Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:53:41.348Z Has data issue: false hasContentIssue false

Chapter Eleven - Tree performance across gradients of soil resource availability

Published online by Cambridge University Press:  05 June 2014

Richard K. Kobe
Affiliation:
Michigan State University
Thomas W. Baribault
Affiliation:
Michigan State University
Ellen K. Holste
Affiliation:
Michigan State University
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

Whether in the temperate zone or tropics, tree species composition and forest productivity are strongly associated with soil characteristics (e.g. Figure 11.1). Although these community- and ecosystem-level processes necessarily arise from variation in individual tree performance, the influences of specific soil resources on particular tree demographic processes have yet to be fully elucidated (Kobe 1996).

It is important, for several reasons, to understand how soil resources govern tree performance. First, and perhaps most salient to the theme of this volume, human activity exerts a potentially strong effect on soil resource availability through atmospheric deposition of nitrogen (N) (Figure 11.2), which accelerates soil acidification and the leaching of phosphorus (P) and base cations (calcium (Ca), magnesium (Mg), and potassium (K)) (Izuta et al. 2004; Matson et al. 1999; Perakis et al. 2006). Inorganic N deposition takes two major forms: nitrate (NO3) from the combustion of fossil fuels and ammonium (NH4+) from agricultural activity. Background levels of N deposition are typically <1 kgN ha–1 yr–1, as measured in remote non-industrialised areas of the world (Hedin et al. 1995). In North America, N deposition can be more than 20 kgN ha–1 yr–1 (Gradowski & Thomas 2008; Weathers et al. 2006). Levels in Europe are much higher, with maximum levels reaching at least 43.5 kgN ha–1 yr–1recently (Stevens et al. 2011) and 75 kgN ha–1 yr–1 in the 1990s (Dise & Wright 1995). Atmospheric deposition of N is not exclusively a temperate issue, and levels of N deposition are expected to increase in the tropics with further industrial and agricultural development (Matson et al. 1999). Even though soil N levels are higher in tropical than temperate forests, additional inputs of N through deposition could lead to lower plant diversity and increased bulk carbon storage, as well as losses of base cations and P (Cusack et al. 2011; Lu et al. 2010; Matson et al. 1999).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamek, M., Corre, M. D. & Hölscher, D. (2009) Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. Journal of Tropical Ecology, 25, 637.CrossRefGoogle Scholar
Adams, M. (2000) Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. Forest Ecology and Management, 138, 301–319.CrossRefGoogle Scholar
Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B. et al. (2009) Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 6, 2759–2778.CrossRefGoogle Scholar
Baltzer, J. L., Thomas, S. C., Nilus, R. & Burslem, D. F. R. P. (2005) Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology, 86, 3063–3077.CrossRefGoogle Scholar
Baraloto, C., Bonal, D. & Goldberg, D. E. (2006) Differential seedling growth response to soil resource availability among nine neotropical tree species. Journal of Tropical Ecology, 22, 487.CrossRefGoogle Scholar
Baraloto, C., Goldberg, D. E. & Bonal, D. (2005) Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology, 86, 2461–2472.CrossRefGoogle Scholar
Baribault, T. W. & Kobe, R. K. (2011) Neighbour interactions strengthen with increased soil resources in a northern hardwood forest. Journal of Ecology, 99, 1358–1372.CrossRefGoogle Scholar
Baribault, T. B., Kobe, R. K. & Finley, A. O. (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 82, 189–203.CrossRefGoogle Scholar
Baribault, T. W., Kobe, R. K. & Rothstein, D. E. (2010) Soil calcium, nitrogen, and water are correlated with aboveground net primary production in northern hardwood forests. Forest Ecology and Management, 260, 723–733.CrossRefGoogle Scholar
Bigelow, S. W. & Canham, C. D. (2002) Community organization of tree species along soil gradients in a north-eastern USA forest. Journal of Ecology, 90, 188–200.CrossRefGoogle Scholar
