Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T01:17:11.678Z Has data issue: false hasContentIssue false

Chapter Six - Floristic shifts versus critical transitions in Amazonian forest systems

Published online by Cambridge University Press:  05 June 2014

Jérôme Chave
Affiliation:
Université Paul Sabatier
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

Tropical forests hold close to 250 Pg of carbon, with Latin America contributing half of this (Saatchi et al. 2011). Although the rates of deforestation appear to have decreased over the past decade, tropical deforestation still represents the bulk of the c. 1.1 PgC yr−1 of C emissions due to land-use change (Friedlingstein et al. 2010). The direct impact of deforestation and degradation has the potential to be mitigated through a performance-based mechanism such as REDD (Reducing Emissions from Deforestation and Forest Degradation), by monetising carbon held in both managed and unmanaged forests (Agrawal, Nepstad & Chhatre 2011). Additionally, tropical forests contribute to a terrestrial carbon sink (Le Quéré et al. 2009), offsetting fossil carbon emissions into the atmosphere through a physiological response of the vegetation (Lewis et al. 2009; Lloyd & Farquhar 2008). Thus tropical forests offer critically important ecosystem services by reducing the short-term effect of anthropogenic carbon emissions into the atmosphere.

However, in the face of global climate trends, the resilience of tropical forests has been called into question (Cox et al. 2000). South America is sensitive to a number of large-scale climatic anomalies, including the El Niño Southern Oscillation, the Pacific Decadal Oscillation and the North Atlantic Oscillation. All of these contribute to displacing the yearly course of the Inter-Tropical Convergence Zone (ITCZ) and increase the strength of the dry season in some regions (Garreaud et al. 2009; Marengo 2004). The 2005 and the 2010 climatic events over Amazonia have exemplified these atmospheric regime shifts, and these may occur more frequently during the twenty-first century. As a result of the increased likelihood of severe droughts, models suggest that Amazonian forests may shift by 2100 to a different biome type akin to a woodland savanna or dry forest (Cox et al. 2000, 2004; Huntingford et al. 2008; Malhi et al. 2009; Poulter et al. 2010). Aside from the radical implications for human and wildlife populations inhabiting Amazonia, this new biome type would have far less potential to hold carbon, and such a shift would have important consequences for global life support services. Some of the predictions of this ‘Amazon dieback’ scenario have been empirically tested (Phillips et al. 2009). Theoretical work has also attempted to understand whether a shift showing alternative stable states is a likely outcome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M. L., Cleef, A., Fournier, M. et al. (1991) Mise en évidence de quatre phases d’ouverture de la forêt dense dans le Sud-Est de l’Amazonie au cours des 60,000 dernières années: première comparaison avec d’autres régions tropicales. Comptes Rendus de l’Académie des Sciences Paris, Série II, 312, 673–678.Google Scholar
Agrawal, A., Nepstad, D. & Chhatre, A. (2011) Reducing emissions from deforestation and forest degradation. Annual Review in Environmental Resources, 36, 373–396.CrossRefGoogle Scholar
Andrade, J. L., Meinzer, F. C., Goldstein, G. & Schnitzer, S. A. (2005) Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees, 19, 282–289.CrossRefGoogle Scholar
Baas, P., Ewers, F. W., Davis, S. D. & Wheeler, E. A. (2004). Evolution of xylem physiology. In The Evolution of Plant Physiology (eds. Hemsley, A. R. & Poole, I.), pp. 273–295. London, San Diego: Elsevier Academic Press.CrossRefGoogle Scholar
Baraloto, C., Paine, C. E. T., Patiño, S. et al. (2009) Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology, 24, 208–216.CrossRefGoogle Scholar
