Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T08:24:35.105Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 December 2009

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Imaging Dopamine , pp. 234 - 330
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, S., Hirvonen, J., Kajander, J., Scheinin, H., Nagren, K., Vilkman, H., Gustafsson, L., Syvalahti, E., & Hietala, J. 2002, “Ketamine does not decrease striatal dopamine D2 receptor binding in man”, Psychopharmacology (Berl), vol. 164, no. 4, pp. 401–406.CrossRefGoogle Scholar
Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., Smith, C. L., Shafa, R., Aeali, B., Carnevale, J., Pan, H., Papageorgis, P., Ponte, J. F., Sivaraman, V., Tsuang, M. T., & Thiagalingam, S. 2006, “Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder”, Hum. Mol. Genet., vol. 15, no. 21, pp. 3132–3145.CrossRefGoogle ScholarPubMed
Abe, K., Hosoi, R., Momosaki, S., Kobayashi, K., Ibii, N., & Inoue, O. 2002, “Increment of in vivo binding of [3H]SCH 23390, a dopamine D1 receptor ligand, induced by cyclic AMP-dependent protein kinase in rat brain”, Brain Res., vol. 952, no. 2, pp. 211–217.CrossRefGoogle Scholar
Abi-Dargham, A., Gandelman, M. S., DeErausquin, G. A., Zea-Ponce, Y., Zoghbi, S. S., Baldwin, R. M., Laruelle, M., Charney, D. S., Hoffer, P. B., Neumeyer, J. L., & Innis, R. B. 1996, “SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT”, J. Nucl. Med., vol. 37, no. 7, pp. 1129–1133.Google ScholarPubMed
Abi-Dargham, A., Kegeles, L. S., Zea-Ponce, Y., Mawlawi, O., Martinez, D., Mitropoulou, V., O'Flynn, K., Koenigsberg, H. W., Heertum, R., Cooper, T., Laruelle, M., & Siever, L. J. 2004, “Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide”, Biol.Psychiatry, vol. 55, no. 10, pp. 1001–1006.CrossRefGoogle Scholar
Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D. R., Keilp, J., Kochan, L., Heertum, R., Gorman, J. M., & Laruelle, M. 2002, “Prefrontal dopamine D1 receptors and working memory in schizophrenia”, J. Neurosci., vol. 22, no. 9, pp. 3708–3719.CrossRefGoogle Scholar
Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., Weiss, R., Cooper, T. B., Mann, J. J., Heertum, R. L., Gorman, J. M., & Laruelle, M. 2000, “Increased baseline occupancy of D2 receptors by dopamine in schizophrenia”, Proc. Natl. Acad. Sci. USA, vol. 97, no. 14, pp. 8104–8109.CrossRefGoogle Scholar
Abi-Dargham, A., Simpson, N., Kegeles, L., Parsey, R., Hwang, D. R., Anjilvel, S., Zea-Ponce, Y., Lombardo, I., Heertum, R., Mann, J. J., Foged, C., Halldin, C., & Laruelle, M. 1999, “PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756”, Synapse, vol. 32, no. 2, pp. 93–109.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Adams, F., Schwarting, R. K., Boix, F., & Huston, J. P. 1991, “Lateralized changes in behavior and striatal dopamine release following unilateral tactile stimulation of the perioral region: a microdialysis study”, Brain Res., vol. 553, no. 2, pp. 318–322.CrossRefGoogle ScholarPubMed
Adams, J. R., Netten, N. H., Schulzer, M., Mak, E., Mckenzie, J., Strongosky, A., Sossi, V., Ruth, T. J., Lee, C. S., Farrer, M., Gasser, T., Uitti, R. J., Calne, D. B., Wszolek, Z. K., & Stoessl, A. J. 2005, “PET in LRRK2 mutations: comparison to sporadic Parkinson's disease and evidence for presymptomatic compensation”, Brain, vol. 128 (Pt 12), pp. 2777–2785.CrossRefGoogle ScholarPubMed
Adell, A. & Myers, R. D. 1995, “Synthesis of dopamine and 5-HT in anatomical regions of the rat's brain is unaffected by sustained infusion of amperozide”, Pharmacol. Toxicol., vol. 77, no. 5, pp. 341–345.CrossRefGoogle ScholarPubMed
Agnati, L. F., Ferre, S., Burioni, R., Woods, A., Genedani, S., Franco, R., & Fuxe, K. 2005, “Existence and theoretical aspects of homomeric and heteromeric dopamine receptor complexes and their relevance for neurological diseases”, Neuromolecular. Med., vol. 7, no. 1–2, pp. 61–78.CrossRefGoogle ScholarPubMed
Ahlenius, S., Ericson, E., & Wijkstrom, A. 1993, “Stimulation of brain dopamine autoreceptors by remoxipride administration in reserpine-treated male rats”, J. Pharm. Pharmacol., vol. 45, no. 3, pp. 237–239.CrossRefGoogle ScholarPubMed
Ahlenius, S. & Salmi, P. 1994, “Behavioral and biochemical effects of the dopamine D3 receptor-selective ligand, 7-OH-DPAT, in the normal and the reserpine-treated rat”, Eur. J. Pharmacol., vol. 260, no. 2–3, pp. 177–181.CrossRefGoogle ScholarPubMed
Ahnert-Hilger, G., Nurnberg, B., Exner, T., Schafer, T., & Jahn, R. 1998, “The heterotrimeric G protein Go2 regulates catecholamine uptake by secretory vesicles”, EMBO J., vol. 17, no. 2, pp. 406–413.CrossRefGoogle ScholarPubMed
Aiso, M., Shigematsu, K., Kebabian, J. W., Potter, W. Z., Cruciani, R. A., & Saavedra, J. M. 1987, “Dopamine D1 receptor in rat brain: a quantitative autoradiographic study with 125I-SCH 23982”, Brain Res., vol. 408, no. 1–2, pp. 281–285.CrossRefGoogle ScholarPubMed
Albert, K. A., Helmer-Matyjek, E., Nairn, A. C., Muller, T. H., Haycock, J. W., Greene, L. A., Goldstein, M., & Greengard, P. 1984, “Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase”, Proc. Natl. Acad. Sci. USA, vol. 81, no. 24, pp. 7713–7717.CrossRefGoogle ScholarPubMed
Albert, K. A., Hemmings, H. C.., Adamo, A. I., Potkin, S. G., Akbarian, S., Sandman, C. A., Cotman, C. W., Bunney, W. E.., & Greengard, P. 2002, “Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia”, Arch. Gen. Psychiatry, vol. 59, no. 8, pp. 705–712.CrossRefGoogle ScholarPubMed
Albert, P. R., Neve, K. A., Bunzow, J. R., & Civelli, O. 1990, “Coupling of a cloned rat dopamine-D2 receptor to inhibition of adenylyl cyclase and prolactin secretion”, J. Biol. Chem., vol. 265, no. 4, pp. 2098–2104.Google ScholarPubMed
Albert, V. R., Allen, J. M., & Joh, T. H. 1987, “A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues”, J. Biol. Chem., vol. 262, no. 19, pp. 9404–9411.Google ScholarPubMed
Albert, V. R., Lee, M. R., Bolden, A. H., Wurzburger, R. J., & Aguanno, A. 1992, “Distinct promoters direct neuronal and nonneuronal expression of rat aromatic L-amino acid decarboxylase”, Proc. Natl. Acad. Sci. USA, vol. 89, no. 24, pp. 12053–12057.CrossRefGoogle ScholarPubMed
Albin, R. L., Koeppe, R. A., Bohnen, N. I., Nichols, T. E., Meyer, P., Wernette, K., Minoshima, S., Kilbourn, M. R., & Frey, K. A. 2003, “Increased ventral striatal monoaminergic innervation in Tourette syndrome”, Neurology, vol. 61, no. 3, pp. 310–315.CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. 1990, “Functional architecture of basal ganglia circuits: neural substrates of parallel processing”, Trends Neurosci., vol. 13, no. 7, pp. 266–271.CrossRefGoogle ScholarPubMed
Alia-Klein, N., Goldstein, R. Z., Kriplani, A., Logan, J., Tomasi, D., Williams, B., Telang, F., Shumay, E., Biegon, A., Craig, I. W., Henn, F., Wang, G. J., Volkow, N. D., & Fowler, J. S. 2008, “Brain monoamine oxidase A activity predicts trait aggression”, J. Neurosci., vol. 28, no. 19, pp. 5099–5104.CrossRefGoogle ScholarPubMed
Almas, B., Bourdelles, B., Flatmark, T., Mallet, J., & Haavik, J. 1992, “Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications”, Eur. J. Biochem., vol. 209, no. 1, pp. 249–255.CrossRefGoogle ScholarPubMed
Altar, C. A. & Marien, M. R. 1987, “Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography”, J. Neurosci., vol. 7, no. 1, pp. 213–222.CrossRefGoogle ScholarPubMed
Amsterdam, J. D. & Newberg, A. B. 2007, “A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls”, Neuropsychobiology, vol. 55, no. 3–4, pp. 167–170.CrossRefGoogle ScholarPubMed
Anand, A., Verhoeff, P., Seneca, N., Zoghbi, S. S., Seibyl, J. P., Charney, D. S., & Innis, R. B. 2000, “Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients”, Am. J. Psychiatry, vol. 157, no. 7, pp. 1108–1114.CrossRefGoogle ScholarPubMed
Anastasiadis, P. Z., Kuhn, D. M., & Levine, R. A. 1994, “Tetrahydrobiopterin uptake into rat brain synaptosomes, cultured PC12 cells, and rat striatum”, Brain Res., vol. 665, no. 1, pp. 77–84.CrossRefGoogle ScholarPubMed
Anden, N. E., Rubenson, A., Fuxe, K., & Hokfelt, T. 1967, “Evidence for dopamine receptor stimulation by apomorphine”, J. Pharm. Pharmacol., vol. 19, no. 9, pp. 627–629.CrossRefGoogle ScholarPubMed
Andersen, P. H. & Braestrup, C. 1986, “Evidence for different states of the dopamine D1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D1 receptor”, J. Neurochem., vol. 47, no. 6, pp. 1822–1831.CrossRefGoogle ScholarPubMed
Andrews, T. C., Weeks, R. A., Turjanski, N., Gunn, R. N., Watkins, L. H., Sahakian, B., Hodges, J. R., Rosser, A. E., Wood, N. W., & Brooks, D. J. 1999, “Huntington's disease progression. PET and clinical observations”, Brain, vol. 122 (Pt 12), pp. 2353–2363.CrossRefGoogle ScholarPubMed
Anstrom, K. K. & Woodward, D. J. 2005, “Restraint increases dopaminergic burst firing in awake rats”, Neuropsychopharmacology, vol. 30, no. 10, pp. 1832–1840.CrossRefGoogle ScholarPubMed
Antonini, A., Leenders, K. L., Reist, H., Thomann, R., Beer, H. F., & Locher, J. 1993, “Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride”, Arch. Neurol., vol. 50, no. 5, pp. 474–480.CrossRefGoogle ScholarPubMed
Antonini, A., Schwarz, J., Oertel, W. H., Beer, H. F., Madeja, U. D., & Leenders, K. L. 1994, “[11C]raclopride and positron emission tomography in previously untreated patients with Parkinson's disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors”, Neurology, vol. 44, no. 7, pp. 1325–1329.CrossRefGoogle ScholarPubMed
Antonini, A., Schwarz, J., Oertel, W. H., Pogarell, O., & Leenders, K. L. 1997, “Long-term changes of striatal dopamine D2 receptors in patients with Parkinson's disease: a study with positron emission tomography and [11C]raclopride”, Mov. Disord., vol. 12, no. 1, pp. 33–38.CrossRefGoogle Scholar
Apud, J. A. & Weinberger, D. R. 2007, “Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors”, CNS Drugs, vol. 21, no. 7, pp. 535–557.CrossRefGoogle ScholarPubMed