Bigelow, S. W. & Canham, C. D. (2007) Nutrient limitation of juvenile trees in a northern hardwood forest: Calcium and nitrate are preeminent. Forest Ecology and Management, 243, 310–319.CrossRefGoogle Scholar
Bloom, A. J., Chapin, F. S. I. & Mooney, H. A. (1985) Resource limitation in plants – an economic analogy. Annual Review of Ecology and Systematics, 16, 363–392.CrossRefGoogle Scholar
Borowicz, V. A. (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations?Ecology, 82, 3057–3068.Google Scholar
Bray, J. R. & Curtis, J. T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325.CrossRefGoogle Scholar
Bugmann, H. & Bigler, C. (2011) Will the CO2 fertilization effect in forests be offset by reduced tree longevity?Oecologia, 165, 533–544.CrossRefGoogle ScholarPubMed
Bugmann, H. & Cramer, W. (1998) Improving the behaviour of forest gap models along drought gradients. Forest Ecology and Management, 103, 247–263.CrossRefGoogle Scholar
Burslem, D. F. R. P., Grubb, P. J. & Turner, I. M. (1995) Responses to nutrient addition among tree seedlings of lowland in Singapore tropical rain forest. Journal of Ecology, 83, 113–122.CrossRefGoogle Scholar
Canham, C. D., Berkowitz, A. R., Kelly, V. R. et al. (1996) Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research, 26, 1521–1530.CrossRefGoogle Scholar
Canham, C. D., Finzi, A. C., Pacala, S. W. & Burbank, D. H. (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Canadian Journal of Forest Research, 24, 337–349.CrossRefGoogle Scholar
Canham, C. D., Papaik, M. J., Uriarte, M. et al. (2006) Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecological Applications, 16, 540–554.CrossRefGoogle ScholarPubMed
Canham, C. D. & Thomas, R. Q. (2010) Frequency, not relative abundance, of temperate tree species varies along climate gradients in eastern North America. Ecology, 91, 3433–3440.CrossRefGoogle Scholar
Cardon, Z., Czaja, A., Funk, J. & Vitt, P. (2002) Periodic carbon flushing to roots of Quercus rubra saplings affects soil respiration and rhizosphere microbial biomass. Oecologia, 133, 215–223.CrossRefGoogle ScholarPubMed
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. (1999) Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491–497.CrossRefGoogle Scholar
Chen, F.-S., Zeng, D.-H., Fahey, T. J., Yao, C.-Y. & Yu, Z.-Y. (2010) Response of leaf anatomy of Chenopodium acuminatum to soil resource availability in a semi-arid grassland. Plant Ecology, 209, 375–382.CrossRefGoogle Scholar
Clark, D. B., Palmer, M. W. & Clark, D. A. (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662–2675.CrossRefGoogle Scholar
Clark, J. S., Mohan, J., Dietze, M. & Ibanez, I. (2003) Coexistence: how to identify trophic trade-offs. Ecology, 84, 17–31.CrossRefGoogle Scholar
Coomes, D. A. & Grubb, P. J. (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs, 70, 171–207.CrossRefGoogle Scholar
Coomes, D. A., Holdaway, R. J., Kobe, R. K., Lines, E. R. & Allen, R. B. (2012) A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100, 42–64.CrossRefGoogle Scholar
Coomes, D. A., Kunstler, G., Canham, C. D. & Wright, E. (2009) A greater range of shade-tolerance niches in nutrient-rich forests: an explanation for positive richness–productivity relationships?Journal of Ecology, 97, 705–717.CrossRefGoogle Scholar
Cuevas, E. & Medina, E. (1988) Nutrient dynamics within Amazonian forests. Oecologia, 76, 222–235.CrossRefGoogle ScholarPubMed
Cusack, D. F., Silver, W. L., Torn, M. S. & McDowell, W. H. (2011) Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry, 104, 203–225.CrossRefGoogle Scholar
Dauer, J. M., Chorover, J., Chadwick, O. A. et al. (2007) Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry, 86, 175–187.CrossRefGoogle Scholar
Denslow, J. S., Vitousek, P. M. & Schultz, J. C. (1987) Bioassays of nutrient limitation in a tropical rain forest soil. Oecologia, 74, 370–376.CrossRefGoogle Scholar
Dent, D. H. & Burslem, D. F. R. P. (2009) Performance trade-offs driven by morphological plasticity contribute to habitat specialization of Bornean tree species. Biotropica, 41, 424–434.CrossRefGoogle Scholar
Dijkstra, F. A., Breemen, N., Jogmans, A. G., Davies, G. R. & Likens, G. E. (2003) Calcium weathering in forested soils and the effect of different tree species. Biogeochemistry, 62, 253–275.CrossRefGoogle Scholar
Dijkstra, F. A. & Cheng, W. (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046–1053.CrossRefGoogle ScholarPubMed