Baraloto, C., Paine, C. E. T., Poorter, L. et al. (2010) Decoupled leaf and stem economics in rainforest trees. Ecology Letters, 13, 1338–1347.CrossRefGoogle Scholar
Bartlett, M. K., Scoffoni, C. & Sack, L. (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15, 393–405.CrossRefGoogle ScholarPubMed
Bird, B. W., Abbott, M. B., Rodbell, D. T. & Vuille, M. (2011) Holocene tropical South American hydroclimate revealed from lake sediment d18O record. Earth and Planetary Science Letters, 310, 192–202.CrossRefGoogle Scholar
Brando, P. M., Nepstad, D. C., Balch, J. K. et al. (2012) Fire-induced tree mortality in a neotropical forest: the role of tree size, wood density and fire behavior. Global Change Biology, 18, 630–641.CrossRefGoogle Scholar
van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G. & Kroon, D. (2008) Fossil dripwater in stalagmites reveals Holocene temperatures and rainfall variation in Amazonia. Earth and Planetary Science Letters, 275, 54–60.CrossRefGoogle Scholar
Brodribb, T. J. & Feild, T. S. (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13, 175–183.CrossRefGoogle Scholar
Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and Environment, 26, 443–450.CrossRefGoogle Scholar
Bucci, S. J., Goldstein, G., Meinzer, F. C. et al. (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology, 24, 891–899.CrossRefGoogle ScholarPubMed
Bucci, S. J., Scholz, F. G., Goldstein, G. et al. (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell and Environment, 29, 2153–2167.CrossRefGoogle ScholarPubMed
Bucci, S. J., Scholz, F. G., Goldstein, G. et al. (2008) Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agricultural and Forest Meteorology, 148, 839–849.CrossRefGoogle Scholar
Burbridge, R. E., Mayle, F. E. & Killeen, T. J. (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research, 61, 215–230.CrossRefGoogle Scholar
Burnham, R. J. & Johnson, K. R. (2004) South American palaeobotany and the origins of Neotropical rainforests. Philosophical Transactions of the Royal Society London Series B, 359, 1595–1610.CrossRefGoogle ScholarPubMed
Bush, M. B. (1994) Amazonian speciation: a necessarily complex model. Journal of Biogeography, 21, 5–17.CrossRefGoogle Scholar
Bush, M. B., Miller, M. C., de Oliveira, P. E. & Colinvaux, P. A. (2002) Orbital forcing signal in sediments of two Amazonian lakes. Journal of Paleolimnology, 27, 341–352.CrossRefGoogle Scholar
Bush, M. B., Silman, M. R. & Urrego, D. H. (2004) 48,000 years of climate and forest change in a biodiversity hot spot. Science, 303, 827–829.CrossRefGoogle Scholar
von Caemmerer, S. (2000) Biochemical Models of Leaf Photosynthesis. Victoria, Australia: CSIRO Publishing.Google Scholar
Chave, J. (1999) Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model, Ecological Modelling, 124, 233–254.CrossRefGoogle Scholar
Chave, J., Coomes, D., Jansen, S. et al. (2009) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366.CrossRefGoogle ScholarPubMed
Chen, J. W., Zhang, Q., Li, X. S. & Cao, K. F. (2009) Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta, 230, 459–168.CrossRefGoogle ScholarPubMed
Choat, B., Sack, L. & Holbrook, N. M. (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 175, 686–698.CrossRefGoogle ScholarPubMed
Christin, P. A., Besnard, G., Samaritani, E. et al. (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology, 18, 37–43.CrossRefGoogle ScholarPubMed
Chuine, I. (2000) A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.CrossRefGoogle Scholar
Clark, D. B., Mercado, L. M., Sitch, S. et al. (2011) The Joint UK Land Environment Simulator (JULES), Model description – Part 2: Carbon fluxes and vegetationGeoscientific Model Development Discussions, 4, 641–688.CrossRefGoogle Scholar
Cochard, H. (2006) Cavitation in trees. Comptes Rendus de Physique, 7, 1018–1026.CrossRefGoogle Scholar
Colinvaux, P. A., de Oliviera, P. E., Moreno, J. E., Miller, M. C. & Bush, M. B. (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274, 85–88.CrossRefGoogle Scholar