Arai, R., Karasawa, N., Geffard, M., Nagatsu, T., & Nagatsu, I. 1994, “Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous L-DOPA in the rat, with reference to the involvement of aromatic L-amino acid decarboxylase”, Brain Res., vol. 667, no. 2, pp. 295–299.CrossRefGoogle ScholarPubMed
Arai, R., Kimura, H., & Maeda, T. 1986, “Topographic atlas of monoamine oxidase-containing neurons in the rat brain studied by an improved histochemical method”, Neuroscience, vol. 19, no. 3, pp. 905–925.CrossRefGoogle ScholarPubMed
Araki, T., Tanji, H., Kato, H., Imai, Y., Mizugaki, M., & Itoyama, Y. 2000, “Temporal changes of dopaminergic and glutamatergic receptors in 6-hydroxydopamine-treated rat brain”, Eur. Neuropsychopharmacol., vol. 10, no. 5, pp. 365–375.CrossRefGoogle ScholarPubMed
Ariano, M. A., Sortwell, C. E., Ray, M., Altemus, K. L., Sibley, D. R., & Levine, M. S. 1997, “Agonist-induced morphologic decrease in cellular D1A dopamine receptor staining”, Synapse, vol. 27, no. 4, pp. 313–321.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Arias-Montano, J. A., Martinez-Fong, D., & Aceves, J. 1991, “Gamma-aminobutyric acid (GABAB) receptor-mediated inhibition of tyrosine hydroxylase activity in the striatum of rat”, Neuropharmacology, vol. 30, no. 10, pp. 1047–1051.CrossRefGoogle ScholarPubMed
Arias-Montano, J. A., Martinez-Fong, D., & Aceves, J. 1992, “GABAB receptor activation partially inhibits N-methyl-D-aspartate-mediated tyrosine hydroxylase stimulation in rat striatal slices”, Eur. J. Pharmacol., vol. 218, no. 2–3, pp. 335–338.CrossRefGoogle ScholarPubMed
Arnett, C. D., Fowler, J. S., MacGregor, R. R., Schlyer, D. J., Wolf, A. P., Langstrom, B., & Halldin, C. 1987, “Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L-[11C]deprenyl”, J. Neurochem., vol. 49, no. 2, pp. 522–527.CrossRefGoogle ScholarPubMed
Asanuma, K., Ma, Y., Okulski, J., Dhawan, V., Chaly, T., Carbon, M., Bressman, S. B., & Eidelberg, D. 2005, “Decreased striatal D2 receptor binding in non-manifesting carriers of the DYT1 dystonia mutation”, Neurology, vol. 64, no. 2, pp. 347–349.CrossRefGoogle ScholarPubMed
Asselin, M. C., Montgomery, A. J., Grasby, P. M., & Hume, S. P. 2007, “Quantification of PET studies with the very high-affinity dopamine D2/D3 receptor ligand [11C]FLB 457: re-evaluation of the validity of using a cerebellar reference region”, J. Cereb. Blood Flow Metab., vol. 27, no. 2, pp. 378–392.CrossRefGoogle ScholarPubMed
Atkinson, J., Richtand, N., Schworer, C., Kuczenski, R., & Soderling, T. 1987, “Phosphorylation of purified rat striatal tyrosine hydroxylase by Ca2+/calmodulin-dependent protein kinase II: effect of an activator protein”, J. Neurochem., vol. 49, no. 4, pp. 1241–1249.CrossRefGoogle ScholarPubMed
Atsumi, M., Kawakami, J., Sugiyama, E., Kotaki, H., Sawada, Y., Sato, H., Yamada, Y., & Iga, T. 2003, “Pharmacokinetic and pharmacodynamic analyses, based on dopamine D2-receptor occupancy of bromocriptine, of bromocriptine-induced contralateral rotations in unilaterally 6-OHDA-lesioned rats”, Synapse, vol. 50, no. 2, pp. 110–116.CrossRefGoogle ScholarPubMed
Aubert, I., Ghorayeb, I., Normand, E., & Bloch, B. 2000, “Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum”, J. Comp. Neurol., vol. 418, no. 1, pp. 22–32.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Axelrod, J. & Tomchick, R. 1958, “Enzymatic O-methylation of epinephrine and other catechols”, J. Biol. Chem., vol. 233, no. 3, pp. 702–705.Google ScholarPubMed
Azzaro, A. J., King, J., Kotzuk, J., Schoepp, D. D., Frost, J., & Schochet, S. 1985, “Guinea pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localization, and affinity for substrate in synaptic dopamine metabolism”, J. Neurochem., vol. 45, no. 3, pp. 949–956.CrossRefGoogle ScholarPubMed
Bach, A. W., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., Seeburg, P. H., & Shih, J. C. 1988, “cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties”, Proc. Natl. Acad. Sci. USA, vol. 85, no. 13, pp. 4934–4938.CrossRefGoogle Scholar
Backman, L., Ginovart, N., Dixon, R. A., Wahlin, T. B., Wahlin, A., Halldin, C., & Farde, L. 2000, “Age-related cognitive deficits mediated by changes in the striatal dopamine system”, Am. J. Psychiatry, vol. 157, no. 4, pp. 635–637.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. 2003, “Striatal dopamine release during unrewarded motor task in human volunteers”, Neuroreport, vol. 14, no. 11, pp. 1421–1424.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. 2007, “Striatal dopamine release in sequential learning”, Neuroimage, vol. 38, no. 3, pp. 549–556.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. 2008, “Explicit motor memory activates the striatal dopamine system”, Neuroreport, vol. 19, no. 4, pp. 409–412.CrossRefGoogle ScholarPubMed
Ballesteros, J., Maeztu, A. I., Callado, L. F., Meana, J. J., & Gutiérrez, M. 2008, “Specific binding of [3H]Ro 19-6327 (lazabemide) to monoamine oxidase B is increased in frontal cortex of suicide victims after controlling for age at death”, Eur. Neuropsychopharmacol., vol. 18, no. 1, pp. 55–61.CrossRefGoogle Scholar
Bancroft, G. N., Morgan, K. A., Flietstra, R. J., & Levant, B. 1998, “Binding of [3H]PD 128907, a putatively selective ligand for the D3 dopamine receptor, in rat brain: a receptor binding and quantitative autoradiographic study”, Neuropsychopharmacology, vol. 18, no. 4, pp. 305–316.CrossRefGoogle Scholar
Bannon, M. J. & Roth, R. H. 1983, “Pharmacology of mesocortical dopamine neurons”, Pharmacol. Rev., vol. 35, no. 1, pp. 53–68.Google ScholarPubMed
Bantick, R. A., Vries, M. H., & Grasby, P. M. 2005, “The effect of a 5-HT1A receptor agonist on striatal dopamine release”, Synapse, vol. 57, no. 2, pp. 67–75.CrossRefGoogle ScholarPubMed
Baran, H. & Jellinger, K. 1992, “Human brain phenolsulfotransferase. Regional distribution in Parkinson's disease”, J. Neural. Transm. Park. Dis. Dement. Sect., vol. 4, pp. 267–276.CrossRefGoogle ScholarPubMed
Barbeau, A., Sourkes, T. L., & Murphy, G. F. 1962, “[Les catécholamines dans la maladie to Parkinson],” in Monoamines et système nerveux central, Ajuriaguerra, J., ed., Georg & Cie SA, Geneva, pp. 247–262.Google Scholar
Barbier, P., Colelli, A., Maggio, R., Bravi, D., & Corsini, G. U. 1997, “Pergolide binds tightly to dopamine D2 short receptors and induces receptor sequestration”, J. Neural. Transm., vol. 104, no. 8–9, pp. 867–874.CrossRefGoogle ScholarPubMed
Barnes, J. M., Barnes, N. M., Costall, B., & Naylor, R. J. 1990, “The actions of (-)N-n-propylnorapomorphine and selective dopamine D1 and D2 receptor agonists to modify the release of [3H]dopamine from the rat nucleus accumbens”, Neuropharmacology, vol. 29, no. 4, pp. 327–336.CrossRefGoogle Scholar
Baron, J. C., Maziere, B., Loc'h, C., Cambon, H., Sgouropoulos, P., Bonnet, A. M., & Agid, Y. 1986, “Loss of striatal [76Br]bromospiperone binding sites demonstrated by positron tomography in progressive supranuclear palsy”, J. Cereb. Blood Flow Metab., vol. 6, no. 2, pp. 131–136.CrossRefGoogle ScholarPubMed
Barrett, S. P., Boileau, I., Okker, J., Pihl, R. O., & Dagher, A. 2004, “The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride”, Synapse, vol. 54, no. 2, pp. 65–71.CrossRefGoogle Scholar
Barrio, J. R., Huang, S. C., & Phelps, M. E. 1997, “Biological imaging and the molecular basis of dopaminergic diseases”, Biochem. Pharmacol., vol. 54, no. 3, pp. 341–348.CrossRefGoogle ScholarPubMed
Bart, J., Willemsen, A. T., Groen, H. J., Graaf, W. T., Wegman, T. D., Vaalburg, W., Vries, E. G., & Hendrikse, N. H. 2003, “Quantitative assessment of P-glycoprotein function in the rat blood-brain barrier by distribution volume of [11C]verapamil measured with PET”, Neuroimage, vol. 20, no. 3, pp. 1775–1782.CrossRefGoogle Scholar
Baumann, M. H., Raley, T. J., Partilla, J. S., & Rothman, R. B. 1993, “Biosynthesis of dopamine and serotonin in the rat brain after repeated cocaine injections: a microdissection mapping study”, Synapse, vol. 14, no. 1, pp. 40–50.CrossRefGoogle ScholarPubMed
Bean, A. J., Shepard, P. D., Bunney, B. S., Nestler, E. J., & Roth, R. H. 1988, “The effects of pertussis toxin on autoreceptor-mediated inhibition of dopamine synthesis in the rat striatum”, Mol. Pharmacol., vol. 34, no. 6, pp. 715–718.Google ScholarPubMed
Bench, C. J., Price, G. W., Lammertsma, A. A., Cremer, J. C., Luthra, S. K., Turton, D., Dolan, R. J., Kettler, R., Dingemanse, J., Da Prada, M., et al. 1991, “Measurement of human cerebral monoamine oxidase type B (MAO-B) activity with positron emission tomography (PET): a dose ranging study with the reversible inhibitor Ro 19-6327”, Eur. J. Clin. Pharmacol., vol. 40, no. 2, pp. 169–173.CrossRefGoogle ScholarPubMed
Bendayan, R., Ronaldson, P. T., Gingras, D., & Bendayan, M. 2006, “In situ localization of P-glycoprotein (ABCB1) in human and rat brain”, J. Histochem. Cytochem., vol. 54, no. 10, pp. 1159–1167.CrossRefGoogle ScholarPubMed
Bennett, B. A. & Freed, C. R. 1986, “Mobilization of storage pool dopamine and late ipsilateral augmentation of striatal dopamine synthesis in the trained circling rat”, J. Neurochem., vol. 47, no. 2, pp. 472–476.CrossRefGoogle ScholarPubMed
Benveniste, H., Hansen, A. J., & Ottosen, N. S. 1989, “Determination of brain interstitial concentrations by microdialysis”, J. Neurochem., vol. 52, no. 6, pp. 1741–1750.CrossRefGoogle ScholarPubMed
Benwell, M. E. & Balfour, D. J. 1992, “The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity”, Br. J. Pharmacol., vol. 105, no. 4, pp. 849–856.CrossRefGoogle ScholarPubMed
Berding, G., Brucke, T., Odin, P., Brooks, D. J., Kolbe, H., Gielow, P., Harke, H., Knoop, B. O., Dengler, R., & Knapp, W. H. 2003, “[123I]beta-CIT SPECT imaging of dopamine and serotonin transporters in Parkinson's disease and multiple system atrophy”, Nuklearmedizin, vol. 42, no. 1, pp. 31–38.Google ScholarPubMed
Bergstrom, M., Kumlien, E., Lilja, A., Tyrefors, N., Westerberg, G., & Langstrom, B. 1998, “Temporal lobe epilepsy visualized with PET with 11C-L-deuterium-deprenyl – analysis of kinetic data”, Acta Neurol. Scand., vol. 98, no. 4, pp. 224–231.CrossRefGoogle ScholarPubMed