Dijkstra, F. A. & Smits, M. M. (2002) Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems, 5, 0385–0398.CrossRefGoogle Scholar
Dise, N. & Wright, R. F. (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.CrossRefGoogle Scholar
Dodd, J. C., Burton, C. C., Burns, R. G. & Jeffries, P. (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytologist, 107, 163–172.CrossRefGoogle Scholar
Dölle, M. & Schmidt, W. (2009) Impact of tree species on nutrient and light availability: evidence from a permanent plot study of old-field succession. Plant Ecology, 203, 273–287.CrossRefGoogle Scholar
Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S. et al. (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 14, 349–357.CrossRefGoogle Scholar
Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9–19.CrossRefGoogle ScholarPubMed
Fahey, T. J., Battles, J. J. & Wilson, G. F. (1998) Responses of early successional northern hardwood forests to changes in nutrient availability. Ecological Monographs, 68, 183–212.CrossRefGoogle Scholar
Farley, R. A. & Fitter, A. H. (1999) Temporal and spatial variation in soil resources in a deciduous woodland. Journal of Ecology, 87, 688–696.CrossRefGoogle Scholar
Federer, C. A., Hornbeck, J. W., Tritton, L. M. et al. (1989) Long-term depletion of calcium and other nutrients in eastern US forests. Environmental Management, 13, 593–601.CrossRefGoogle Scholar
Fine, P. V. A., Mesones, I. & Coley, P. D. (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663–665.CrossRefGoogle ScholarPubMed
Finzi, A. C. (2009) Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England. Biogeochemistry, 92, 217–229.CrossRefGoogle Scholar
Finzi, A. C., Van Breemen, N. & Canham, C. D. (1998) Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications, 8, 440–446.Google Scholar
Franklin, R. B. & Mills, A. L. (2009) Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biology and Biochemistry, 41, 1833–1840.CrossRefGoogle Scholar
Fujinuma, R., Bockheim, J. & Balster, N. (2005) Base-cation cycling by individual tree species in old-growth forests of upper Michigan, USA. Biogeochemistry, 74, 357–376.CrossRefGoogle Scholar
Gallardo, A., Parama, R. & Covelo, F. (2006) Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant and Soil, 279, 333–346.CrossRefGoogle Scholar
Gradowski, T. & Thomas, S. C. (2006) Phosphorus limitation of sugar maple growth in central Ontario. Forest Ecology and Management, 226, 104–109.CrossRefGoogle Scholar
Gradowski, T. & Thomas, S. C. (2008) Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiology, 28, 173–185.CrossRefGoogle Scholar
Graham, J. H., Duncan, L. W. & Eissenstat, D. M. (1997) Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytologist, 135, 335–343.CrossRefGoogle Scholar
Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Perera, G. A. D., Burslem, D. F. R. P. & Ashton, P. M. S. (1997) Responses to nutrient addition of eight closely related species of Shorea in Sri Lanka. Journal of Ecology, 85, 301–311.CrossRefGoogle Scholar
Hedin, L. O., Armesto, J. J., Johnson, A. H., Mar, N. & Johnson, H. (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology, 76, 493–509.CrossRefGoogle Scholar
Hedin, L. O., Vitousek, P. M. & Matson, P. A. (2003) Nutrient losses over four million years of tropical forest development. Ecology, 84, 2231–2255.CrossRefGoogle Scholar
Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. (2009) The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40, 613–635.CrossRefGoogle Scholar
van der Heijden, M. G. A. & Horton, T. R. (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–1150.CrossRefGoogle Scholar
Henderson, D. E. & Jose, S. (2005) Production physiology of three fast-growing hardwood species along a soil resource gradient. Tree Physiology, 25, 1487–1494.CrossRefGoogle ScholarPubMed
Hernández, J., Pino, A., Salvo, L. & Arrarte, G. (2009) Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of Uruguay. Forest Ecology and Management, 258, 92–99.CrossRefGoogle Scholar
Högberg, M. N., Högberg, P. & Myrold, D. D. (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?Oecologia, 150, 590–601.CrossRefGoogle ScholarPubMed
Holste, E. K., Kobe, R. K. & Vriesendorp, C. F. (2011) Seedling growth responses to soil resources in the understory of a wet tropical forest. Ecology, 92, 1828–1838.CrossRefGoogle ScholarPubMed