Colinvaux, P. A., de Oliveira, P. E. & Bush, M. B. (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Review, 19, 141–169.CrossRefGoogle Scholar
Cornelissen, J. H. C., Lavorel, S., Garnier, E. et al. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380.CrossRefGoogle Scholar
Cowling, S. A., Cox, P. M. & Betts, R. A. (2004) Contrasting simulated past and future responses of the Amazon rainforest to atmospheric change. Philosophical Transactions of the Royal Society B, 359, 539–548.CrossRefGoogle Scholar
Cowling, S. A., Maslin, M. A. & Sykes, M. T. (2001) Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quaternary Research, 55, 140–149.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Collins, M. et al. (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical Applied Climatology, 78, 137–156.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycling feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Schaphoff, S. et al. (2004) Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society B, 359, 331–343.CrossRefGoogle ScholarPubMed
Cruz, F. W., Wang, X., Auler, A. et al. (2009) Orbital and millennial-scale precipitation changes in Brazil from speleothem records. In Past Climate Variability in South America and Surrounding Regions (eds. Vimeux, F. et al.) Developments in Paleoenvironmental Research 14. Berlin: Springer.Google Scholar
Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A. & Donoghue, M. A. (2005) Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist, 165, E36–E65.CrossRefGoogle ScholarPubMed
Davis, M. B., Shaw, R. G. & Etterson, J. R. (2005) Evolutionary responses to changing climates. Ecology, 86, 1706–1714.CrossRefGoogle Scholar
Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. (2007) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecology, 193, 101–112.CrossRefGoogle Scholar
Domingues, T. F., Meir, P., Feldpausch, T. R. et al. (2010) Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33, 959–980.CrossRefGoogle ScholarPubMed
Duputié, A., Massol, F., Chuine, I., Kirckpatrick, M. & Ronce, O. (2012) How do genetic correlations affect species range shifts in a changing environment?Ecology Letters, 15, 251–259.CrossRefGoogle Scholar
Engelbrecht, B. M. J. & Kursar, T. A. (2003) Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136, 383–393.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Comita, L. S., Condit, R. et al. (2007) Drought sensitivity shapes species distribution patterns in tropical forestsNature, 447, 80–82.CrossRefGoogle ScholarPubMed
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.CrossRefGoogle Scholar
Favrichon, V. (1994) Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d’un modèle de dynamique de peuplement en foret guyanaise. Revue d’Écologie (Terre et Vie), 49, 379–403.Google Scholar
Feild, T. S. & Balun, L. (2008) Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytologist, 177, 665–675.CrossRefGoogle ScholarPubMed
Fisher, R., McDowell, N., Purves, D. et al. (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytologist, 187, 666–681.CrossRefGoogle Scholar
Freycon, V., Krencker, M., Schwartz, D., Nasi, R. & Bonal, D. (2010) The impact of climate changes during the Holocene on vegetation in Northern French Guiana. Quaternary Research, 73, 220–225.CrossRefGoogle Scholar
Friedlingstein, P., Houghton, R. A., Marland, G. et al. (2010) Update on CO2 emissions. Nature Geosciences, 3, 811–812.CrossRefGoogle Scholar
Fyllas, N. M., Patiño, S., Baker, T. R. et al. (2009) Basin-wide variations in foliar properties of Amazonian forests: Phylogeny, soils and climate. Biogeosciences, 6, 2677–2708.CrossRefGoogle Scholar
Fyllas, N. M., Quesada, C. A. & Lloyd, J. (2012) Deriving plant functional types for Amazonia for use in vegetation dynamics models. Perspectives in Plant Ecology, Evolution, and Systematics, 14, 97–110.CrossRefGoogle Scholar
Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. (2009) Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180–195.CrossRefGoogle Scholar
van Gelder, H. A., Poorter, L. & Sterck, F. J. (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytologist, 171, 367–378.CrossRefGoogle Scholar
Goldstein, G., Meinzer, F. C., Bucci, S. J. et al. (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiology, 28, 395–404.CrossRefGoogle ScholarPubMed
Grime, J. P. (1979) Plant Strategies and Vegetation Processes. Chichester: Wiley.Google Scholar
Haberle, S. G. & Maslin, M. A. (1999) Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research, 51, 27–38.CrossRefGoogle Scholar
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461.CrossRefGoogle ScholarPubMed
Hao, G. Y., Hoffmann, W. A., Scholtz, F. G. et al. (2008) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia, 155, 405–415.CrossRefGoogle ScholarPubMed
Harrison, S. P., Prentice, I. C., Barboni, D. et al. (2010) Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21, 300–317.CrossRefGoogle Scholar
Hirose, T. (2005) Development of the Monsi–Saeki theory on canopy structure. Annals of Botany, 95, 483–494.CrossRefGoogle ScholarPubMed
Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. (2011) Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232–235.CrossRefGoogle ScholarPubMed
Holling, C. S. (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.CrossRefGoogle Scholar
Hughen, K. A., Lehman, S., Southon, J. et al. (2004) 14C activity and global carbon cycle changes over the past 50,000 years. Science, 303, 202–207.CrossRefGoogle ScholarPubMed
Huntingford, C., Fisher, R. A., Mercado, L. et al. (2008) Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philosophical Transactions of the Royal Society B, 363, 1857–1864.CrossRefGoogle Scholar
Hurtt, G. C., Moorcroft, P. R., Pacala, S. W. & Levin, S. (1998) Terrestrial models and global change: challenges for the future. Global Change Biology, 4, 581–590.CrossRefGoogle Scholar
Hurtt, G. C. & Pacala, S. W. (1995) The consequences of recruitment limitation: Reconciling chance, history, and competitive differences between plants. Journal of Theoretical Biology, 176, 1–12.CrossRefGoogle Scholar
Ives, A. R. & Carpenter, S. R. (2007) Stability and diversity of ecosystems. Science, 317, 58–62.CrossRefGoogle ScholarPubMed
Iwasa, Y., Andreasen, V. & Levin, S. (1987) Aggregation in model ecosystems. I. Prefect aggregation. Ecological Modelling, 37, 287–302.CrossRefGoogle Scholar
Jacobsen, A. L., Ewers, F. W., Pratt, R. B., Paddock III, W. A. & Davis, S. D. (2005) Do xylem fibers affect vessel cavitation resistance?Plant Physiology, 139, 546–556.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1981) Patterns of herbivory in a tropical deciduous forest. Biotropica, 13, 271–282.CrossRefGoogle Scholar
Jaramillo, C., Ochoa, D., Contreras, L. et al. (2010) Effects of rapid global warming at the Paleocene–Eocene boundary on Neotropical vegetation. Science, 330, 957–961.CrossRefGoogle ScholarPubMed
Jaramillo, C., Rueda, M. J. & Mora, G. (2006) Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896.CrossRefGoogle ScholarPubMed
Jones, H. G. (1992). Plants and Microclimate, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Kattge, J., Diaz, S., Lavorel, S. et al. (2011) TRY – a global database of plant traits. Global Change Biology, 17, 2905–2935.CrossRefGoogle Scholar
Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. (2010) The relationship between wood density and mortality in a global tropical forest dataset. New Phytologist, 188, 1124–1136.CrossRefGoogle Scholar
Krinner, G., Viovy, N., de Noblet-Ducoudré, N. et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochemical Cycles, 19, GB1015.CrossRefGoogle Scholar
Le Quéré, C., Raupach, M. R., Canadell, J. G. et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geosciences, 2, 831–836.CrossRefGoogle Scholar