Bergstrom, M., Westerberg, G., & Langstrom, B. 1997, “11C-harmine as a tracer for monoamine oxidase A (MAO-A): in vitro and in vivo studies”, Nucl. Med. Biol., vol. 24, no. 4, pp. 287–293.CrossRefGoogle ScholarPubMed
Bergstrom, M., Westerberg, G., Nemeth, G., Traut, M., Gross, G., Greger, G., Muller-Peltzer, H., Safer, A., Eckernas, S. A., Grahner, A., & Langstrom, B. 1997, “MAO-A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emission tomography”, Eur. J. Clin. Pharmacol., vol. 52, no. 2, pp. 121–128.Google ScholarPubMed
Berretta, S., Sachs, Z., & Graybiel, A. M. 1999, “Cortically driven Fos induction in the striatum is amplified by local dopamine D2-class receptor blockade”, Eur. J. Neurosci., vol. 11, no. 12, pp. 4309–4319.CrossRefGoogle ScholarPubMed
Best, S. E., Sarrel, P. M., Malison, R. T., Laruelle, M., Zoghbi, S. S., Baldwin, R. M., Seibyl, J. P., Innis, R. B., & Dyck, C. H. 2005, “Striatal dopamine transporter availability with [123I]beta-CIT SPECT is unrelated to gender or menstrual cycle”, Psychopharmacology (Berl), vol. 183, no. 2, pp. 181–189.CrossRefGoogle ScholarPubMed
Bezin, L., Marcel, D., Garcia, C., Blum, D., Lafargue, P., Lellouche, J. P., Pujol, J. F., & Weissmann, D. 2000, “In situ examination of tyrosine hydroxylase activity in the rat locus coeruleus using (3',5')-[(3)H(2)]-alpha-fluoromethyl-tyrosine as substrate of the enzyme”, Synapse, vol. 35, no. 3, pp. 201–211.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C.., Nairn, A. C., & Greengard, P. 1999, “Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons”, Nature, vol. 402, no. 6762, pp. 669–671.CrossRefGoogle ScholarPubMed
Birrell, C. E. & Balfour, D. J. 1998, “The influence of nicotine pretreatment on mesoaccumbens dopamine overflow and locomotor responses to D-amphetamine”, Psychopharmacology (Berl), vol. 140, no. 2, pp. 142–149.CrossRefGoogle ScholarPubMed
Biswas, B. & Carlsson, A. 1978, “On the mode of action of diazepam on brain catecholamine metabolism”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 303, no. 1, pp. 73–78.CrossRefGoogle ScholarPubMed
Blennow, K., Wallin, A., Gottfries, C. G., Karlsson, I., Mansson, J. E., Skoog, I., Wikkelso, C., & Svennerholm, L. 1993, “Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age”, Eur.Neuropsychopharmacol., vol. 3, no. 1, pp. 55–61.CrossRefGoogle ScholarPubMed
Blomqvist, O., Engel, J. A., Nissbrandt, H., & Soderpalm, B. 1993, “The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine”, Eur. J. Pharmacol., vol. 249, no. 2, pp. 207–213.CrossRefGoogle ScholarPubMed
Bohnen, N. I., Albin, R. L., Frey, K. A., & Fink, J. K. 1999, “(+)-alpha-[11C]dihydrotetrabenazine PET imaging in familial paroxysmal dystonic choreoathetosis”, Neurology, vol. 52, no. 5, pp. 1067–1069.CrossRefGoogle ScholarPubMed
Bohnen, N. I., Albin, R. L., Koeppe, R. A., Wernette, K. A., Kilbourn, M. R., Minoshima, S., & Frey, K. A. 2006, “Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease”, J. Cereb. Blood Flow Metab., vol. 26, no. 9, pp. 1198–1212.CrossRefGoogle ScholarPubMed
Bohnen, N. I., Koeppe, R. A., Meyer, P., Ficaro, E., Wernette, K., Kilbourn, M. R., Kuhl, D. E., Frey, K. A., & Albin, R. L. 2000, “Decreased striatal monoaminergic terminals in Huntington disease”, Neurology, vol. 54, no. 9, pp. 1753–1759.CrossRefGoogle ScholarPubMed
Bohnen, N. I., Kuwabara, H., Constantine, G. M., Mathis, C. A., & Moore, R. Y. 2007, “Grooved pegboard test as a biomarker of nigrostriatal denervation in Parkinson's disease”, Neurosci. Lett., vol. 424, no. 3, pp. 185–189.CrossRefGoogle ScholarPubMed
Boileau, I., Assaad, J. M., Pihl, R. O., Benkelfat, C., Leyton, M., Diksic, M., Tremblay, R. E., & Dagher, A. 2003, “Alcohol promotes dopamine release in the human nucleus accumbens”, Synapse, vol. 49, no. 4, pp. 226–231.CrossRefGoogle ScholarPubMed
Boileau, I., Dagher, A., Leyton, M., Gunn, R. N., Baker, G. B., Diksic, M., & Benkelfat, C. 2006, “Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men”, Arch. Gen. Psychiatry, vol. 63, no. 12, pp. 1386–1395.CrossRefGoogle Scholar
Boileau, I., Dagher, A., Leyton, M., Welfeld, K., Booij, L., Diksic, M., & Benkelfat, C. 2007, “Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine”, J. Neurosci., vol. 27, no. 15, pp. 3998–4003.CrossRefGoogle ScholarPubMed
Booij, J., Bergmans, P., Winogrodzka, A., Speelman, J. D., & Wolters, E. C. 2001, “Imaging of dopamine transporters with [123I]FP-CIT SPECT does not suggest a significant effect of age on the symptomatic threshold of disease in Parkinson's disease”, Synapse, vol. 39, no. 2, pp. 101–108.3.0.CO;2-1>CrossRefGoogle Scholar
Booij, J., Bruin, K., & Gunning, W. B. 2006, “Repeated administration of D-amphetamine induces loss of [123I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study”, Nucl. Med. Biol., vol. 33, no. 3, pp. 409–411.CrossRefGoogle ScholarPubMed
Booij, J., Jong, J., Bruin, K., Knol, R., Win, M. M., & Eck-Smit, B. L. 2007, “Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects”, J. Nucl. Med., vol. 48, no. 3, pp. 359–366.Google ScholarPubMed
Borbely, K., Brooks, R. A., Wong, D. F., Burns, R. S., Cumming, P., Gjedde, A., & Di, C. G. 1999, “NMSP binding to dopamine and serotonin receptors in MPTP-induced parkinsonism: relation to dopa therapy”, Acta Neurol. Scand., vol. 100, no. 1, pp. 42–52.CrossRefGoogle ScholarPubMed
Borghammer, P., Kumakura, Y., & Cumming, P. 2005, “Fluorodopa F 18 positron emission tomography and the progression of Parkinson disease”, Arch. Neurol., vol. 62, no. 9, pp. 1480–1481.CrossRefGoogle ScholarPubMed
Bottlaender, M., Dolle, F., Guenther, I., Roumenov, D., Fuseau, C., Bramoulle, Y., Curet, O., Jegham, J., Pinquier, J. L., George, P., & Valette, H. 2003, “Mapping the cerebral monoamine oxidase type A: positron emission tomography characterization of the reversible selective inhibitor [11C]befloxatone”, J. Pharmacol. Exp. Ther., vol. 305, no. 2, pp. 467–473.CrossRefGoogle ScholarPubMed
Bouchard, S. & Roberge, A. G. 1979, “Biochemical properties and kinetic parameters of dihydroxyphenylalanine – 5-hydroxytryptophan decarboxylase in brain, liver, and adrenals of cat”, Can. J. Biochem., vol. 57, no. 7, pp. 1014–1018.CrossRefGoogle ScholarPubMed
Boulton, A. A. & Juorio, A. V. 1983, “Cerebral decarboxylation of meta- and para-tyrosine”, Experientia, vol. 39, no. 2, pp. 130–134.CrossRefGoogle ScholarPubMed
Bouthenet, M. L., Souil, E., Martres, M. P., Sokoloff, P., Giros, B., & Schwartz, J. C. 1991, “Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA”, Brain Res., vol. 564, no. 2, pp. 203–219.CrossRefGoogle ScholarPubMed
Bowers, M. B.., Heninger, G. R., & Gerbode, F. 1969, “Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients”, Int. J. Neuropharmacol., vol. 8, no. 3, pp. 255–262.CrossRefGoogle Scholar
Boyes, B. E., Cumming, P., Martin, W. R., & McGeer, E. G. 1986, “Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects”, Life Sci., vol. 39, no. 23, pp. 2243–2252.CrossRefGoogle Scholar
Bracha, H. S., Seitz, D. J., Otemaa, J., & Glick, S. D. 1987, “Rotational movement (circling) in normal humans: sex difference and relationship to hand, foot and eye preference”, Brain Res., vol. 411, no. 2, pp. 231–235.CrossRefGoogle ScholarPubMed
Brake, W. G., Zhang, T. Y., Diorio, J., Meaney, M. J., & Gratton, A. 2004, “Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats”, Eur. J. Neurosci., vol. 19, no. 7, pp. 1863–1874.CrossRefGoogle ScholarPubMed
Breier, A., Kestler, L., Adler, C., Elman, I., Wiesenfeld, N., Malhotra, A., & Pickar, D. 1998, “Dopamine D2 receptor density and personal detachment in healthy subjects”, Am. J. Psychiatry, vol. 155, no. 10, pp. 1440–1442.CrossRefGoogle ScholarPubMed
Breier, A., Su, T. P., Saunders, R., Carson, R. E., Kolachana, B. S., Bartolomeis, A., Weinberger, D. R., Weisenfeld, N., Malhotra, A. K., Eckelman, W. C., & Pickar, D. 1997, “Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method”, Proc. Natl. Acad. Sci. USA, vol. 94, no. 6, pp. 2569–2574.CrossRefGoogle ScholarPubMed
Bressan, R. A., Erlandsson, K., Jones, H. M., Mulligan, R., Flanagan, R. J., Ell, P. J., & Pilowsky, L. S. 2003, “Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients”, Am. J. Psychiatry, vol. 160, no. 8, pp. 1413–1420.CrossRefGoogle ScholarPubMed
Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., & Smookler, H. H. 1966, “Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines”, J. Pharmacol. Exp. Ther., vol. 154, no. 3, pp. 493–498.Google ScholarPubMed
Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Allen-Martinez, Z., Scheibal, D., Abrams, A. L., Costello, M. R., Farahi, J., Saxena, S., Monterosso, J., & London, E. D. 2008, “Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette”, Neuropsychopharmacology [Epub ahead of print].Google Scholar
Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Scheibal, D., Hahn, E., Shiraga, S., Zamora-Paja, E., Farahi, J., Saxena, S., London, E. D., & McCracken, J. T. 2006, “Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens”, Arch. Gen. Psychiatry, vol. 63, no. 7, pp. 808–816.CrossRefGoogle ScholarPubMed
Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., Lee, G. S., Huang, J., Hahn, E. L., & Mandelkern, M. A. 2004, “Smoking-induced ventral striatum dopamine release”, Am. J. Psychiatry, vol. 161, no. 7, pp. 1211–1218.CrossRefGoogle ScholarPubMed
Broussolle, E., Dentresangle, C., Landais, P., Garcia-Larrea, L., Pollak, P., Croisile, B., Hibert, O., Bonnefoi, F., Galy, G., Froment, J. C., & Comar, D. 1999, “The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease”, J. Neurol. Sci., vol. 166, no. 2, pp. 141–151.CrossRefGoogle ScholarPubMed
Brown, E. E., Damsma, G., Cumming, P., & Fibiger, H. C. 1991, “Interstitial 3-methoxytyramine reflects striatal dopamine release: an in vivo microdialysis study”, J. Neurochem., vol. 57, no. 2, pp. 701–707.CrossRefGoogle ScholarPubMed