Host, G. & Pregitzer, K. (1991) Ecological species groups for upland forest ecosystems of northwestern Lower Michigan. Forest Ecology and Management, 43, 87–102.CrossRefGoogle Scholar
Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327–330.CrossRefGoogle ScholarPubMed
Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. (2003) Atmospheric science. Nitrogen and climate change. Science, 302, 1512–1513.CrossRefGoogle ScholarPubMed
Hutchings, M. J., John, E. A. & Wijesinghe, D. K. (2003) Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 84, 2322–2334.CrossRefGoogle Scholar
Ilg, K., Wellbrock, N. & Lux, W. (2009) Phosphorus supply and cycling at long-term forest monitoring sites in Germany. European Journal of Forest Research, 128, 483–492.CrossRefGoogle Scholar
Iversen, C. M. & Norby, R. J. (2008) Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage. Canadian Journal of Forest Research, 38, 1021–1032.CrossRefGoogle Scholar
Izuta, T., Yamaoka, T., Nakaji, T. et al. (2004) Growth, net photosynthesis and leaf nutrient status of Fagus crenata seedlings grown in brown forest soil acidified with H2SO4 or HNO3 solution. Trees, 18, 677–685.CrossRefGoogle Scholar
Jenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. New York: McGraw Hill.Google Scholar
John, R., Dalling, J. W., Harms, K. E. et al. (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA, 104, 864–869.CrossRefGoogle ScholarPubMed
Johnson, D. W. (2006) Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology, 87, 64–75.CrossRefGoogle ScholarPubMed
Joshi, A. B., Vann, D. R., Johnson, A. H. & Miller, E. K. (2003) Nitrogen availability and forest productivity along a climosequence on Whiteface Mountain, New York. Canadian Journal of Forest Research, 1891, 1880–1891.CrossRefGoogle Scholar
Juice, S. M., Fahey, T. J., Siccama, T. G. et al. (2006) Response of sugar maple to calcium addition to northern hardwood forest. Ecology, 87, 1267–1280.CrossRefGoogle ScholarPubMed
Kaspari, M., Garcia, M. N., Harms, K. E. et al. (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35–43.Google Scholar
Keppel, G., Buckley, Y. M. & Possingham, H. P. (2010) Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology, 98, 87–95.CrossRefGoogle Scholar
Kishchuk, B. E., Weetman, G. F., Brockley, R. P. & Prescott, C. E. (2002) Fourteen-year growth response of young lodgepole pine to repeated fertilization. Canadian Journal of Forest Research, 160, 153–160.CrossRefGoogle Scholar
Kitajima, K. (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419–428.CrossRefGoogle ScholarPubMed
Kobe, R. K. (1996) Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecological Monographs, 66, 181–201.CrossRefGoogle Scholar
Kobe, R. K. (1999) Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology, 80, 187.CrossRefGoogle Scholar
Kobe, R. K. (2006) Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in Northern Michigan. Oecologia, 147, 119–133.CrossRefGoogle ScholarPubMed
Kobe, R. K., Iyer, M. & Walters, M. B. (2010) Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 91, 166–179.CrossRefGoogle Scholar
Kobe, R. K., Lepczyk, C. A. & Iyer, M. (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780–2792.CrossRefGoogle Scholar
Kobe, R. K., Likens, G. E. & Eagar, C. (2002) Tree seedling growth and mortality responses to manipulations of calcium and aluminum in a northern hardwood forest. Canadian Journal of Forest Research, 966, 954–966.CrossRefGoogle Scholar
Kobe, R. K., Pacala, S. W., Silander, J. A. J. & Canham, C. D. (1995) Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5, 517–532.CrossRefGoogle Scholar
Kobe, R. K. & Vriesendorp, C. F. (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 14, 503–510.CrossRefGoogle Scholar
Kotar, J. (1986) Soil–habitat type relationships in Michigan and Wisconsin. Journal of Soil and Water Conservation, 41, 348–350.Google Scholar
Kranabetter, J. M. & Simard, S. W. (2008) Inverse relationship between understory light and foliar nitrogen along productivity gradients of boreal forests. Canadian Journal of Forest Research, 38, 2487–2496.CrossRefGoogle Scholar
Kulmatiski, A., Vogt, K. A., Vogt, D. J. et al. (2007) Nitrogen and calcium additions increase forest growth in northeastern USA spruce–fir forests. Canadian Journal of Forest Research, 37, 1574–1585.CrossRefGoogle Scholar
