Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T16:54:33.133Z Has data issue: false hasContentIssue false

10 - Decadal Coupled Ocean–Atmosphere Interaction in North Atlantic and Global Warming Hiatus

from Part III - Future Earth and the Earth’s Fluid Environment

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 131 - 143
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ba, J., Keenlyside, N. S., Park, W., Latif, M., Hawkins, E., and Ding, H. (2013). A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim. Dyn., 41, 21332144.Google Scholar
Balmaseda, M. A., Trenberth, K. E., and Källén, E. (2013). Distinctive climate signals in reanalysis of global ocean heat content, Geophys. Res. Lett., 40, doi:10.1002/grl.50382.Google Scholar
Chen, X. Y., and Tung, K. K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345(6199), 897903.Google Scholar
Cohen, J., and Barlow, M.. (2005). The NAO, the AO, and global warming: How closely related? J. Clim., 18, 44984513.Google Scholar
Cook, E. R., D’Arrigo, R. D., and Briffa, K. R.. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene, 8, 917.Google Scholar
Czaja, A., and Frankignoul, C.. (2002). Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim., 15, 606623.Google Scholar
Danabasoglu, G., Yeager, S. G., Kwon, Y.-O., Tribbia, J. J., Phillips, A. S., and Hurrell, J. W.. (2012). Variability of the Atlantic Meridional Overturning Circulation in CCSM4. J. Clim., 25, 51535172.Google Scholar
Delworth, T. L., and Greatbatch, R. J.. (2000). Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Clim., 13, 14811495.Google Scholar
Delworth, T. L., and Mann, M. E.. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., 16, 661676.Google Scholar
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.. (2010). Sea surface temperature variability: Patterns and mechanisms. Annual Review of Marine Science, 2, 115143.Google Scholar
Dieppois, B., Durand, A., Fournier, M., and Massei, N.. (2013). Links between multidecadal and interdecadal climatic oscillations in the North Atlantic and regional climate variability of northern France and England since the 17th century. J. Geophys. Res. Atmos., 118, 43594372.Google Scholar
Drbohlav, J., and Jin, F. F.. (1998). Interdecadal variability in a zonally averaged ocean model: An adjustment oscillator. J. Phys. Oceanogr., 28, 12521270.Google Scholar
Eden, C., and Jung, T.. (2001). North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865–1997). J. Clim., 14, 676691.2.0.CO;2>CrossRefGoogle Scholar
Enfield, D. B., Mestas-Nunez, A. M., and Trimble, P. J.. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080.Google Scholar
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus, Nature Climate Change, doi:10.1038/nclimate2106.Google Scholar
Feldstein, S. B. (2000). The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Clim., 13, 44304440.Google Scholar
Fyfe, J. C., Meehl, G. A., England, M. H. et al. (2016). Making sense of the early-2000s warming slowdown. Nat. Clim. Chang., 6, 224228.CrossRefGoogle Scholar
Gent, P. R. et al. (2011). The Community Climate System Model Version 4. J. Clim., 24, 49734991.Google Scholar
Gong, D. Y., Wang, S. W., and Zhu, J. H.. (2001). East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076.Google Scholar
Greatbatch, R. J., and Zhang, S.. (1995). An Interdecadal Oscillation in an Idealized Ocean-Basin Forced by Constant Heat-Flux. J. Clim., 8, 8191.Google Scholar
Hasselmann, K. (1976). Stochastic climate models. 1. Theory. Tellus, 28, 473485.Google Scholar
Haywood, J. M., Jones, A., and Jones, G. S. (2014). The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15 (2), 9296, doi:10.1002/asl2.471.CrossRefGoogle Scholar
Hausfather, Z., Cowtan, K., Clarke, D. C., Jacobs, P., Richardson, M., and Rohde, R.. (2017). Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Advances, 3, e1601207.CrossRefGoogle ScholarPubMed
Huang, B., Zhu, J., and Yang, H.. (2014). Mechanisms of Atlantic Meridional Overturning Circulation (AMOC) variability in a coupled ocean-atmosphere GCM. Adv. Atmos. Sci., 31, 241251.CrossRefGoogle Scholar
Huang, R. X., and Chou, R. L.. (1994). Parameter sensitivity study of the saline circulation. Clim. Dyn., 9, 391409.Google Scholar
Hurrell, J. W. (1995). Decadal Trends in the North-Atlantic Oscillation – Regional Temperatures and Precipitation. Science, 269, 676679.Google Scholar
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668.Google Scholar
Karl, T. R. et al. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.Google Scholar
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.Google Scholar
Kosaka, Y., and XIE, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501: 403407.Google Scholar
Kucharski, F., Molteni, F., and Yoo, J. H.. (2006). SST forcing of decadal Indian Monsoon rainfall variability. Geophys. Res. Lett., 33, L03709, doi:10.1029/2005GL025371.Google Scholar
Kucharski, F., Molteni, F., King, M. P., Farneti, R., Kang, I. S., and Feudale, L.. (2013). On the Need of Intermediate Complexity General Circulation Models A “SPEEDY” Example. Bull. Am. Meteorol. Soc., 94, 2530.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Tompkins, A. M., Feudale, L., Ruti, P., and Dell’Aquila, A.. (2009) A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. Roy. Meteorol. Soc., 135, 569579.Google Scholar
Latif, M., Collins, M., Pohlmann, H., and Keenlyside, N.. (2006a). A review of predictability studies of Atlantic sector climate on decadal time scales. J. Clim., 19, 59715987.Google Scholar
Latif, M. et al. (2006b). Is the thermohaline circulation changing? J. Clim., 19, 46314637.CrossRefGoogle Scholar
Lean, J. L., and Rind, D. H.. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi:10.1029/2008GL034864.Google Scholar