Brown, W. D., DeJesus, O. T., Pyzalski, R. W., Malischke, L., Roberts, A. D., Shelton, S. E., Uno, H., Houser, W. D., Nickles, R. J., & Holden, J. E. 1999, “Localization of trapping of 6-[(18)F]fluoro-L-m-tyrosine, an aromatic L-amino acid decarboxylase tracer for PET”, Synapse, vol. 34, no. 2, pp. 111–123.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Bruck, A., Aalto, S., Nurmi, E., Bergman, J., & Rinne, J. O. 2005, “Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson's disease”, Neurobiol. Aging, vol. 26, no. 6, pp. 891–898.CrossRefGoogle ScholarPubMed
Bruck, A., Aalto, S., Nurmi, E., Vahlberg, T., Bergman, J., & Rinne, J. O. 2006, “Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease: a two-year follow-up study”, Mov. Disord., vol. 21, no. 7, pp. 958–963.CrossRefGoogle ScholarPubMed
Brunswick, D. J., Amsterdam, J. D., Mozley, P. D., & Newberg, A. 2003, “Greater availability of brain dopamine transporters in major depression shown by [99m Tc]TRODAT-1 SPECT imaging”, Am. J. Psychiatry, vol. 160, no. 10, pp. 1836–1841.CrossRefGoogle Scholar
Buckland, P. R., Spurlock, G., & McGuffin, P. 1996, “Amphetamine and vigabatrin down regulate aromatic L-amino acid decarboxylase mRNA levels”, Brain Res. Mol. Brain Res., vol. 35, no. 1–2, pp. 69–76.CrossRefGoogle ScholarPubMed
Budygin, E. A., Brodie, M. S., Sotnikova, T. D., Mateo, Y., John, C. E., Cyr, M., Gainetdinov, R. R., & Jones, S. R. 2004, “Dissociation of rewarding and dopamine transporter-mediated properties of amphetamine”, Proc. Natl. Acad. Sci. USA, vol. 101, no. 20, pp. 7781–7786.CrossRefGoogle ScholarPubMed
Budygin, E. A., Gainetdinov, R. R., Kilpatrick, M. R., Rayevsky, K. S., Mannisto, P. T., & Wightman, R. M. 1999, “Effect of tolcapone, a catechol-O-methyltransferase inhibitor, on striatal dopaminergic transmission during blockade of dopamine uptake”, Eur. J. Pharmacol., vol. 370, no. 2, pp. 125–131.CrossRefGoogle ScholarPubMed
Budygin, E. A., John, C. E., Mateo, Y., & Jones, S. R. 2002, “Lack of cocaine effect on dopamine clearance in the core and shell of the nucleus accumbens of dopamine transporter knock-out mice”, J. Neurosci., vol. 22, no. 10, p. RC222.CrossRefGoogle ScholarPubMed
Bullard, W. P. & Capson, T. L. 1983, “Steady-state kinetics of bovine striatal tyrosine hydroxylase”, Mol. Pharmacol., vol. 23, no. 1, pp. 104–111.Google ScholarPubMed
Bunney, B. S., Aghajanian, G. K., & Roth, R. H. 1973, “Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones”, Nat. New Biol., vol. 245, no. 143, pp. 123–125.CrossRefGoogle ScholarPubMed
Burger, L. Y. & Martin-Iverson, M. T. 1994, “Increased occupation of D1 and D2 dopamine receptors accompanies cocaine-induced behavioral sensitization”, Brain Res., vol. 639, no. 2, pp. 228–232.CrossRefGoogle ScholarPubMed
Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., & Kopin, I. J. 1983, “A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine”, Proc. Natl. Acad. Sci. USA, vol. 80, no. 14, pp. 4546–4550.CrossRefGoogle ScholarPubMed
Buu, N. T. 1989, “Vesicular accumulation of dopamine following L-DOPA administration”, Biochem. Pharmacol., vol. 38, no. 11, pp. 1787–1792.CrossRefGoogle ScholarPubMed
Buyukuysal, R. L. & Mogol, E. 2000, “Synthesis and release of dopamine in rat striatal slices: requirement for exogenous tyrosine in the medium”, Neurochem. Res., vol. 25, no. 4, pp. 533–540.CrossRefGoogle ScholarPubMed
Cabello, C. R., Thune, J. J., Pakkenberg, H., & Pakkenberg, B. 2002, “Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy”, Neuropathol. Appl. Neurobiol., vol. 28, no. 4, pp. 283–291.CrossRefGoogle ScholarPubMed
Cadoni, C., Solinas, M., & Di Chiara, G. 2000, “Psychostimulant sensitization: differential changes in accumbal shell and core dopamine”, Eur. J. Pharmacol., vol. 388, no. 1, pp. 69–76.CrossRefGoogle ScholarPubMed
Campbell, I. C., Murphy, D. L., Walker, M. N., Lovenberg, W., & Robinson, D. S. 1980, “Monoamine oxidase inhibitors (MAOI) increase rat brain aromatic amino acid decarboxylase activity”, Br. J. Clin. Pharmacol., vol. 9, no. 4, pp. 431–432.CrossRefGoogle ScholarPubMed
Canesi, M., Benti, R., Marotta, G., Cilia, R., Isaias, I. U., Gerundini, P., Pezzoli, G., & Antonini, A. 2007, “Striatal dopamine transporter binding in patients with Parkinson's disease and severe occupational hydrocarbon exposure”, Eur. J. Neurol., vol. 14, no. 3, pp. 297–299.Google ScholarPubMed
Cardenas, L., Houle, S., Kapur, S., & Busto, U. E. 2004, “Oral D-amphetamine causes prolonged displacement of [11C]raclopride as measured by PET”, Synapse, vol. 51, no. 1, pp. 27–31.CrossRefGoogle Scholar
Carey, M. P., Diewald, L. M., Esposito, F. J., Pellicano, M. P., Gironi Carnevale, U. A., Sergeant, J. A., Papa, M., & Sadile, A. G. 1998, “Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD”, Behav.Brain Res., vol. 94, no. 1, pp. 173–185.CrossRefGoogle Scholar
Carlsson, A. 1966, “Physiological and pharmacological release of monoamines in the central nervous system,” in Mechanisms of Release of Biogenic Amines, Euler, U. S., Rosell, S., & Unyäs, B., eds., Pergamon Press, Oxford, pp. 331–346.CrossRefGoogle Scholar
Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M., & Atack, C. V. 1972, “Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 275, no. 2, pp. 153–168.CrossRefGoogle ScholarPubMed
Carlsson, A., Falck, B., & Hillarp, N. A. 1962, “Cellular localization of brain monoamines”, Acta Physiol. Scand. Suppl., vol. 56, no. 196, pp. 1–28.Google ScholarPubMed
Carlsson, A., Kehr, W., & Lindqvist, M. 1976, “The role of intraneuronal amine levels in the feedback control of dopamine, noradrenaline and 5-hydroxytryptamine synthesis in rat brain”, J. Neural Transm., vol. 39, no. 1–2, pp. 1–19.CrossRefGoogle ScholarPubMed
Carlsson, A., Kehr, W., & Lindqvist, M. 1977, “Agonist – antagonist interaction on dopamine receptors in brain, as reflected in the rates of tyrosine and tryptophan hydroxylation”, J. Neural Transm., vol. 40, no. 2, pp. 99–113.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. 1963, “Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain”, Acta Pharmacol. Toxicol. (Copenh), vol. 20, pp. 140–144.CrossRefGoogle ScholarPubMed
Carlsson, A., Lindqvist, M., & Magnusson, T. 1957, “3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists”, Nature, vol. 180, no. 4596, p. 1200.CrossRefGoogle ScholarPubMed
Carson, R. E., Breier, A., Bartolomeis, A., Saunders, R. C., Su, T. P., Schmall, B., Der, M. G., Pickar, D., & Eckelman, W. C. 1997, “Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion”, J. Cereb. Blood Flow Metab., vol. 17, no. 4, pp. 437–447.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., Taylor, A., Arseneault, L., Williams, B., Braithwaite, A., Poulton, R., & Craig, I. W. 2005, “Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction”, Biol. Psychiatry, vol. 57, no. 10, pp. 1117–1127.CrossRefGoogle ScholarPubMed
Cassel, G. & Persson, S. A. 1992, “Effects of acute lethal cyanide intoxication on central dopaminergic pathways”, Pharmacol. Toxicol., vol. 70, no. 2, pp. 148–151.CrossRefGoogle ScholarPubMed
Caviness, J. N. & Wightman, R. M. 1982, “Use of rapid superfusion to differentiate the release of dopamine from striatal tissue induced by sympathomimetic amines from release induced by potassium”, J. Pharmacol. Exp. Ther., vol. 223, no. 1, pp. 90–96.Google ScholarPubMed
Centonze, D., Gubellini, P., Bernardi, G., & Calabresi, P. 1999, “Permissive role of interneurons in corticostriatal synaptic plasticity”, Brain Res. Brain Res. Rev., vol. 31, no. 1, pp. 1–5.CrossRefGoogle ScholarPubMed
Cervenka, S., Bäckman, L., Cselényi, Z., Halldin, C., & Farde, L. 2008, “Associations between dopamine D2-receptor binding and cognitive performance indicate functional compartmentalization of the human striatum”, Neuroimage, vol. 40, no. 3, pp. 1287–1295.CrossRefGoogle ScholarPubMed
Cervenka, S., Palhagen, S. E., Comley, R. A., Panagiotidis, G., Cselenyi, Z., Matthews, J. C., Lai, R. Y., Halldin, C., & Farde, L. 2006, “Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding”, Brain, vol. 129 (Pt 8), pp. 2017–2028.CrossRefGoogle ScholarPubMed
Chalon, S., Emond, P., Bodard, S., Vilar, M. P., Thiercelin, C., Besnard, J. C., & Guilloteau, D. 1999, “Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson's disease”, Synapse, vol. 31, no. 2, pp. 134–139.3.0.CO;2-V>CrossRefGoogle Scholar
Chalon, S., Hall, H., Saba, W., Garreau, L., Dolle, F., Halldin, C., Emond, P., Bottlaender, M., Deloye, J. B., Helfenbein, J., Madelmont, J. C., Bodard, S., Mincheva, Z., Besnard, J. C., & Guilloteau, D. 2006, “Pharmacological characterization of (E)-N-(4-fluorobut-2-enyl)-2beta-carbomethoxy-3beta-(4'-tolyl)nortropane (LBT-999) as a highly promising fluorinated ligand for the dopamine transporter”, J. Pharmacol. Exp. Ther., vol. 317, no. 1, pp. 147–152.CrossRefGoogle Scholar
Chan, G. L., Holden, J. E., Stoessl, A. J., Samii, A., Doudet, D. J., Dobko, T., Morrison, K. S., Adam, M., Schulzer, M., Calne, D. B., & Ruth, T. J. 1999, “Reproducibility studies with 11C-DTBZ, a monoamine vesicular transporter inhibitor in healthy human subjects”, J. Nucl. Med., vol. 40, no. 2, pp. 283–289.Google ScholarPubMed
Checkoway, H., Powers, K., Smith-Weller, T., Franklin, G. M., Longstreth, W. T.., & Swanson, P. D. 2002, “Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake”, Am. J. Epidemiol., vol. 155, no. 8, pp. 732–738.CrossRefGoogle ScholarPubMed
Chen, G. & Ewing, A. G. 1995, “Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body”, Brain Res., vol. 701, no. 1–2, pp. 167–174.CrossRefGoogle ScholarPubMed
Chen, L., He, M., Sibille, E., Thompson, A., Sarnyai, Z., Baker, H., Shippenberg, T., & Toth, M. 1999, “Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase B”, J. Neurochem., vol. 73, no. 2, pp. 647–655.CrossRefGoogle ScholarPubMed
Chen, M. K., Lee, J. S., McGlothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., Wong, D. F., & Guilarte, T. R. 2006, “Acute manganese administration alters dopamine transporter levels in the non-human primate striatum”, Neurotoxicology, vol. 27, no. 2, pp. 229–236.CrossRefGoogle ScholarPubMed