Kunkle, J. M., Walters, M. B. & Kobe, R. K. (2009) Senescence-related changes in nitrogen in fine roots: mass loss affects estimation. Tree Physiology, 29, 715–723.CrossRefGoogle ScholarPubMed
Lawrence, D. (2003) The response of tropical tree seedlings to nutrient supply: meta-analysis for understanding a changing tropical landscape. Journal of Tropical Ecology, 19, 239–250.CrossRefGoogle Scholar
Lechowicz, M. J. & Bell, G. (1991) The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. Journal of Ecology, 79, 687–696.CrossRefGoogle Scholar
Lefrançois, M.-L., Beaudet, M. & Messier, C. (2008) Crown openness as influenced by tree and site characteristics for yellow birch, sugar maple, and eastern hemlock. Canadian Journal of Forest Research, 38, 488–497.CrossRefGoogle Scholar
Long, R. P., Horsley, S. B. & Hall, T. J. (2011) Long-term impact of liming on growth and vigor of northern hardwoods. Canadian Journal of Forest Research, 1307, 1295–1307.CrossRefGoogle Scholar
Lu, X., Mo, J., Gilliam, F. S., Zhou, G. & Fang, Y. (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688–2700.CrossRefGoogle Scholar
Magill, A., Aber, J., Currie, W. et al. (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7–28.CrossRefGoogle Scholar
Malhi, Y., Baker, T. R., Phillips, O. L. et al. (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10, 563–591.CrossRefGoogle Scholar
Matson, P. A., McDowell, W. H., Townsend, A. R. & Vitousek, P. M. (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46, 67–83.CrossRefGoogle Scholar
McCarthy-Neumann, S. & Kobe, R. K. (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology, 89, 1883–1892.CrossRefGoogle ScholarPubMed
McCarthy-Neumann, S. & Kobe, R. K. (2010) Conspecific plant-soil feedbacks reduce survivorship and growth of tropical tree seedlings. Journal of Ecology, 98, 396–407.CrossRefGoogle Scholar
McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (1994) Ecology and Natural History of a Neotropical Rain Forest. Chicago, IL: University of Chicago Press.Google Scholar
McGroddy, M. E., Silver, W. L. & Oliveira, R. C. D. (2004) The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest. Ecosystems, 7, 172–179.CrossRefGoogle Scholar
McLachlan, J. S., Clark, J. S. & Manos, P. S. (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088–2098.CrossRefGoogle Scholar
Migita, C., Chiba, Y. & Tange, T. (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 27, 63–70.CrossRefGoogle Scholar
Mou, P., Mitchell, R. J. & Jones, R. H. (1997) Root distribution of two tree species under a heterogeneous nutrient environment. The Journal of Applied Ecology, 34, 645–656.CrossRefGoogle Scholar
Olander, L. P. & Vitousek, P. M. (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175–190.CrossRefGoogle Scholar
Pacala, S., Canham, C., Saponara, J. et al. (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs, 66, 1–43.CrossRefGoogle Scholar
Pant, H. K. & Warman, P. R. (2000) Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biology and Fertility of Soils, 30, 306–311.CrossRefGoogle Scholar
Paoli, G. D. & Curran, L. M. (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503–518.CrossRefGoogle Scholar
Park, B. B., Yanai, R. D., Fahey, T. J. et al. (2008) Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems. Ecosystems, 11, 325–341.CrossRefGoogle Scholar
Pastor, J., Aber, J. A., McClaugherty, C. A. & Meillilo, J. M. (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology, 65, 256–268.CrossRefGoogle Scholar
Perakis, S. S., Maguire, D. A., Bullen, T. D. et al. (2006) Coupled nitrogen and calcium cycles in forests of the Oregon Coast range. Ecosystems, 9, 63–74.CrossRefGoogle Scholar
Phillips, R. P. & Fahey, T. J. (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302–1313.CrossRefGoogle ScholarPubMed
Porder, S. & Chadwick, O. A. (2009) Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology, 90, 623–636.CrossRefGoogle ScholarPubMed
Porder, S., Clark, D. A. & Vitousek, P. M. (2006) Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica. Ecology, 87, 594–602.CrossRefGoogle Scholar
Quesada, C. A., Lloyd, J., Schwarz, M. et al. (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6, 3993–4057.CrossRefGoogle Scholar
Reich, P. B., Oleksyn, J. & Wright, I. J. (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160, 207–212.CrossRefGoogle ScholarPubMed
