Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T07:41:28.530Z Has data issue: false hasContentIssue false

5 - Satellite Remote Sensing of Hydrological Change

from Part II - Future Earth and Geodetic Issues

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 57 - 71
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. C., Kustas, W., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d’Urso, G., Pimstein, A. and Gao, F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci., 15, 223239. doi: 10.5194/hess-15–223-2011.Google Scholar
Barnes, J. and Alatout, S. (2012). Water worlds: introduction to the special issue of Social Studies of Science. Social Studies of Science, 42(4), 483488. doi: 10.1177/0306312712448524.Google Scholar
Beck, M. W., Claassen, A. H. and Hundt, P. J. (2012). Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. International Journal of River Basin Management, 10(1), 7392.Google Scholar
Biancamaria, S., Andreadis, K. M., Durand, M., Clark, E. A., Rodriguez, E. N., Mognard, M., Alsdorf, D. E., Lettenmaier, D. P. and Oudin, Y. (2010). Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J. Selec. Top. Appl. Earth Obs. Remote Sens., 3, 619. doi:10.1109/JSTARS.2009.2034614.Google Scholar
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M. (2016). The SWOT Mission and its capabilities for land hydrology. Surv. Geophys., 37(2), 307337. doi:10.1007/s10712-015-9346-y.CrossRefGoogle Scholar
Biancamaria, S., Durand, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P. and Clark, E. A. (2011). Assimilation of virtual wide swath altimetry to improve Arctic river modeling. Remote Sens. Environ., 115, 373381. doi:10.1016/j.rse.2010.09.008.Google Scholar
Birkett, C. M., Mertes, L. A. K., Dunne, T., Costa, M. H. and Jasinski, M. J. (2002). Surface water dynamics in the Amazon Basin: application of satellite radar altimetry. J. Geophys. Res. Atmos., 107(D20), 8059. doi:10.1029/2001JD000609.Google Scholar
Braden, J. B., Brown, D. G., Dozier, J., Gober, P., Hughes, S. M., Maidment, D. R., Schneider, S. L., Schultz, P. W., Shortle, J. S., Swallow, S. K. and Werner, C. M. (2009). Social science in a water observing system. Water Resour. Res., 45(11), W11301. doi:10.1029/2009WR008216.Google Scholar
Buchanan, T. J. and Somers, W. P. (1969). Discharge measurements at gaging stations. U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A8, 65 pp. Available at http://pubs.usgs.gov/twri/twri3a8/.Google Scholar
Ceola, S., Monttanari, A., Krueger, T. et al. (2016). Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences. Hydrological Sciences Journal, 61(16), 28032817. doi:10.1080/02626667.2016.1230674.Google Scholar
Ceola, S., Laio, F. and Montanari, A. (2014). Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys. Res. Lett., 41(20), 71847190.Google Scholar
Ceola, S., Laio, F., and Montanari, A. (2015). Human‐impacted waters: New perspectives from global high‐resolution monitoring. Water Resour. Res., 51(9), 70647079.CrossRefGoogle Scholar
Cherchali, S. and Gosset, M. (2016). Towards operational hydrology from space. Invited presentation at the 8th IPWG and 5th IWSSM Joint Workshop, Bologna, October 3–7, 2016. Available at www.isac.cnr.it/~ipwg/meetings/bologna-2016/Bologna2016_Orals/12-1_Cherchali.pdf.Google Scholar
Di Baldassarre, G. and Montanari, A. (2009). Uncertainty in river discharge observations: a quantitative analysis. Hydrol. Earth Syst. Sci., 13(6), 913921. doi:10.5194/hess-13-913-2009.Google Scholar
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L. and Blöschl, G. (2015). Debates–perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res., 51. doi:10.1002/2014WR016416.CrossRefGoogle Scholar
Durand, M., Rodriguez, E., Alsdorf, D. E. and Trigg, M. (2010). Estimating river depth from remote sensing swath interferometry measurements of river height, slope and width. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 3(1), 2031. doi:10.1109/JSTARS.2009.2033453.Google Scholar
Durand, M., Andreadis, K. M., Alsdorf, D. E., Lettenmaier, D. P., Moller, D. and Wilson, M. (2008). Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys. Res. Lett., 35, L20401. doi:10.1029/ 2008GL034150.Google Scholar
Eicker, A., Forootan, E., Springer, A., Longuevergne, L. and Kusche, J. (2016). Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos., 121(2), 733745. doi:10.1002/2015JD023808.Google Scholar
Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L. and Van Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE, 98(5), 704716. doi:10.1109/JPROC.2010.2043918.Google Scholar
Evenson, E. J., Orndorff, R. C., Blome, C. D., Böhlke, J. K., Hershberger, P. K., Langenheim, V. E., McCabe, G. J., Morlock, S. E., Reeves, H. W., Verdin, J. P., Weyers, H. S., and Wood, T. M. (2013). U.S. Geological Survey water science strategy – observing, understanding, predicting, and delivering water science to the Nation. U.S. Geological Survey Circular 1383–G, 49 pp. Available at https://pubs.usgs.gov/circ/1383g/circ1383-G.pdf.Google Scholar