Chen, N. H., Lai, Y. J., & Pan, W. H. 1997, “Effects of different perfusion medium on the extracellular basal concentration of dopamine in striatum and medial prefrontal cortex: a zero-net flux microdialysis study”, Neurosci. Lett., vol. 225, no. 3, pp. 197–200.CrossRefGoogle ScholarPubMed
Chen, Y., Hillefors-Berglund, M., Herrera-Marschitz, M., Bjelke, B., Gross, J., Andersson, K., & Euler, G. 1997, “Perinatal asphyxia induces long-term changes in dopamine D1, D2, and D3 receptor binding in the rat brain”, Exp.Neurol., vol. 146, no. 1, pp. 74–80.CrossRefGoogle ScholarPubMed
Cheon, K. A., Ryu, Y. H., Kim, Y. K., Namkoong, K., Kim, C. H., & Lee, J. D. 2003, “Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder”, Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 2, pp. 306–311.CrossRefGoogle Scholar
Cheon, K. A., Ryu, Y. H., Namkoong, K., Kim, C. H., Kim, J. J., & Lee, J. D. 2004, “Dopamine transporter density of the basal ganglia assessed with [123I]IPT SPECT in drug-naive children with Tourette's disorder”, Psychiatry Res., vol. 130, no. 1, pp. 85–95.CrossRefGoogle Scholar
Chien, J. B., Wallingford, R. A., & Ewing, A. G. 1990, “Estimation of free dopamine in the cytoplasm of the giant dopamine cell of Planorbis corneus by voltammetry and capillary electrophoresis”, J. Neurochem., vol. 54, no. 2, pp. 633–638.CrossRefGoogle ScholarPubMed
Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., & Bunney, B. S. 1984, “Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons”, Neuroscience, vol. 12, no. 1, pp. 1–16.CrossRefGoogle ScholarPubMed
Cho, S., Duchemin, A. M., Neff, N. H., & Hadjiconstantinou, M. 1996, “Modulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase after inhibiting monoamine oxidase-A”, Eur. J. Pharmacol., vol. 314, no. 1–2, pp. 51–59.CrossRefGoogle ScholarPubMed
Chou, Y. H., Karlsson, P., Halldin, C., Olsson, H., & Farde, L. 1999, “A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain”, Psychopharmacology (Berl), vol. 146, no. 2, pp. 220–227.CrossRefGoogle ScholarPubMed
Christenson, J. G., Dairman, W., & Udenfriend, S. 1970, “Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney”, Arch. Biochem. Biophys., vol. 141, no. 1, pp. 356–367.CrossRefGoogle ScholarPubMed
Chugani, D. C., Ackermann, R. F., & Phelps, M. E. 1988, “In vivo [3H]spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization”, J. Cereb. Blood Flow Metab., vol. 8, no. 3, pp. 291–303.CrossRefGoogle ScholarPubMed
Ciliax, B. J., Nash, N., Heilman, C., Sunahara, R., Hartney, A., Tiberi, M., Rye, D. B., Caron, M. G., Niznik, H. B., & Levey, A. I. 2000, “Dopamine D(5) receptor immunolocalization in rat and monkey brain”, Synapse, vol. 37, no. 2, pp. 125–145.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Clarke, P. B. & Pert, A. 1985, “Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons”, Brain Res., vol. 348, no. 2, pp. 355–358.CrossRefGoogle ScholarPubMed
Cline, E. J., Adams, C. E., Larson, G. A., Gerhardt, G. A., & Zahniser, N. R. 1995, “Medial dorsal striatum is more sensitive than lateral dorsal striatum to cocaine inhibition of exogenous dopamine clearance: relation to [3H]mazindol binding, but not striosome/matrix”, Exp. Neurol., vol. 134, no. 1, pp. 135–149.CrossRefGoogle Scholar
Cohen, G., Heikkila, R. E., Allis, B., Cabbat, F., Dembiec, D., MacNamee, D., Mytilineou, C., & Winston, B. 1976, “Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by 1-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol”, J. Pharmacol. Exp. Ther., vol. 199, no. 2, pp. 336–352.Google ScholarPubMed
Collins, F. A., Murphy, D. L., Reiss, A. L., Sims, K. B., Lewis, J. G., Freund, L., Karoum, F., Zhu, D., Maumenee, I. H., & Antonarakis, S. E. 1992, “Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes”, Am. J. Med. Genet., vol. 42, no. 1, pp. 127–134.CrossRefGoogle ScholarPubMed
Commissiong, J. W. 1985, “Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity”, Biochem. Pharmacol., vol. 34, no. 8, pp. 1127–1131.CrossRefGoogle ScholarPubMed
Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D'Esposito, M. 2008, “Working memory capacity predicts dopamine synthesis capacity in the human stratum”, J. Neurosci., vol. 28, no. 5, pp. 1208–1212.CrossRefGoogle Scholar
Copeland, B. J., Vogelsberg, V., Neff, N. H., & Hadjiconstantinou, M. 1996, “Protein kinase C activators decrease dopamine uptake into striatal synaptosomes”, J. Pharmacol. Exp. Ther., vol. 277, no. 3, pp. 1527–1532.Google ScholarPubMed
Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. 1992, “The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine”, Psychopharmacology (Berl), vol. 107, no. 2–3, pp. 285–289.CrossRefGoogle ScholarPubMed
Corvol, J. C., Muriel, M. P., Valjent, E., Feger, J., Hanoun, N., Girault, J. A., Hirsch, E. C., & Herve, D. 2004, “Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease”, J. Neurosci., vol. 24, no. 31, pp. 7007–7014.CrossRefGoogle ScholarPubMed
Cowell, R. M., Kantor, L., Hewlett, G. H., Frey, K. A., & Gnegy, M. E. 2000, “Dopamine transporter antagonists block phorbol ester-induced dopamine release and dopamine transporter phosphorylation in striatal synaptosomes”, Eur. J. Pharmacol., vol. 389, no. 1, pp. 59–65.CrossRefGoogle ScholarPubMed
Crawford, C. A., McDougall, S. A., & Bardo, M. T. 1994, “Effects of EEDQ on the synthesis and metabolism of dopamine in preweanling and adult rats”, Neuropharmacology, vol. 33, no. 12, pp. 1559–1565.CrossRefGoogle ScholarPubMed
Crossman, A. R., Sambrook, M. A., Gergies, S. W., & Slater, P. 1977, “The neurological basis of motor asymmetry following unilateral 6-hydroxydopamine brain lesions in the rat: the effect of motor decortication”, J. Neurol. Sci., vol. 34, no. 3, pp. 407–414.CrossRefGoogle ScholarPubMed
Cumming, P., Ase, A., Diksic, M., Harrison, J., Jolly, D., Kuwabara, H., Laliberte, C., & Gjedde, A. 1995a, “Metabolism and blood-brain clearance of L-3,4-dihydroxy-[3H]phenylalanine ([3H]DOPA) and 6-[18F]fluoro-L-DOPA in the rat”, Biochem. Pharmacol., vol. 50, no. 7, pp. 943–946.CrossRefGoogle Scholar
Cumming, P., Ase, A., Kuwabara, H., & Gjedde, A. 1998, “[3H]DOPA formed from [3H]tyrosine in living rat brain is not committed to dopamine synthesis”, J. Cereb. Blood Flow Metab., vol. 18, no. 5, pp. 491–499.CrossRefGoogle Scholar
Cumming, P., Ase, A., Laliberte, C., Kuwabara, H., & Gjedde, A. 1997a, “In vivo regulation of DOPA decarboxylase by dopamine receptors in rat brain”, J. Cereb. Blood Flow Metab., vol. 17, no. 11, pp. 1254–1260.CrossRefGoogle ScholarPubMed
Cumming, P., Boyes, B. E., Martin, W. R., Adam, M., Grierson, J., Ruth, T., & McGeer, E. G. 1987a, “The metabolism of [18F]6-fluoro-L-3,4-dihydroxyphenylalanine in the hooded rat”, J. Neurochem., vol. 48, no. 2, pp. 601–608.Google ScholarPubMed
Cumming, P., Boyes, B. E., Martin, W. R., Adam, M., Ruth, T. J., & McGeer, E. G. 1987b, “Altered metabolism of [18F]-6-fluorodopa in the hooded rat following inhibition of catechol-O-methyltransferase with U-0521”, Biochem. Pharmacol., vol. 36, no. 15, pp. 2527–2531.CrossRefGoogle ScholarPubMed
Cumming, P., Brown, E., Damsma, G., & Fibiger, H. 1992, “Formation and clearance of interstitial metabolites of dopamine and serotonin in the rat striatum: an in vivo microdialysis study”, J. Neurochem., vol. 59, no. 5, pp. 1905–1914.CrossRefGoogle Scholar
Cumming, P., Danielsen, E. H., Vafaee, M., Falborg, L., Steffensen, E., Sorensen, J. C., Gillings, N., Bender, D., Marthi, K., Andersen, F., Munk, O., Smith, D., Moller, A., & Gjedde, A. 2001, “Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts”, Acta Neurol. Scand., vol. 103, no. 5, pp. 309–315.CrossRefGoogle ScholarPubMed
Cumming, P., Gillings, N. M., Jensen, S. B., Bjarkam, C., & Gjedde, A. 2003a, “Kinetics of the uptake and distribution of the dopamine D(2,3) agonist (R)-N-[1-(11)C]n-propylnorapomorphine in brain of healthy and MPTP-treated Gottingen miniature pigs”, Nucl. Med. Biol., vol. 30, no. 5, pp. 547–553.CrossRefGoogle ScholarPubMed
Cumming, P. & Gjedde, A. 1998, “Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms”, Synapse, vol. 29, no. 1, pp. 37–61.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Cumming, P., Hausser, M., Martin, W. R., Grierson, J., Adam, M. J., Ruth, T. J., & McGeer, E. G. 1988, “Kinetics of in vitro decarboxylation and the in vivo metabolism of 2–18F- and 6–18F-fluorodopa in the hooded rat”, Biochem. Pharmacol., vol. 37, no. 2, pp. 247–250.CrossRefGoogle ScholarPubMed
Cumming, P., Kuwabara, H., Ase, A., & Gjedde, A. 1995b, “Regulation of DOPA decarboxylase activity in brain of living rat”, J. Neurochem., vol. 65, no. 3, pp. 1381–1390.CrossRefGoogle ScholarPubMed
Cumming, P., Kuwabara, H., & Gjedde, A. 1994, “A kinetic analysis of 6-[18F]fluoro-L-dihydroxyphenylalanine metabolism in the rat”, J. Neurochem., vol. 63, no. 5, pp. 1675–1682.CrossRefGoogle ScholarPubMed
Cumming, P., Leger, G. C., Kuwabara, H., & Gjedde, A. 1993, “Pharmacokinetics of plasma 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]fdopa) in humans”, J. Cereb. Blood Flow Metab., vol. 13, no. 4, pp. 668–675.CrossRefGoogle ScholarPubMed
Cumming, P., Ljubic-Thibal, V., Laliberte, C., & Diksic, M. 1997b, “The effect of unilateral neurotoxic lesions to serotonin fibres in the medial forebrain bundle on the metabolism of [3H]DOPA in the telencephalon of the living rat”, Brain Res., vol. 747, no. 1, pp. 60–69.CrossRefGoogle ScholarPubMed
Cumming, P., Munk, O. L., & Doudet, D. 2001, “Loss of metabolites from monkey striatum during PET with FDOPA”, Synapse, vol. 41, no. 3, pp. 212–218.CrossRefGoogle ScholarPubMed
Cumming, P., Rosa-Neto, P., Watanabe, H., Smith, D., Bender, D., Clarke, P. B., & Gjedde, A. 2003b, “Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain”, Neuroimage, vol. 19, no. 3, pp. 1127–1136.CrossRefGoogle Scholar
Cumming, P., Venkatachalam, T. K., Rajagopal, S., Diksic, M., & Gjedde, A. 1994, “Brain uptake of alpha-[14C]methyl-para-tyrosine in the rat”, Synapse, vol. 17, no. 2, pp. 125–128.CrossRefGoogle Scholar