Reich, P. B., Ellsworth, D. S. & Uhl, C. (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an Amazonian forest. Functional Ecology, 9, 65–76.CrossRefGoogle Scholar
Reich, P. B., Grigal, D. F., Aber, J. D. & Gower, S. T. (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 78, 335–347.CrossRefGoogle Scholar
Robertson, G. P., Klingensmith, K. M., Klug, M. J. et al. (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 7, 158–170.CrossRefGoogle Scholar
Runyon, J., Waring, R. H., Goward, S. N. & Welles, J. M. (1994) Environmental limits on net primary production and light-use efficiency across the Oregon transect. Ecological Applications, 4, 226–237.CrossRefGoogle Scholar
Russo, S. E., Brown, P., Tan, S. & Davies, S. J. (2007) Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 96, 192–203.CrossRefGoogle Scholar
Russo, S. E., Cannon, W. L., Elowsky, C., Tan, S. & Davies, S. J. (2010) Variation in leaf stomatal traits of 28 tree species in relation to gas exchange along an edaphic gradient in a Bornean rain forest. American Journal of Botany, 97, 1109–1120.CrossRefGoogle Scholar
Russo, S. E., Davies, S. J., King, D. A. & Tan, S. (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93, 879–889.CrossRefGoogle Scholar
Ryan, M., Binkley, D. & Stape, J. (2008) Why don’t our stands grow even faster? Control of production and carbon cycling in eucalypt plantations. Southern Forests: A Journal of Forest Science, 70, 99–104.CrossRefGoogle Scholar
Røsberg, I., Frank, J. & Stuanes, A. O. (2006) Effects of liming and fertilization on tree growth and nutrient cycling in a Scots pine ecosystem in Norway. Forest Ecology and Management, 237, 191–207.CrossRefGoogle Scholar
Schenk, H. J. (2006) Root competition: beyond resource depletion. Journal of Ecology, 94, 725–739.CrossRefGoogle Scholar
Schreeg, L. A., Kobe, R. K. & Walters, M. B. (2005) Tree seedling growth, survival, and morphology in response to landscape-level variation in soil resource availability in northern Michigan. Canadian Journal of Forest Research, 35, 263–273.CrossRefGoogle Scholar
Shabala, S. & Hariadi, Y. (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta, 221, 56–65.CrossRefGoogle ScholarPubMed
Simard, S. W. (2009) The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. Forest Ecology and Management, 258, S95–S107.CrossRefGoogle Scholar
Simioni, G., Gignoux, J., Le Roux, X., Appé, R. & Benest, D. (2004) Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occurring savanna tree species. Tree Physiology, 24, 205–16.CrossRefGoogle ScholarPubMed
Sollins, P. (1998) Factors influencing species composition in tropical lowland rain forest: does soil matter ? Ecology, 79, 23–30.CrossRefGoogle Scholar
Sparks, J. P. (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1–13.CrossRefGoogle ScholarPubMed
Spurr, S. H. (1956) Forest associations in the Harvard Forest. Ecological Monographs, 26, 245–262.CrossRefGoogle Scholar
Clair, S. B. & Lynch, J. P. (2005) Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. The New Phytologist, 165, 581–590.CrossRefGoogle Scholar
St Clair, S. B., Sharpe, W. E. & Lynch, J. P. (2008) Key interactions between nutrient limitation and climatic factors in temperate forests: a synthesis of the sugar maple literature. Canadian Journal of Forest Research, 38, 401–414.CrossRefGoogle Scholar
Stephenson, N. L. & van Mantgem, P. J. (2005) Forest turnover rates follow global and regional patterns of productivity. Ecology Letters, 8, 524–531.CrossRefGoogle ScholarPubMed
Stevens, C., Duprè, C., Gaudnik, C. et al. (2011) Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. Journal of Vegetation Science, 22, 207–215.CrossRefGoogle Scholar
Stuefer, J. F. (1996) Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity. Vegetatio, 127, 55–70.CrossRefGoogle Scholar
Tanner, E. V. J., Kapos, V. & Franco, W. (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology, 73, 78–86.CrossRefGoogle Scholar
Townsend, A. R., Asner, G. P. & Cleveland, C. C. (2008) The biogeochemical heterogeneity of tropical forests. Trends in Ecology & Evolution, 23, 424–431.CrossRefGoogle ScholarPubMed
Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. (2011) Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9, 9–17.CrossRefGoogle Scholar