Fu, L.-L. and Ubelmann, C. (2014). On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. Journal of Atmospheric and Oceanic Technology, 31(2), 560568. doi:10.1175/JTECH-D-13-00109.1.Google Scholar
Gebregiorgis, A. and Hossain, F. (2014). Making satellite precipitation data work for the developing world. IEEE Geosci. Remote Sens. Mag., 2(2), 2436. doi:10.1109/MGRS.2014.2317561.Google Scholar
Gober, P. and Wheater, H. S. (2015). Debates – perspectives on socio-hydrology: Modeling flood risk as a public policy problem. Water Resour. Res., 51, 47824788. doi:10.1002/2015WR016945.Google Scholar
Hamilton, S. H., El Sawah, S., Guillaume, J. H. A., Jakeman, A. J. and Pierce, S. A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling and Software, 64, 215229. doi:10.1016/j.envsoft.2014.12.005.Google Scholar
Hrachowitz, M., Savenije, H. H. G., Blöschl, G. et al. (2013). A decade of Predictions in Ungauged Basins (PUB) – a review. Hydrol. Sci. J., 58(6), 11981255. doi:10.1080/02626667.2013.803183.Google Scholar
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martín-Neira, M. and Mecklenburg, S. (2010). The SMOS Mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5), 666687.Google Scholar
Kidd, C. and Huffman, G. (2011). Global precipitation measurement. Meteorol. Appl., 18, 334353. doi:10.1002/met.284.Google Scholar
Kisekka, I., Migliaccio, K. W., Dukes, M. D., Schaffer, B. and Crane, J. H. (2010). Evapotranspiration-based irrigation scheduling and physiological response in a carambola (Averrhoa Carambola L.) orchard. Applied Engineering in Agriculture, 26(3), 373380.Google Scholar
Konar, M., Evans, T. P., Levy, M., Scott, C. A., Troy, T. J., Vörösmarty, C. J. and Sivapalan, M. (2016). Water resources sustainability in a globalizing world: who uses the water? Hydrological Processes, 30(18), 33303336. doi:10.1002/hyp.10843.Google Scholar
Kummerow, C, Simpson, J., Thiele, O. et al. (2000). The Status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology, 39, 19651982. doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.Google Scholar
Kummerow, C., Barnes, W., Kozu, T., Shiue, J. and Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean Technol., 15, 809817. doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.Google Scholar
Kustas, W. P. and Norman, J. M. (1996). Use of remote sensing for evapo-transpiration monitoring over land surfaces. Hydrol. Sci. J., 41, 495516. doi:10.1080/02626669609491522.Google Scholar
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M. and Wood, E. F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res., 51, 73097342. doi:10.1002/2015WR017616.Google Scholar
Linquist, B., Snyder, R., Anderson, F. et al. (2015). Water balances and evapotranspiration in water- and dry-seeded rice systems. Irrig. Sci., 33, 37385. doi: 10.1007/s00271–015-0474–4.Google Scholar
Linton, J. and Budds, J. (2014). The hydrosocial cycle: defining and mobilizing a relational-dialectical approach to water. Geoforum, 57, 170180. doi: 10.1016/j.geoforum.2013.10.008.Google Scholar
Loucks, D. P. (2015). Debates–perspectives on socio-hydrology: simulating hydrologic-human interactions. Water Resour. Res., 51, 47894794. doi:10.1002/2015WR017002.Google Scholar
Macleod, C. J. A., Scholefield, D. and Haygarth, P. M. (2007). Integration for sustainable catchment management. Science of the Total Environment, 373(2–3), 591602.Google Scholar
Maggioni, V., Meyers, P. C. and Robinson, M. D. (2016). A review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. Journal of Hydrometeorology, 17(4), 11011117.Google Scholar
Montanari, A., Young, G., Savenije, H. H. G. et al. (2013). “Panta Rhei – everything flows”: Change in hydrology and society – The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J., 58(6), 12561275. doi:10.1080/02626667.2013.809088.Google Scholar
Montanari, A., 2015. Debates—Perspectives on socio-hydrology: introduction. Water Resour. Res., 51, 47684769. doi:10.1002/2015WR017430.CrossRefGoogle Scholar
Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G. and Running, S. W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, (94)1, 8398. doi:10.1175/BAMS-D-11-00213.1.Google Scholar
Munier, S., Polebistki, A., Brown, C., Belaud, G. and Lettenmaier, D. P. (2015). SWOT data assimilation for operational reservoir management on the upper Niger River Basin. Water Resour. Res., 51, 554575. doi:10.1002/2014WR016157.Google Scholar
Oki, T. and Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 10681072. doi:10.1126/science.1128845.CrossRefGoogle ScholarPubMed