Cumming, P., Wong, D. F., Gillings, N., Hilton, J., Scheffel, U., & Gjedde, A. 2002, “Specific binding of [(11)C]raclopride and N-[(3)H]propyl-norapomorphine to dopamine receptors in living mouse striatum: occupancy by endogenous dopamine and guanosine triphosphate-free G protein”, J. Cereb. Blood Flow Metab., vol. 22, no. 5, pp. 596–604.CrossRefGoogle Scholar
Cumming, P., Yokoi, F., Chen, A., Deep, P., Dagher, A., Reutens, D., Kapczinski, F., Wong, D. F., & Gjedde, A. 1999, “Pharmacokinetics of radiotracers in human plasma during positron emission tomography”, Synapse, vol. 34, no. 2, pp. 124–134.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Curzon, G., Hutson, P. H., Kantamaneni, B. D., Sahakian, B. J., & Sarna, G. S. 1985, “3,4-Dihydroxyphenylethylamine and 5-hydroxytryptamine metabolism in the rat: acidic metabolites in cisternal cerebrospinal fluid before and after giving probenecid”, J. Neurochem., vol. 45, no. 2, pp. 508–513.CrossRefGoogle ScholarPubMed
Curzon, G., Hutson, P. H., Kennett, G. A., Marcou, M., & Sarna, G. S. 1986, “Monitoring dopamine metabolism in the brain of the freely moving rat”, Ann. N.Y. Acad. Sci., vol. 473, pp. 224–238.CrossRefGoogle ScholarPubMed
Czoty, P. W., Gage, H. D., & Nader, M. A. 2005, “PET imaging of striatal dopamine D2 receptors in nonhuman primates: increases in availability produced by chronic raclopride treatment”, Synapse, vol. 58, no. 4, pp. 215–219.CrossRefGoogle ScholarPubMed
Dagher, A., Bleicher, C., Aston, J. A., Gunn, R. N., Clarke, P. B., & Cumming, P. 2001, “Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers”, Synapse, vol. 42, no. 1, pp. 48–53.CrossRefGoogle ScholarPubMed
Dall, A. M., Danielsen, E. H., Sorensen, J. C., Andersen, F., Moller, A., Zimmer, J., Gjedde, A. H., & Cumming, P. 2002, “Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs”, Cell Transplant., vol. 11, no. 8, pp. 733–746.Google ScholarPubMed
Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S., Theobald, D. E., Laane, K., Pena, Y., Murphy, E. R., Shah, Y., Probst, K., Abakumova, I., Aigbirhio, F. I., Richards, H. K., Hong, Y., Baron, J. C., Everitt, B. J., & Robbins, T. W. 2007, “Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement”, Science, vol. 315, no. 5816, pp. 1267–1270.CrossRefGoogle ScholarPubMed
Daniels, A. J. & Reinhard, J. F.. 1988, “Energy-driven uptake of the neurotoxin 1-methyl-4-phenylpyridinium into chromaffin granules via the catecholamine transporter”, J. Biol. Chem., vol. 263, no. 11, pp. 5034–5036.Google ScholarPubMed
Danielsen, E. H., Smith, D. F., Gee, A. D., Venkatachalam, T. K., Hansen, S. B., Hermansen, F., Gjedde, A., & Cumming, P. 1999, “Cerebral 6-[(18)F]fluoro-L-DOPA (FDOPA) metabolism in pig studied by positron emission tomography”, Synapse, vol. 33, no. 4, pp. 247–258.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Darchen, F., Masuo, Y., Vial, M., Rostene, W., & Scherman, D. 1989, “Quantitative autoradiography of the rat brain vesicular monoamine transporter using the binding of [3H]dihydrotetrabenazine and 7-amino-8-[125I]iodoketanserin”, Neuroscience, vol. 33, no. 2, pp. 341–349.CrossRefGoogle Scholar
Fuente-Fernandez, R., Furtado, S., Guttman, M., Furukawa, Y., Lee, C. S., Calne, D. B., Ruth, T. J., & Stoessl, A. J. 2003, “VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET”, Synapse, vol. 49, no. 1, pp. 20–28.CrossRefGoogle Scholar
Fuente-Fernandez, R., Lim, A. S., Sossi, V., Holden, J. E., Calne, D. B., Ruth, T. J., Stoessl, A. J. 2001, “Apomorphine-induced changes in synaptic dopamine levels: positron emission tomography evidence for presynaptic inhibition”, J. Cereb. Blood Flow Metab., vol. 21, no. 10, pp. 1151–1159.CrossRefGoogle Scholar
Fuente-Fernandez, R., Ruth, T. J., Sossi, V., Schulzer, M., Calne, D. B., & Stoessl, A. J. 2001, “Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease”, Science, vol. 293, no. 5532, pp. 1164–1166.CrossRefGoogle ScholarPubMed
Fuente-Fernandez, Sossi, V., Huang, Z., Furtado, S., Lu, J. Q., Calne, D. B., Ruth, T. J., & Stoessl, A. J. 2004, “Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias”, Brain, vol. 127 (Pt 12), pp. 2747–2754.CrossRefGoogle ScholarPubMed
Win, M. M., Habraken, J. B., Reneman, L., Brink, W., Heeten, G. J., & Booij, J. 2005, “Validation of [(123)I]beta-CIT SPECT to assess serotonin transporters in vivo in humans: a double-blind, placebo-controlled, crossover study with the selective serotonin reuptake inhibitor citalopram”, Neuropsychopharmacology, vol. 30, no. 5, pp. 996–1005.CrossRefGoogle Scholar
Decamp, E., Wade, T., & Schneider, J. S. 1999, “Differential regulation of striatal dopamine D(1) and D(2) receptors in acute and chronic parkinsonian monkeys”, Brain Res., vol. 847, no. 1, pp. 134–138.CrossRefGoogle Scholar
Dedek, J., Baumes, R., Tien-Duc, N., Gomeni, R., & Korf, J. 1979, “Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum”, J. Neurochem., vol. 33, no. 3, pp. 687–695.CrossRefGoogle ScholarPubMed
Dedek, J., Gomeni, R., & Korf, J. 1979, “A model of dopamine metabolism in rat brain, assessed by the influence of drugs [proceedings]”, Arch. Int. Physiol Biochim., vol. 87, no. 4, pp. 794–795.Google Scholar
Deep, P., Gjedde, A., & Cumming, P. 1997, “On the accuracy of an [18F]FDOPA compartmental model: evidence for vesicular storage of [18F]fluorodopamine in vivo”, J. Neurosci. Methods, vol. 76, no. 2, pp. 157–165.CrossRefGoogle Scholar
Deep, P., Kuwabara, H., Gjedde, A., & Cumming, P. 1997, “The kinetic behaviour of [3H]DOPA in living rat brain investigated by compartmental modelling of static autoradiograms”, J. Neurosci. Methods, vol. 78, no. 1–2, pp. 157–168.CrossRefGoogle Scholar
Dekker, M. C., Eshuis, S. A., Maguire, R. P., Veenma, D. L., Pruim, J., Snijders, P. J., Oostra, B. A., Duijn, C. M., & Leenders, K. L. 2004, “PET neuroimaging and mutations in the DJ-1 gene”, J. Neural Transm., vol. 111, no. 12, pp. 1575–1581.CrossRefGoogle ScholarPubMed
Del Zompo, M., Piccardi, M. P., Ruiu, S., Corsini, G. U., & Vaccari, A. 1992, “Characterization of a putatively vesicular binding site for [3H]MPP+ in mouse striatal membranes”, Brain Res., vol. 571, no. 2, pp. 354–357.CrossRefGoogle Scholar
Demarest, K. T. & Moore, K. E. 1979, “Comparison of dopamine synthesis regulation in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons”, J. Neural Transm., vol. 46, no. 4, pp. 263–277.CrossRefGoogle ScholarPubMed
Demarest, K. T., Smith, D. J., & Azzaro, A. J. 1980, “The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons”, J. Pharmacol. Exp. Ther., vol. 215, no. 2, pp. 461–468.Google ScholarPubMed
Desnos, C., Laran, M. P., Langley, K., Aunis, D., & Henry, J. P. 1995, “Long term stimulation changes the vesicular monoamine transporter content of chromaffin granules”, J. Biol. Chem., vol. 270, no. 27, pp. 16030–16038.CrossRefGoogle ScholarPubMed
Dewey, S. L., Brodie, J. D., Gerasimov, M., Horan, B., Gardner, E. L., & Ashby, C. R.. 1999, “A pharmacologic strategy for the treatment of nicotine addiction”, Synapse, vol. 31, no. 1, pp. 76–86.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Dewey, S. L., Logan, J., Wolf, A. P., Brodie, J. D., Angrist, B., Fowler, J. S., & Volkow, N. D. 1991, “Amphetamine induced decreases in (18F)-N-methylspiroperidol binding in the baboon brain using positron emission tomography (PET)”, Synapse, vol. 7, no. 4, pp. 324–327.CrossRefGoogle Scholar
Dewey, S. L., Smith, G. S., Logan, J., Brodie, J. D., Yu, D. W., Ferrieri, R. A., King, P. T., MacGregor, R. R., Martin, T. P., Wolf, A. P., & et al. 1992, “GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography”, J. Neurosci., vol. 12, no. 10, pp. 3773–3780.CrossRefGoogle ScholarPubMed
Di Chiara, G., Bassareo, V., Fenu, S., Luca, M. A., Spina, L., Cadoni, C., Acquas, E., Carboni, E., Valentini, V., & Lecca, D. 2004, “Dopamine and drug addiction: the nucleus accumbens shell connection”, Neuropharmacology, vol. 47 (Suppl. 1), pp. 227–241.CrossRefGoogle ScholarPubMed
Di Chiara, G. & Imperato, A. 1988, “Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats”, Proc. Natl. Acad. Sci. USA, vol. 85, no. 14, pp. 5274–5278.CrossRefGoogle ScholarPubMed
Di Giulio, A. M., Groppetti, A., Cattabeni, F., Galli, C. L., Maggi, A., Algeri, S., & Ponzio, F. 1978, “Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons”, Eur. J. Pharmacol., vol. 52, no. 2, pp. 201–207.CrossRefGoogle ScholarPubMed
Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., Grandy, D. K., Low, M. J., Gerhardt, G. A., & Zahniser, N. R. 1999, “Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum”, J. Neurochem., vol. 72, no. 1, pp. 148–156.CrossRefGoogle ScholarPubMed
Ding, Y. S., Logan, J., Gatley, S. J., Fowler, J. S., & Volkow, N. D. 1998, “PET studies of peripheral catechol-O-methyltransferase in non-human primates using [18F]Ro41-0960”, J. Neural Transm., vol. 105, no. 10–12, pp. 1199–1211.CrossRefGoogle Scholar
Dluzen, D., Reddy, A., & McDermott, J. 1992, “The aromatic amino acid decarboxylase inhibitor, NSD-1015, increases release of dopamine: response characteristics”, Neuropharmacology, vol. 31, no. 12, pp. 1223–1229.CrossRefGoogle ScholarPubMed
Dominici, P., Filipponi, P., Schinina, M. E., Barra, D., & Borri, V. C. 1990, “Pig kidney dopa decarboxylase. Structure and function”, Ann. N.Y. Acad. Sci., vol. 585, pp. 162–172.CrossRefGoogle ScholarPubMed
Donaldson, I., Dolphin, A., Jenner, P., Marsden, C. D., & Pycock, C. 1976, “The roles of noradrenaline and dopamine in contraversive circling behaviour seen after unilateral electrolytic lesions of the locus coeruleus”, Eur. J. Pharmacol., vol. 39, no. 2, pp. 179–191.CrossRefGoogle ScholarPubMed
Doteuchi, M., Wang, C., & Costa, E. 1974, “Compartmentation of dopamine in rat striatum”, Mol. Pharmacol., vol. 10, no. 2, pp. 225–234.Google ScholarPubMed
Doudet, D. J. & Holden, J. E. 2003, “Sequential versus nonsequential measurement of density and affinity of dopamine D2 receptors with [11C]raclopride: effect of methamphetamine”, J. Cereb. Blood Flow Metab., vol. 23, no. 12, pp. 1489–1494.CrossRefGoogle ScholarPubMed