Le Roux, X., Lacointe, A., Escobar-Gutierrez, A. & Le Dizès, S. (2001) Carbon-based models of individual tree growth: A critical appraisal. Annals of Forest Science, 58, 469–506.CrossRefGoogle Scholar
Ledru, M.-P. (2001) Late Holocene rainforest disturbance in French Guiana. Review of Paleobotany and Palynology, 115, 161–176.CrossRefGoogle ScholarPubMed
Leuning, R., Kelliher, F. M., De Pury, D. G. G. & Schulze, E. D. (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell & Environment, 18, 1183–1200.CrossRefGoogle Scholar
Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A & Laurance, W. F. (2009) Changing ecology of tropical forests: evidence and drivers. Annual Reviews of Ecology Evolution and Systematics, 40, 529–549.CrossRefGoogle Scholar
Lloyd, J. & Farquhar, G. D. (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B, 363, 1811–1817.CrossRefGoogle Scholar
Lopez, O. R., Kursar, T. A., Cochard, H. & Tyree, M. T. (2005) Interspecific variation in xylem variability to cavitation among tropical tree and shrub species. Tree Physiology, 25, 1553–1562.CrossRefGoogle Scholar
MacArthur, R. H. (1972) Geographical Ecology: Patterns in the Distribution of Species. Princeton: Princeton University Press.Google Scholar
Maherali, H., Pockman, W. T. & Jackson, R. B. (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184–2199.CrossRefGoogle Scholar
Malhi, Y., Aragão, L. E. O. C., Galbraith, D. et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences USA, 106, 20610–20615.CrossRefGoogle ScholarPubMed
Marengo, J. (2004) Interdecadal and long-term rainfall variability in the Amazon basin. Theoretical and Applied Climatology, 78, 79–96.CrossRefGoogle Scholar
Markesteijn, L., Poorter, L., Paz, H. & Sack, L. (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 34, 137–148.CrossRefGoogle ScholarPubMed
Markewitz, D., Devine, S., Davidson, E. A., Brando, P. & Nepstad, D. C. (2010) Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytologist, 187, 592–607.CrossRefGoogle ScholarPubMed
Marquis, R. J., Morais, H. C. & Diniz, I. R. (2002), Interactions among Cerrado plants and their herbivores: unique or typical? In The Cerrados of Brazil – Ecology and Natural History of a Neotropical Savanna (eds. Oliveira, P. S. & Marquis, R. J.), pp. 306–328. New York: University Presses of California, Columbia and Princeton.Google Scholar
Mayle, F. E., Beerling, D. J., Gosling, W. D. & Bush, M. B. (2004) Responses of Amazonian ecosystems to climatic and atmospheric CO2 changes since the Last Glacial Maximum. Philosophical Transactions of the Royal Society B, 359, 499–514.CrossRefGoogle ScholarPubMed
Mayle, F. E., Burn, M. J., Power, M. & Urrego, D. H. (2009) Vegetation and fire at the Last Glacial Maximum in tropical South America. In Past Climate Variability in South America and Surrounding Regions (eds. Vimeux, F. et al.) Developments in Paleoenvironmental Research 14. Berlin: Springer.Google Scholar
McAdam, S. A. & Brodribb, T. J. (2012) Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1–8.CrossRefGoogle ScholarPubMed
McCulloh, K. A., Meinzer, F. C., Sperry, J. S. et al. (2011) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia, 167, 27–37.CrossRefGoogle ScholarPubMed
McDowell, N. G. (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051–1059.CrossRefGoogle ScholarPubMed
Meinzer, F. C., Campanello, P. I., Domec, J. C. et al. (2008a) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiology, 28, 1609–1617.CrossRefGoogle ScholarPubMed
Meinzer, F. C., James, S. A., Goldstein, G. & Woodruff, D. R. (2003) Whole water transport scales with sapwood capacitance in tropical forest canopy trees. Plant, Cell & Environment, 26, 1147–1155.CrossRefGoogle Scholar
Meinzer, F. C., Woodruff, D. A., Domec, J. C. et al. (2008b) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 156, 31–41.CrossRefGoogle ScholarPubMed
Mendez-Alonzo, R. et al. (in press) Coordination between leaf and stem economics in a tropical dry forest. Ecology.
