Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T10:01:19.326Z Has data issue: false hasContentIssue false

13 - The Kerr geometry

Published online by Cambridge University Press:  05 September 2012

M. P. Hobson
Affiliation:
University of Cambridge
G. P. Efstathiou
Affiliation:
University of Cambridge
A. N. Lasenby
Affiliation:
University of Cambridge
Get access

Summary

The Schwarzschild solution describes the spacetime geometry outside a spherically symmetric massive object, characterised only by its mass M. In the previous chapter we derived further spherically symmetric solutions. Most real astrophysical objects, however, are rotating. In this case, a spherically symmetric solution cannot apply because the rotation axis of the object defines a special direction, so destroying the isotropy of the solution. For this reason, in general relativity it is not possible to find a coordinate system that reduces the spacetime geometry outside a rotating (uncharged) body to the Schwarzschild geometry. The non-linear field equations couple the source to the exterior geometry. Moreover, a rotating body is characterised not only by its mass M but also by its angular momentum J, and so we would expect the corresponding spacetime metric to depend upon these two parameters.

We now consider how to derive the metric describing the spacetime geometry outside a rotating body. Since the mathematical complexity in this case is far greater than that encountered in deriving the Schwarzschild metric (or the other spherically symmetric geometries discussed in the previous chapter), we shall content ourselves with just an outline of how the solution may be obtained.

The general stationary axisymmetric metric

In our derivation of the Schwarzschild solution, we began by constructing the general form of the static isotropic metric. We are now interested in deriving the spacetime geometry outside a steadily rotating massive body.

Type
Chapter
Information
General Relativity
An Introduction for Physicists
, pp. 310 - 354
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×