Treseder, K. K. & Vitousek, P. M. (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946–954.CrossRefGoogle Scholar
Uriarte, M., Canham, C. D., Thompson, J. & Zimmerman, J. K. (2004) Neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs, 74, 591–614.CrossRefGoogle Scholar
Ushio, M., Kitayama, K. & Balser, T. C. (2010) Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biology and Biochemistry, 42, 1588–1595.CrossRefGoogle Scholar
Van Breemen, N., Finlay, R., Lundström, U. et al. (2000) Mycorrhizal weathering: A true case of mineral plant nutrition?Biogeochemistry, 49, 53–67.CrossRefGoogle Scholar
Vanguelova, E., Pitman, R., Luiro, J. & Helmisaari, H.-S. (2010) Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry, 101, 43–59.CrossRefGoogle Scholar
Vitousek, P. M. (2004) Nutrient Cycling and Limitation: Hawaii as a Model System. Princeton, NJ: Princeton University Press.Google Scholar
Vitousek, P. M. & Denslow, J. S. (1986) Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. Journal of Ecology, 74, 1167–1178.CrossRefGoogle Scholar
Vitousek, P. M. & Farrington, H. (1997) Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry, 37, 63–75.CrossRefGoogle Scholar
Walker, T. W. & Syers, J. K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.CrossRefGoogle Scholar
Walters, M. B. & Reich, P. B. (1997) Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. Canadian Journal of Forest Research, 27, 237–247.CrossRefGoogle Scholar
Wang, L., Mou, P. P., Huang, J. & Wang, J. (2007) Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil, 295, 137–150.CrossRefGoogle Scholar
Wanthongchai, K., Bauhus, J. & Goldammer, J. (2008) Nutrient losses through prescribed burning of aboveground litter and understorey in dry dipterocarp forests of different fire history. Catena, 74, 321–332.CrossRefGoogle Scholar
Weathers, K. C., Simkin, S. M., Lovett, G. M. & Lindberg, S. E. (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16, 1590–1607.CrossRefGoogle ScholarPubMed
Webb, C. O. & Peart, D. R. (2000) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464–478.CrossRefGoogle Scholar
Weber, P. & Bardgett, R. D. (2011) Influence of single trees on spatial and temporal patterns of belowground properties in native pine forest. Soil Biology and Biochemistry, 43, 1372–1378.CrossRefGoogle Scholar
Whitlock, C. (1993) Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Parks. Ecological Monographs, 63, 173–198.CrossRefGoogle Scholar
Whitmore, T. C. 1984. Tropical Rain Forests of the Far East 2nd edn. Oxford: Oxford University Press.Google Scholar
Whitney, G. G. (1991) Relation of plant species to substrate, landscape position, and aspect in north central Massachusetts. Canadian Journal of Forest Research, 21, 1245–1252.CrossRefGoogle Scholar
Will, R., Markewitz, D., Hendrick, R. et al. (2006) Nitrogen and phosphorus dynamics for 13-year-old loblolly pine stands receiving complete competition control and annual N fertilizer. Forest Ecology and Management, 227, 155–168.CrossRefGoogle Scholar
Will, R. E., Munger, G. T., Zhang, Y. & Borders, B. E. (2002). Effects of annual fertilization and complete competition control on current annual increment, foliar development, and growth efficiency of different aged Pinus taeda stands. Canadian Journal of Forest Research, 32, 1728–1740.CrossRefGoogle Scholar
Wright, S. J., Yavitt, J. B., Wurzburger, N. et al. (2011) Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology, 92, 1616–1625.CrossRefGoogle ScholarPubMed
Xia, J. & Wan, S. (2008) Global response patterns of terrestrial plant species to nitrogen addition. The New Phytologist, 179, 428–439.CrossRefGoogle ScholarPubMed
Yavitt, J. B., Harms, K. E., Garcia, M. N. et al. (2009) Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47, 674–687.CrossRefGoogle Scholar
Yavitt, J. B. & Wright, S. J. (2008) Seedling growth responses to water and nutrient augmentation in the understorey of a lowland moist forest, Panama. Journal of Tropical Ecology, 24, 19–26.CrossRefGoogle Scholar
Zaccherio, M. T. & Finzi, A. C. (2007) Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply. Ecological Applications, 17, 1929–1941.CrossRefGoogle ScholarPubMed
Zak, D. R., Host, G. E. & Pregitzer, K. S. (1989) Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 19, 1521–1526.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×