al. (2003) A spatial model of tree alpha-diversity and tree density for the Amazon. Biodiversity and Conservation, 12, 2255–2277.CrossRefGoogle Scholar
ter Steege, H., Pitman, N. C. A., Phillips, O. L. et al. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444–447.CrossRefGoogle ScholarPubMed
Timmermann, A., Oberhuber, J., Bacher, A. et al. (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694–697.CrossRefGoogle Scholar
Tobin, M. F., Lopez, O. R. & Kursar, T. A. (1999) Responses of tropical understory plants to a severe drought: Tolerance and avoidance of water stress. Biotropica, 31, 570–578.CrossRefGoogle Scholar
Toledo, M., Poorter, L., Pena-Claros, M. et al. (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254–264.CrossRefGoogle Scholar
Turkan, I., Bor, M., Ozdemir, F. & Koca, H. (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223–231.CrossRefGoogle Scholar
Turner, I. M. (1990) The seedling survivorship and growth of three Shorea species in a Malaysian tropical rain forest. Journal of Tropical Ecology, 6, 469–478.CrossRefGoogle Scholar
Tyree, M. T., Engelbrecht, B. M. J., Vargas, G. & Kursar, T. A. (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiology, 132, 1439–1447.CrossRefGoogle ScholarPubMed
Tyree, M. T. & Ewers, F. W. (1996) Hydraulic architecture of woody tropical plants. In Tropical Forest Plant Ecophysiology (eds. Mulkey, S. S., Chazdon, R. L. & Smith, A. P.), pp. 217–243. New York: Chapman & Hall.CrossRefGoogle Scholar
Tyree, M. T. & Jarvis, P. G. (1982) Water in tissues and cells. Encyclopedia of Plant Physiology (eds. Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H.), pp. 36–71. Berlin: Spring-Verlag.Google Scholar
Tyree, M. T. & Sperry, J. S. (1989) Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19–38.CrossRefGoogle Scholar
Valencia, R., Foster, R. B., Villa, G. et al. (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214–229.CrossRefGoogle Scholar
Vazquez-Yanes, C. & Orozco-Segovia, A. (1993) Patterns of seed longevity and germination in the tropical rainforest. Annual Review of Ecology and Systematics, 24, 69–87.CrossRefGoogle Scholar
Veenendaal, E. M. & Swaine, M. D. (1998) Limits to tree species distribution in lowland tropical rainforests. Dynamics of Tropical Communities: 37th Symposium of the British Ecological Society. (eds. Newbery, D. M., Prins, H. H. T. & Brown, N.), pp. 163–191. Oxford: Blackwell Scientific.Google Scholar
Veenendaal, E. M., Swaine, M. D., Agyeman, V. K. et al. (1996) Differences in plant and soil water relations in and around a forest gap in West Africa during the dry season may influence seedling establishment and survival. Journal of Ecology, 84, 83–90.CrossRefGoogle Scholar
Walsh, R. P. D. (1996) Climate. In The Tropical Rainforest: An Ecological Study (ed. Richards, P. W.), pp. 159–205. Cambridge: Cambridge University Press.Google Scholar
Walsh, R. P.D. & Newbery, D. M. (1999) The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Philosophical Transactions of the Royal Society Series B, 354, 1869–1883.CrossRefGoogle ScholarPubMed
Webb, C. O. & Peart, D. R. (2000) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464–478.CrossRefGoogle Scholar
Westoby, M. (2002) Choosing species to study. Trends in Ecology & Evolution, 17, 587.CrossRefGoogle Scholar
Whittaker, R. H. & Niering, W. A. (1975) Vegetation of the Santa Catalina Mountains, Arizona 5. Biomass, production, and diversity along elevation gradient. Ecology, 56, 771–790.CrossRefGoogle Scholar
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. Plos Biology, 6, 2621–2626.CrossRefGoogle ScholarPubMed
Williamson, G. B., Laurance, W. F., Oliveira, A. A. et al. (2000) Amazonian tree mortality during the 1997 El Niño drought. Conservation Biology, 14, 1538–1542.CrossRefGoogle Scholar
Wolda, H. (1978) Seasonal fluctuations in rainfall, food and abundance of tropical insects. Journal of Animal Ecology, 47, 369–381.CrossRefGoogle Scholar
Wright, S. J. (2005) The El Niño Southern Oscillation influences tree performance in tropical rainforests. In Tropical Rainforests: Past, Present, and Future (eds. Bermingham, E., Dickinson, R. E. & Moritz, C.), pp. 295–310. Chicago and London: University of Chicago Press.Google Scholar
Wright, S. J., Machado, J. L., Mulkey, S. S. & Smith, A. P. (1992) Drought acclimation among tropical forest shrubs (Psychotria, Rubiaceae). Oecologia, 89, 457–463.CrossRefGoogle Scholar
Yavitt, J. B. & Wright, S. J. (2008) Seedling growth responses to water and nutrient augmentation in the understorey of a lowland moist forest, Panama. Journal of Tropical Ecology, 24, 19–26.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×