Doudet, D. J., Jivan, S., Ruth, T. J., & Wyatt, R. J. 2002, “In vivo PET studies of the dopamine D1 receptors in rhesus monkeys with long-term MPTP-induced Parkinsonism”, Synapse, vol. 44, no. 2, pp. 111–115.CrossRefGoogle ScholarPubMed
Doudet, D. J., Rosa-Neto, P., Munk, O. L., Ruth, T. J., Jivan, S., & Cumming, P. 2006, “Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study”, Neuroimage, vol. 30, no. 1, pp. 26–35.CrossRefGoogle ScholarPubMed
Doudet, D. J., Ruth, T. J., & Holden, J. E. 2006, “Sequential versus nonsequential measurement of density and affinity of dopamine D2 receptors with [11C]raclopride: 2: effects of DAT inhibitors”, J. Cereb. Blood Flow Metab., vol. 26, no. 1, pp. 28–37.CrossRefGoogle ScholarPubMed
Dougherty, D. D., Bonab, A. A., Ottowitz, W. E., Livni, E., Alpert, N. M., Rauch, S. L., Fava, M., & Fischman, A. J. 2006, “Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks”, Depress Anxiety, vol. 23, no. 3, pp. 175–177.CrossRefGoogle Scholar
Dresel, S., Krause, J., Krause, K. H., LaFougere, C., Brinkbaumer, K., Kung, H. F., Hahn, K., & Tatsch, K. 2000, “Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment”, Eur. J. Nucl. Med., vol. 27, no. 10, pp. 1518–1524.CrossRefGoogle Scholar
Dresel, S. H., Kung, M. P., Huang, X., Plossl, K., Hou, C., Shiue, C. Y., Karp, J., & Kung, H. F. 1999, “In vivo imaging of serotonin transporters with [99mTc]TRODAT-1 in nonhuman primates”, Eur. J. Nucl. Med., vol. 26, no. 4, pp. 342–347.CrossRefGoogle Scholar
Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., Price, J. L., & Mathis, C. A. 2001, “Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria”, Biol. Psychiatry, vol. 49, no. 2, pp. 81–96.CrossRefGoogle ScholarPubMed
Dugast, C., Brun, P., Sotty, F., Renaud, B., & Suaud-Chagny, M. F. 1997, “On the involvement of a tonic dopamine D2-autoinhibition in the regulation of pulse-to-pulse-evoked dopamine release in the rat striatum in vivo”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 355, no. 6, pp. 716–719.CrossRefGoogle ScholarPubMed
Dumartin, B., Caille, I., Gonon, F., & Bloch, B. 1998, “Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists”, J. Neurosci., vol. 18, no. 5, pp. 1650–1661.CrossRefGoogle ScholarPubMed
Durden, D. A. & Philips, S. R. 1980, “Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain”, J. Neurochem., vol. 34, no. 6, pp. 1725–1732.Google ScholarPubMed
During, M. J., Acworth, I. N., & Wurtman, R. J. 1988a, “Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens”, Brain Res., vol. 452, no. 1–2, pp. 378–380.CrossRefGoogle ScholarPubMed
During, M. J., Acworth, I. N., & Wurtman, R. J. 1988b, “Phenylalanine administration influences dopamine release in the rat's corpus striatum”, Neurosci. Lett., vol. 93, no. 1, pp. 91–95.CrossRefGoogle ScholarPubMed
During, M. J., Acworth, I. N., & Wurtman, R. J. 1989, “Dopamine release in rat striatum: physiological coupling to tyrosine supply”, J. Neurochem., vol. 52, no. 5, pp. 1449–1454.CrossRefGoogle ScholarPubMed
Dyck, L. E. 1987, “Effect of decarboxylase inhibitors on brain p-tyrosine levels”, Biochem. Pharmacol., vol. 36, no. 8, pp. 1373–1376.CrossRefGoogle ScholarPubMed
Ebadi, M. & Simonneaux, V. 1991, “Ambivalence on the multiplicity of mammalian aromatic L-amino acid decarboxylase”, Adv. Exp. Med. Biol., vol. 294, pp. 115–125.CrossRefGoogle ScholarPubMed
Ebert, D., Feistel, H., Kaschka, W., Barocka, A., & Pirner, A. 1994, “Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation – preliminary results”, Biol. Psychiatry, vol. 35, no. 11, pp. 880–885.CrossRefGoogle ScholarPubMed
Ebinger, M. & Uhr, M. 2006, “ABC drug transporter at the blood-brain barrier: effects on drug metabolism and drug response”, Eur. Arch. Psychiatry Clin. Neurosci., vol. 256, no. 5, pp. 294–298.CrossRefGoogle ScholarPubMed
Ehringer, H. & Hornykiewicz, O. 1960, “[Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]”, Klin. Wochenschr., vol. 38, pp. 1236–1239.CrossRefGoogle ScholarPubMed
Ekelund, J., Slifstein, M., Narendran, R., Guillin, O., Belani, H., Guo, N. N., Hwang, Y., Hwang, D. R., Abi-Dargham, A., & Laruelle, M. 2007, “In vivo DA D(1) receptor selectivity of NNC 112 and SCH 23390”, Mol. Imaging Biol., vol. 9, no. 3, pp. 117–125.CrossRefGoogle Scholar
Elazar, Z. & Fuchs, S. 1991, “Phosphorylation by cyclic AMP-dependent protein kinase modulates agonist binding to the D2 dopamine receptor”, J. Neurochem., vol. 56, no. 1, pp. 75–80.CrossRefGoogle ScholarPubMed
Elghozi, J. L., Mignot, E., & Quan-Bui, K. H. 1983, “Probenecid sensitive pathway of elimination of dopamine and serotonin metabolites in CSF of the rat”, J. Neural Transm., vol. 57, no. 1–2, pp. 85–94.CrossRefGoogle ScholarPubMed
Elsworth, J. D., Brittan, M. S., Taylor, J. R., Sladek, J. R.., Redmond, D. E.., Innis, R. B., Zea-Ponce, Y., & Roth, R. H. 1998, “Upregulation of striatal D2 receptors in the MPTP-treated vervet monkey is reversed by grafts of fetal ventral mesencephalon: an autoradiographic study”, Brain Res., vol. 795, no. 1–2, pp. 55–62.CrossRefGoogle ScholarPubMed
Elverfors, A., Pileblad, E., Lagerkvist, S., Bergquist, F., Jonason, J., & Nissbrandt, H. 1997, “3-Methoxytyramine formation following monoamine oxidase inhibition is a poor index of dendritic dopamine release in the substantia nigra”, J. Neurochem., vol. 69, no. 4, pp. 1684–1692.CrossRefGoogle ScholarPubMed
Endres, C. J., Kolachana, B. S., Saunders, R. C., Su, T., Weinberger, D., Breier, A., Eckelman, W. C., & Carson, R. E. 1997a, “Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies”, J. Cereb. Blood Flow Metab., vol. 17, no. 9, pp. 932–942.CrossRefGoogle Scholar
Endres, C. J., Swaminathan, S., DeJesus, O. T., Sievert, M., Ruoho, A. E., Murali, D., Rommelfanger, S. G., & Holden, J. E. 1997b, “Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies”, Life Sci., vol. 60, no. 26, pp. 2399–2406.CrossRefGoogle ScholarPubMed
Erickson, J. D. & Eiden, L. E. 1993, “Functional identification and molecular cloning of a human brain vesicle monoamine transporter”, J. Neurochem., vol. 61, no. 6, pp. 2314–2317.CrossRefGoogle ScholarPubMed
Erickson, J. D., Eiden, L. E., & Hoffman, B. J. 1992, “Expression cloning of a reserpine-sensitive vesicular monoamine transporter”, Proc. Natl. Acad. Sci. USA, vol. 89, no. 22, pp. 10993–10997.CrossRefGoogle ScholarPubMed
Ernst, M., Zametkin, A. J., Matochik, J. A., Pascualvaca, D., Jons, P. H., Hardy, K., Hankerson, J. G., Doudet, D. J., & Cohen, R. M. 1996, “Presynaptic dopaminergic deficits in Lesch-Nyhan disease”, N Engl. J. Med., vol. 334, no. 24, pp. 1568–1572.CrossRefGoogle ScholarPubMed
Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., Brooks, D. J., Lees, A. J., & Piccini, P. 2006, “Compulsive drug use linked to sensitized ventral striatal dopamine transmission”, Ann. Neurol., vol. 59, no. 5, pp. 852–858.CrossRefGoogle ScholarPubMed
Fairbrother, I. S., Arbuthnott, G. W., Kelly, J. S., & Butcher, S. P. 1990, “In vivo mechanisms underlying dopamine release from rat nigrostriatal terminals: II. Studies using potassium and tyramine”, J. Neurochem., vol. 54, no. 6, pp. 1844–1851.CrossRefGoogle ScholarPubMed
Falany, C. N., Vazquez, M. E., Heroux, J. A., & Roth, J. A. 1990, “Purification and characterization of human liver phenol-sulfating phenol sulfotransferase”, Arch. Biochem. Biophys., vol. 278, no. 2, pp. 312–318.CrossRefGoogle ScholarPubMed
Fan, J. B., Zhang, C. S., Gu, N. F., Li, X. W., Sun, W. W., Wang, H. Y., Feng, G. Y., St, Clair, D., & He, L. 2005, “Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis”, Biol. Psychiatry, vol. 57, no. 2, pp. 139–144.CrossRefGoogle ScholarPubMed
Farde, L., Hall, H., Ehrin, E., & Sedvall, G. 1986, “Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET”, Science, vol. 231, no. 4735, pp. 258–261.CrossRefGoogle ScholarPubMed
Farde, L., Hall, H., Pauli, S., & Halldin, C. 1995, “Variability in D2-dopamine receptor density and affinity: a PET study with [11C]raclopride in man”, Synapse, vol. 20, no. 3, pp. 200–208.CrossRefGoogle Scholar
Farde, L., Halldin, C., Muller, L., Suhara, T., Karlsson, P., & Hall, H. 1994, “PET study of [11C]beta-CIT binding to monoamine transporters in the monkey and human brain”, Synapse, vol. 16, no. 2, pp. 93–103.CrossRefGoogle ScholarPubMed
Farde, L., Suhara, T., Nyberg, S., Karlsson, P., Nakashima, Y., Hietala, J., & Halldin, C. 1997, “A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients”, Psychopharmacology (Berl), vol. 133, no. 4, pp. 396–404.CrossRefGoogle Scholar
Farde, L., Wiesel, F. A., Stone-Elander, S., Halldin, C., Nordstrom, A. L., Hall, H., & Sedvall, G. 1990, “D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride”, Arch. Gen. Psychiatry, vol. 47, no. 3, pp. 213–219.CrossRefGoogle Scholar
Fedi, M., Berkovic, S. F., Scheffer, I. E., O'Keefe, G., Marini, C., Mulligan, R., Gong, S., Tochon-Danguy, H., & Reutens, D. C. 2008, “Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy”, Neurology, vol. 71, no. 11, pp. 795–798.CrossRefGoogle ScholarPubMed
Fernstrom, M. H., Baker, R. L., & Fernstrom, J. D. 1989, “In vivo tyrosine hydroxylation rate in retina: effects of phenylalanine and tyrosine administration in rats pretreated with p-chlorophenylalanine”, Brain Res., vol. 499, no. 2, pp. 291–298.CrossRefGoogle ScholarPubMed
Ferre, S., Euler, G., Johansson, B., Fredholm, B. B., & Fuxe, K. 1991, “Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 16, pp. 7238–7241.CrossRefGoogle ScholarPubMed
Fiedler, J. & Daniels, A. J. 1984, “Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient”, J. Neurochem., vol. 42, no. 5, pp. 1291–1297.CrossRefGoogle ScholarPubMed
Filloux, F., Wagster, M. V., Folstein, S., Price, D. L., Hedreen, J. C., Dawson, T. M., & Wamsley, J. K. 1990, “Nigral dopamine type-1 receptors are reduced in Huntington's disease: a postmortem autoradiographic study using [3H]SCH 23390 and correlation with [3H]forskolin binding”, Exp. Neurol., vol. 110, no. 2, pp. 219–227.CrossRefGoogle Scholar
Fine, M. I., Masserano, J. M., & Weiner, N. 1986, “The effects of reserpine and haloperidol on tyrosine hydroxylase activity in the brains of aged rats”, Life Sci., vol. 39, no. 3, pp. 235–241.CrossRefGoogle ScholarPubMed