Mercado, L. M., Patiño, S., Domingues, T. F. et al. (2011) Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B, 366, 3316–3329.CrossRefGoogle ScholarPubMed
Monteith, J. L. & Unsworth, M. H. (2007) Principles of Environmental Physics, 3rd edn. Burlington, San Diego, London: Academic Press.Google Scholar
Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs, 71, 557–586.CrossRefGoogle Scholar
Morley, R. J. (2000) Origin and Evolution of Tropical Rain Forests. Chichester, New York: Wiley.Google Scholar
Morley, R. J. (2011) Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climatic Change, 2nd edn (eds. Bush, M. B., Flenley, J. R. & Gosling, W. D), pp. 1–34. Berlin-Heidelberg: Springer.Google Scholar
Murphy, B. P. & Bowman, D. M. J. S. (2012) What controls the distribution of tropical forest and savanna?Ecology Letters, 15, 748–758.CrossRefGoogle ScholarPubMed
Niinemets, U. (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453–469.CrossRefGoogle Scholar
Nobel, P. S. (2009) Physiochemical and Environmental Plant Physiology, 5th edn. San Diego: Academic Press.Google Scholar
Ometto, J. P. H. B., Ehleringer, J. R., Domingues, T. F. et al. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 79, 251–274.CrossRefGoogle Scholar
Onoda, Y., Westoby, M., Adler, P. B. et al. (2011) Global patterns of leaf mechanical properties. Ecology Letters, 14, 301–312.CrossRefGoogle ScholarPubMed
Pacala, S. W., Canham, C. D., Saponara, J. et al. (1996) Forest models defined by field measurements, estimation, error analysis and dynamics. Ecological Monographs, 66, 1–43.CrossRefGoogle Scholar
Paine, C. E. T., Stahl, C., Courtois, E., Patiño, S. & Baraloto, C. (2010) Functional explanations for bark thickness in tropical forest trees. Functional Ecology, 24, 1202–1210.CrossRefGoogle Scholar
Patiño, S., Fyllas, N. M., Baker, T. R. et al. (2012) Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 9, 775–801.CrossRefGoogle Scholar
Patiño, S., Lloyd, J., Paiva, R. et al. (2009) Branch xylem density variations across the Amazon Basin. Biogeosciences, 6, 545–568.CrossRefGoogle Scholar
Patiño, S., Tyree, M. T. & Herre, E. A. (1995) Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist, 129, 125–134.CrossRefGoogle Scholar
Pennington, R. T., Prado, D. E. & Pendry, C. A. (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261–273.CrossRefGoogle Scholar
Phillips, O. L., Martinez, R. V., Arroyo, L. et al. (2002) Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–774.CrossRefGoogle ScholarPubMed
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L. et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344–1347.CrossRefGoogle ScholarPubMed
Picard, N. & Franc, A. (2003) Are ecological groups of species optimal for forest dynamics modelling. Ecological Modelling, 163, 175–186.CrossRefGoogle Scholar
Piperno, D. R. (2011) Prehistoric human occupation and impacts on Neotropical forest landscapes during the Late Pleistocene and Early/Middle Holocene. In Tropical Rainforest Responses to Climatic Change, 2nd edn (eds. Bush, M. B., Flenley, J. R. & Gosling, W. D). pp. 185–212. Berlin-Heidelberg: Springer.CrossRefGoogle Scholar
Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565–588.CrossRefGoogle ScholarPubMed
Poulter, B., Aragão, L., Heyder, U. et al. (2010) Net biome production of the Amazon basin in the 21st century. Global Change Biology, 16, 2062–2075.CrossRefGoogle Scholar
Prado, C. H. B. A., Wenhui, Z., Rojas, M. H. C. & Souza, G. M. (2004) Seasonal leaf gas exchange and water potential in a woody cerrado species community. Brazilian Journal of Plant Physiology, 16, 7–16.CrossRefGoogle Scholar
Purves, D. & Pacala, S. (2008) Predictive models of forest dynamics. Science, 320, 1452–1453.CrossRefGoogle ScholarPubMed
Read, J. & Stokes, A. (2006) Plant biomechanics in an ecological context. American Journal of Botany, 93, 1546–1565.CrossRefGoogle Scholar
Restom, T. G. & Nepstad, D. C. (2001) Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant and Soil, 236, 155–163.CrossRefGoogle Scholar
Ritchie, M. W. & Hann, D. W. (1997) Implications of disaggregation in forest growth and yield modeling. Forest Science, 43, 223–233.Google Scholar