Peltier, W. R., Argus, D. F. and Drummond, R. (2015). Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120(1), 450487. doi:10.1002/2014JB011176.CrossRefGoogle Scholar
Poff, N. L. and Zimmerman, J. H. K. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55 (1), 194205. doi:10.1111/j.1365-2427.2009.02272.x.Google Scholar
Ramillien, G., Frappart, F. and Seoane, L. (2014). Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens., 2014(6), 73797405. doi:10.3390/rs6087379.CrossRefGoogle Scholar
Reager, J. T. and Famiglietti, J. S. (2009). Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett., 36, L23402. doi:10.1029/2009GL040826.Google Scholar
Reager, J. T., Thomas, B. F. and Famiglietti, J. S. (2014). River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geoscience, 7, 588592. doi:10.1038/ngeo2203.Google Scholar
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. and Toll, D. (2004). The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85(3), 381394.Google Scholar
Rodell, M., Velicogna, I. and Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002. doi:10.1038/nature08238.Google Scholar
Sivapalan, M. (2015). Debates—Perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems” – socio-hydrology. Water Resour. Res., 51(6), 47954805. doi:10.1002/2015WR017080.Google Scholar
Sivapalan, M., Takeuchi, K. S., Franks, W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O’Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S. and Zehe, E. (2003). IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48(6), 857880. doi:10.1623/hysj.48.6.857.51421.Google Scholar
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L. and Rodríguez-Iturbe, I. (2014), Socio-hydrology: use-inspired water sustainability science for the Anthropocene. Earth’s Future, 2(4), 225230. doi:10.1002/2013EF000164.Google Scholar
Sivapalan, M., Savenije, H. H. and Blöschl, G. (2012). Socio‐hydrology: a new science of people and water. Hydrological Processes, 26(8), 12701276.Google Scholar
Stanley, T. and Kirschbaum, D. B. (2017). A heuristic approach to global landslide susceptibility mapping. Natural Hazards, 87(1), 145164.Google Scholar
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J. and Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44(2), W02433. doi:10.1029/2006WR005779.Google Scholar
Tamea, S., Carr, J. A., Laio, F., and Ridolfi, L. (2014). Drivers of the virtual water trade. Water Resour. Res., 50(1), 1728.Google Scholar
Tapley, B., Rodell, M. and Save, H. (2016). Droughts and floods as viewed by the GRACE mission and synergies with the SMAP data. 4th SMAP Applications Workshop and Tutorial, Austin, TX, April 4–5, 2016. Presentation #16, available online at www.regonline.com/builder/site/tab3.aspx?EventID=18239.Google Scholar
Thomas, A. C., Reager, J. T., Famiglietti, J. S. and Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371445. doi:10.1002/2014GL059323.Google Scholar
Troy, T. J., Pavao-Zuckerman, M. and Evans, T. P. (2015). Debates–perspectives on socio-hydrology: socio-hydrologic modeling: tradeoffs, hypothesis testing, and validation. Water Resour. Res., 51, 48064814. doi:10.1002/2015WR017046.Google Scholar
UNICEF and World Health Organization (2015). Progress on Sanitation and Drinking Water – 2015 update and MDG assessment. Available online at www.who.int/water_sanitation_health/monitoring/jmp-2015-update/en/.Google Scholar
Vanino, S., Nino, P., De Michele, C., Falanga, Bolognesi S. and Pulighe, G. (2015). Earth observation for improving irrigation water management: a Case-study from Apulia region in Italy. Agriculture and Agricultural Science Procedia, 4, 99107. doi:10.1016/j.aaspro.2015.03.012.Google Scholar
Vinukollu, R. K., Wood, E. F., Ferguson, G. R. and Fisher, J. B. (2011). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801823.Google Scholar
Wheater, H. S. and Gober, P. (2015). Water security and the science agenda. Water Resour. Res., 51, 54065424. doi:10.1002/2015WR016892.Google Scholar
Winiwarter, V., Schmid, M. and Dressel, G. (2013). Looking at half a millennium of co-existence: the Danube in Vienna as a socio-natural site. Water History, 5(2), 101119.Google Scholar
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E. M., Sasgen, I. and Wahr, J. (2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Rep. Prog. Phys., 77, 116801, 41 pp. doi:10.1088/0034-4885/77/11/116801.Google Scholar
Wu, H., Adler, R. F., Tian, Y., Huffman, G. J., Li, H., & Wang, J. (2014). Real‐time global flood estimation using satellite‐based precipitation and a coupled land surface and routing model. Water Resources Research, 50(3), 26932717.Google Scholar
Yoon, Y., Durand, M., Merry, C. J., Clark, E. A., Andreadis, K. M. and Alsdorf, D. E. (2012). Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J. Hydrol., 464465, 363375. doi:10.1016/j.jhydrol.2012.07.028.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×