Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-06T19:03:20.927Z Has data issue: false hasContentIssue false

3 - Inbreeding and outbreeding depression in fragmented populations

Published online by Cambridge University Press:  29 January 2010

Andrew G. Young
Affiliation:
Division of Plant Industry CSIRO, Canberra
Geoffrey M. Clarke
Affiliation:
Division of Entomology, CSIRO, Canberra
Get access

Summary

ABSTRACT

The goal of this chapter is to review inbreeding and outbreeding depression in the context of habitat fragmentation and to show how smaller, fewer populations of any organism separated by distance may exasperate the effects of these two genetic phenomena. We review the genetic basis of each, provide examples, and discuss specific empirical issues that need to be addressed in future research. We conclude with an illustrative case study of how both genetic phenomena can act simultaneously in a single species.

INTRODUCTION

Most rare and endangered species exist as small, isolated populations (Holsinger & Gottlieb, 1989). Unfortunately this seems to be the fate of even common species as natural populations are becoming increasingly fragmented. Fragmentation reduces the number of breeding individuals within a population while reducing gene flow between populations. Consequently, mating between individuals in fragmented populations is more likely to represent selfing (if genetically feasible) and/or biparental inbreeding (matings between related individuals) resulting in inbred offspring. The deleterious consequences of inbreeding are manifold. Inbred progeny may suffer from inbreeding depression, i.e. a decline in fitness, where the relative performance of the resulting inbred progeny is lower compared to progeny produced from matings between unrelated individuals within a population (Falconer & Mackay, 1996). Continued inbreeding associated with small populations also results in the loss of within-population genetic diversity (e.g. Schoen & Brown, 1991). Genetic diversity may influence the colonising ability and persistence of a population (Barrett & Kohn, 1991; Lande, 1994). Decreased genetic diversity may also be associated with increased susceptibility to pathogens and pests (Frankham, 19951b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×