Li, J. P., and Wang, J. X. L.. (2003). A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676.Google Scholar
Li, J. P. (2005). Coupled air-sea oscillations and climate variations in China. In: Qin, D. (Eds.), Climate and Environmental Evolution in China, Vol. 1. Beijing: China Meteorological Press, pp. 324333.Google Scholar
Li, J. P., Sun, C., and Jin, F. F.. (2013a). A: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502.Google Scholar
Li, J. P., Ren, R. C., Qi, Y., Wang, F., Lu, R., Zhang, P., Jiang, Z., Duan, W., Yu, F., and Yang, Y.. (2013b). B: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chinese J. Atmos. Sci., 37(2), 518538.Google Scholar
Li, S., and Bates, G. T.. (2007). Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135.CrossRefGoogle Scholar
Lu, R. Y., Dong, B. W., and Ding, H.. (2006). Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33.Google Scholar
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. and Trenberth, K. E.. (2011). Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360364, doi: 10.1038/NCLIMATE1229Google Scholar
Meinshausen, M., Smith, S. J., Calvin, K. et al. (2011).The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change, 109, 213. doi:10.1007/s10584-011-0156-z.Google Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D..(2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.Google Scholar
Newman, M. (2013). An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269.Google Scholar
Olsen, J., Anderson, N. J., and Knudsen, M. F.. (2012). Variability of the North Atlantic Oscillation over the past 5,200 years. Nat. Geosci., 5, 808812.Google Scholar
Park, W., and Latif, M.. (2010). Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys. Res. Lett., 37, L24701, doi:10.1029/2006GL027655.Google Scholar
Schlesinger, M. E., and Ramankutty, N.. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.CrossRefGoogle Scholar
Solomon, S. et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223.Google Scholar
Stocker, T. F. et al. (2013). Climate change 2013: The physical science basis - Summary for policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F. et al., Cambridge and New York: Cambridge University Press, pp. 2–29.Google Scholar
Sun, C., and Li, J. P.. (2012). Analysis of anomalously low surface air temperature in Northern Hemisphere during 2009/2010 winter. Climatic Environ. Res., 17, 259273.Google Scholar
Sun, C., Li, J. P., and Jin, F.-F.. (2015). A: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim. Dyn., 45, doi:10.1007/s00382-014-2459-z.Google Scholar
Sun, C., Li, J. P., and Zhao, S.. (2015). B: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep, 5, 16853.Google Scholar
Sun, C., Li, J., Ding, R. Q., and Jin, Z.. (2016). Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn, Online, doi:10.1007/s00382-016-3309-y.Google Scholar
Sutton, R. T., and Hodson, D. L. R.. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.Google Scholar
Taws, S. L., Marsh, R., Wells, N. C., and Hirschi, J.. (2011). Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys. Res. Lett., 38, L20601, doi:10.1029/2011GL048978Google Scholar
Thompson, D. W. J., Wallace, J. M., and Hegerl, G. C.. (2000). Annular modes in the extratropical circulation. Part II: Trends. J. Clim., 13, 10181036.Google Scholar
Ting, M. F., Kushnir, Y., Seager, R., and Li, C. H.. (2009). Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim., 22, 14691481.Google Scholar
Torrence, C., and Compo, G. P.. (1998). A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 6178.Google Scholar
Trenberth, K. E., and Fasullo, J. T..(2013). An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.Google Scholar
Visbeck, M., Cullen, H., Krahmann, G., and Naik, N.. (1998). An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25, 45214524.Google Scholar
Visbeck, M., Chassignet, E. P., Curry, R., Delworth, T., Dickson, B., and Krahmann, G.. (2003). The ocean’s response to North Atlantic Oscillation variability, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr. Ser., vol. 134, pp. 113145, , Washington, DC: AGU.Google Scholar
Von Storch, H., Bruns, T., Fischerbruns, I., and Hasselmann, K.. (1988). Principal oscillation pattern-analysis of the 30-day to 60-day oscillation in General-Circulation Model Equatorial Troposphere. J. Geophys. Res. Atmos., 93, 1102211036.Google Scholar
Walker, G. T., and Bliss, E. W.. (1932). World Weather V, Mem. Quart. J. Roy. Meteor. Soc., 4, 5384.Google Scholar
Wang, C., Liu, H., and Lee, S.-K.. (2010). The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168.Google Scholar
Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., and Kimoto, M.. (2013). Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 31753179, doi: 10.1002/grl.50541.Google Scholar
Wu, P. L., and Gordon, C.. (2002). Oceanic influence on North Atlantic climate variability. J. Clim.., 15, 19111925.Google Scholar
Wu, Z. W., Wang, B., Li, J. P., and Jin, F.-F.. (2009). An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.Google Scholar
Zanchettin, D., Bothe, O., Müller, W., Bader, J., and Jungclaus, J. H.. (2013). Different flavors of the Atlantic Multidecadal Variability. Clim. Dyn., 42, doi:10.1007/s00382-013-1669-0.Google Scholar
Zhang, R. (2008). Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.Google Scholar
Zhang, R., and Delworth, T. L.. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.Google Scholar
Zhang, R., Delworth, T. L., and Held, I. M.. (2007). Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.Google Scholar
Zhang, R., and Coauthors, . (2013). Have aerosols caused the Observed Atlantic Multidecadal Variability? J. Atmos. Sci., 70, 11351144.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×