Rood, S. B., Patiño, S., Coombs, K. & Tyree, M. T. (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees, 14, 248–257.CrossRefGoogle Scholar
Rozendaal, D. M. A. & Zuidema, P. A. (2011) Dendroecology in the tropics: a review. Trees, 25, 3–16.CrossRefGoogle Scholar
Rull, V. (1999) Palaeofloristic and palaeovegetational changes across the Paleocene-Eocene boundary in northern South America. Review of Palaeobotany and Palynology, 107, 83–95.CrossRefGoogle Scholar
Saatchi, S. S., Harris, N. L., Brown, S. et al. (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences USA, 108, 9899–9904.CrossRefGoogle ScholarPubMed
Salazar, L. F., Nobre, C. A. & Oyama, M. D. (2007) Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters, 34, L09708.CrossRefGoogle Scholar
Schnitzer, S. A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17, 223–230.CrossRefGoogle Scholar
Schulze, E.-D., Kelliher, F. M., Korner, C., Lloyd, J. & Leuning, R. (1994) Relationships among maximum stomatal conductance, carbon assimilation rate and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics, 25, 629–660.CrossRefGoogle Scholar
Servant, M., Fontes, J. C., Rieu, M. & Saliège, X. (1981) Phases climatiques arides holocènes dans le Sud-Ouest de l’Amazonie (Bolivie). Comptes Redus de l’Académie des Sciences Paris, Série II, 292, 1295–1297.Google Scholar
Shugart, H. H. (1984) A Theory of Forest Dynamics. New York: Springer.CrossRefGoogle Scholar
Sitch, S., Smith, B., Prentice, I. C. et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic vegetation model. Global Change Biology, 9, 161–185.CrossRefGoogle Scholar
Sobrado, M. A. (1996) Embolism vulnerability of an evergreen tree. Biologia Plantarum, 38, 297–301.CrossRefGoogle Scholar
Sobrado, M. A. (1997) Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecologica, 18, 383–391.CrossRefGoogle Scholar
Staver, A. C., Archibald, S. & Levin, S. A. (2011) The global extent and determinants of savanna and forest as alternative stable states. Science, 334, 230–232.CrossRefGoogle Scholar
Swaine, M. D. & Whitmore, T. C. (1988) On the definition of ecological species groups in tropical rain forests. Plant Ecology, 75, 81–86.CrossRefGoogle Scholar
Sytsma, K. J., Walker, J. B., Schönenberger, J. & Anderberg, A. A. (2006) Phylogenetics, biogeography, and radiation of Ericales. Annual BSA Meeting, Botany 2006, Chicago, CA, Abstract volume 71.Google Scholar
Tyree, M. T., Patiño, S. & Becker, P. (1998) Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees. Tree Physiology, 18, 583–588.CrossRefGoogle ScholarPubMed
Tyree, M. T. & Zimmermann, M. H. (2002). Xylem Structure and the Ascent of Sap, 2nd edn (ed. Timell, T. E.), pp. 283. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wang, X., Auler, A. S., Edwards, R. L. et al. (2007) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432, 740–743.CrossRefGoogle Scholar
Wenhui, Z. & Prado, C. H. B. A. (1998) Water relations balance parameters of 30 woody species from Cerrado vegetation in the wet and dry season. Journal of Forestry Research, 9, 233–239.CrossRefGoogle Scholar
Wing, S. L., Herrera, F., Jaramillo, C. A. et al. (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences USA 106, 18627.CrossRefGoogle ScholarPubMed
Worbes, M. (2002) One hundred years of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia, 20, 217–231.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M. et al. (2004) The worldwide leaf economics spectrum. Nature, 428, 821–827.CrossRefGoogle ScholarPubMed
Yachi, S. & Loreau, M. (1998) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences USA, 96, 1453–1458.Google Scholar
Zanne, A. E., Westoby, M., Falster, D. S. et al. (2010) Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97, 207–215.CrossRefGoogle ScholarPubMed
Zhang, Y. J., Meinzer, F. C., Hao, G. Y. et al. (2009) Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant, Cell and Environment, 32, 1456–1466.CrossRefGoogle Scholar
Zhu, S.-D. & Cao, K.-F. (2009) Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204, 295–304.CrossRefGoogle Scholar
Zotz, G., Tyree, M. T. & Cochard, H. (1994) Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana Pittier: a C3-CAM tropical hemiepiphyte. New Phytologist, 127, 287–295.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×