Finnema, S. J., Seneca, N., Farde, L., Shchukin, E., Sovago, J., Gulyas, B., Wikstrom, H. V., Innis, R. B., Neumeyer, J. L., & Halldin, C. 2005, “A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey”, Nucl. Med. Biol., vol. 32, no. 4, pp. 353–360.CrossRefGoogle ScholarPubMed
Firnau, G., Sood, S., Chirakal, R., Nahmias, C., & Garnett, E. S. 1987, “Cerebral metabolism of 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine in the primate”, J. Neurochem., vol. 48, no. 4, pp. 1077–1082.CrossRefGoogle ScholarPubMed
Fischer, J. F. & Cho, A. K. 1979, “Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model”, J. Pharmacol. Exp. Ther., vol. 208, no. 2, pp. 203–209.Google ScholarPubMed
Fischman, A. J., Bonab, A. A., Babich, J. W., Livni, E., Alpert, N. M., Meltzer, P. C., & Madras, B. K. 2001, “[(11)C, (127)I] Altropane: a highly selective ligand for PET imaging of dopamine transporter sites”, Synapse, vol. 39, no. 4, pp. 332–342.3.0.CO;2-X>CrossRefGoogle Scholar
Fischman, A. J., Bonab, A. A., Babich, J. W., Palmer, E. P., Alpert, N. M., Elmaleh, D. R., Callahan, R. J., Barrow, S. A., Graham, W., Meltzer, P. C., Hanson, R. N., & Madras, B. K. 1998, “Rapid detection of Parkinson's disease by SPECT with altropane: a selective ligand for dopamine transporters”, Synapse, vol. 29, no. 2, pp. 128–141.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Fishburn, C. S., Elazar, Z., & Fuchs, S. 1995, “Differential glycosylation and intracellular trafficking for the long and short isoforms of the D2 dopamine receptor”, J. Biol. Chem., vol. 270, no. 50, pp. 29819–29824.Google Scholar
Floel, A., Garraux, G., Xu, B., Breitenstein, C., Knecht, S., Herscovitch, P., & Cohen, L. G. 2008, “Levodopa increases memory encoding and dopamine release in the striatum in the elderly”, Neurobiol. Aging., vol. 29, no. 2, pp. 267–279.CrossRefGoogle ScholarPubMed
Fornai, F., Chen, K., Giorgi, F. S., Gesi, M., Alessandri, M. G., & Shih, J. C. 1999, “Striatal dopamine metabolism in monoamine oxidase B-deficient mice: a brain dialysis study”, J. Neurochem., vol. 73, no. 6, pp. 2434–2440.CrossRefGoogle ScholarPubMed
Fowler, C. J. & Benedetti, M. S. 1983, “The metabolism of dopamine by both forms of monoamine oxidase in the rat brain and its inhibition by cimoxatone”, J. Neurochem., vol. 40, no. 6, pp. 1534–1541.CrossRefGoogle Scholar
Fowler, C. J. & Tipton, K. F. 1982, “Deamination of 5-hydroxytryptamine by both forms of monoamine oxidase in the rat brain”, J. Neurochem., vol. 38, no. 3, pp. 733–736.CrossRefGoogle ScholarPubMed
Fowler, J. S., Alia-Klein, N., Kriplani, A., Logan, J., Williams, B., Zhu, W., Craig, I. W., Telang, F., Goldstein, R., Volkow, N. D., Vaska, P., & Wang, G. J. 2007, “Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects”, Biol. Psychiatry, vol. 62, no. 4, pp. 355–358.CrossRefGoogle Scholar
Fowler, J. S., Logan, J., Ding, Y. S., Franceschi, D., Wang, G. J., Volkow, N. D., Pappas, N., Schlyer, D., Gatley, S. J., Alexoff, D., Felder, C., Biegon, A., & Zhu, W. 2001, “Non-MAO A binding of clorgyline in white matter in human brain”, J. Neurochem., vol. 79, no. 5, pp. 1039–1046.CrossRefGoogle ScholarPubMed
Fowler, J. S., MacGregor, R. R., Wolf, A. P., Arnett, C. D., Dewey, S. L., Schlyer, D., Christman, D., Logan, J., Smith, M., Sachs, H., & et al. 1987, “Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET”, Science, vol. 235, no. 4787, pp. 481–485.CrossRefGoogle Scholar
Fowler, J. S., Volkow, N. D., Logan, J., Gatley, S. J., Pappas, N., King, P., Ding, Y. S., & Wang, G. J. 1998a, “Measuring dopamine transporter occupancy by cocaine in vivo: radiotracer considerations”, Synapse, vol. 28, no. 2, pp. 111–116.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Fowler, J. S., Volkow, N. D., Logan, J., Schlyer, D. J., MacGregor, R. R., Wang, G. J., Wolf, A. P., Pappas, N., Alexoff, D., Shea, C., et al. 1993, “Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson's disease: the degree and reversibility of human brain MAO B inhibition by Ro 19 6327”, Neurology, vol. 43, no. 10, pp. 1984–1992.CrossRefGoogle ScholarPubMed
Fowler, J. S., Volkow, N. D., Wang, G. J., Pappas, N., Logan, J., MacGregor, R., Alexoff, D., Wolf, A. P., Warner, D., Cilento, R., & Zezulkova, I. 1998b, “Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition”, J. Addict. Dis., vol. 17, no. 1, pp. 23–34.CrossRefGoogle ScholarPubMed
Fowler, J. S., Volkow, N. D., Wang, G. J., Pappas, N., Logan, J., Shea, C., Alexoff, D., MacGregor, R. R., Schlyer, D. J., Zezulkova, I., & Wolf, A. P. 1996, “Brain monoamine oxidase A inhibition in cigarette smokers”, Proc. Natl. Acad. Sci. USA, vol. 93, no. 24, pp. 14065–14069.CrossRefGoogle ScholarPubMed
Fowler, J. S., Wang, G. J., Volkow, N. D., Franceschi, D., Logan, J., Pappas, N., Shea, C., MacGregor, R. R., & Garza, V. 1999, “Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non-smokers”, Nicotine. Tob. Res., vol. 1, no. 4, pp. 325–329.CrossRefGoogle Scholar
Fowler, J. S., Wang, G. J., Volkow, N. D., Logan, J., Franceschi, D., Franceschi, M., MacGregor, R., Shea, C., Garza, V., Liu, N., & Ding, Y. S. 2000, “Evidence that gingko biloba extract does not inhibit MAO A and B in living human brain”, Life Sci., vol. 66, no. 9, pp. L141–L146.CrossRefGoogle ScholarPubMed
Fowler, J. S., Wolf, A. P., MacGregor, R. R., Dewey, S. L., Logan, J., Schlyer, D. J., & Langstrom, B. 1988, “Mechanistic positron emission tomography studies: demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]L-deprenyl in living baboon brain”, J. Neurochem., vol. 51, no. 5, pp. 1524–1534.CrossRefGoogle Scholar
Francis, L. P., Broch, O. J., Monge, P., & Solheim, E. 1980, “Subcellular distribution of dopamine metabolites and their elimination from the rat brain”, Neuropharmacology, vol. 19, no. 3, pp. 269–276.CrossRefGoogle ScholarPubMed
Frank, G. K., Bailer, U. F., Henry, S. E., Drevets, W., Meltzer, C. C., Price, J. C., Mathis, C. A., Wagner, A., Hoge, J., Ziolko, S., Barbarich-Marsteller, N., Weissfeld, L., & Kaye, W. H. 2005, “Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11C]raclopride”, Biol. Psychiatry, vol. 58, no. 11, pp. 908–912.CrossRefGoogle Scholar
Freedman, N. M., Mishani, E., Krausz, Y., Weininger, J., Lester, H., Blaugrund, E., Ehrlich, D., & Chisin, R. 2005, “In vivo measurement of brain monoamine oxidase B occupancy by rasagiline, using (11)C-l-deprenyl and PET”, J. Nucl. Med., vol. 46, no. 10, pp. 1618–1624.Google ScholarPubMed
Freedman, S. B., Patel, S., Marwood, R., Emms, F., Seabrook, G. R., Knowles, M. R., & McAllister, G. 1994, “Expression and pharmacological characterization of the human D3 dopamine receptor”, J. Pharmacol. Exp. Ther., vol. 268, no. 1, pp. 417–426.Google ScholarPubMed
Freeman, A. S. & Bunney, B. S. 1987, “Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin”, Brain Res., vol. 405, no. 1, pp. 46–55.CrossRefGoogle ScholarPubMed
Frei, B. & Richter, C. 1986, “N-methyl-4-phenylpyridine (MMP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria”, FEBS Lett., vol. 198, no. 1, pp. 99–102.CrossRefGoogle ScholarPubMed
Frost, J. J., Rosier, A. J., Reich, S. G., Smith, J. S., Ehlers, M. D., Snyder, S. H., Ravert, H. T., & Dannals, R. F. 1993, “Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease”, Ann. Neurol., vol. 34, no. 3, pp. 423–431.CrossRefGoogle ScholarPubMed
Frost, J. J., Smith, A. C., Kuhar, M. J., Dannals, R. F., & Wagner, H. N.. 1987, “In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors”, Life Sci., vol. 40, no. 10, pp. 987–995.CrossRefGoogle ScholarPubMed
Fujita, M., Verhoeff, N. P., Varrone, A., Zoghbi, S. S., Baldwin, R. M., Jatlow, P. A., Anderson, G. M., Seibyl, J. P., & Innis, R. B. 2000, “Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans”, Eur. J. Pharmacol., vol. 387, no. 2, pp. 179–188.CrossRefGoogle ScholarPubMed
Fuller, R. W. & Snoddy, H. D. 1982, “L-Tyrosine enhancement of the elevation of 3,4-dihydroxyphenylacetic acid concentration in rat brain by spiperone and amfonelic acid”, J. Pharm. Pharmacol., vol. 34, no. 2, pp. 117–118.CrossRefGoogle ScholarPubMed
Fuxe, K., Ferre, S., Canals, M., Torvinen, M., Terasmaa, A., Marcellino, D., Goldberg, S. R., Staines, W., Jacobsen, K. X., Lluis, C., Woods, A. S., Agnati, L. F., & Franco, R. 2005, “Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function”, J. Mol. Neurosci., vol. 26, no. 2–3, pp. 209–220.CrossRefGoogle ScholarPubMed
Gaig, C., Marti, M. J., Tolosa, E., Valldeoriola, F., Paredes, P., Lomena, F. J., & Nakamae, F. 2006, “123I-Ioflupane SPECT in the diagnosis of suspected psychogenic Parkinsonism”, Mov. Disord., vol. 21, no. 11, pp. 1994–1998.CrossRefGoogle Scholar
Gal, E. M., & Whitacre, D. H. 1982, “Mechanism of irreversible inactivation of phenylalanine-4- and tryptophan-5-hydroxylases by [4-36Cl, 2-14C]p-chlorophenylalanine: a revision”, Neurochem. Res., vol. 7, no. 1, pp. 13–26.CrossRefGoogle Scholar
Gale, K., Costa, E., Toffano, G., Hong, J. S., & Guidotti, A. 1978, “Evidence for a role of nigral gamma-aminobutyric acid and substance P in the haloperidol-induced activation of striatal tyrosine hydroxylase”, J. Pharmacol. Exp. Ther., vol. 206, no. 1, pp. 29–37.Google ScholarPubMed
Galloway, M. P., Wolf, M. E., & Roth, R. H. 1986, “Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo”, J. Pharmacol. Exp. Ther., vol. 236, no. 3, pp. 689–698.Google ScholarPubMed
Gatley, S. J., Ding, Y. S., Volkow, N. D., Chen, R., Sugano, Y., & Fowler, J. S. 1995a, “Binding of d-threo-[11C]methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine”, Eur. J. Pharmacol., vol. 281, no. 2, pp. 141–149.CrossRefGoogle ScholarPubMed
Gatley, S. J., MacGregor, R. R., Fowler, J. S., Wolf, A. P., Dewey, S. L., & Schlyer, D. J. 1990, “Rapid stereoselective hydrolysis of (+)-cocaine in baboon plasma prevents its uptake in the brain: implications for behavioral studies”, J.Neurochem., vol. 54, no. 2, pp. 720–723.CrossRefGoogle ScholarPubMed
Gatley, S. J., Volkow, N. D., Fowler, J. S., Dewey, S. L., & Logan, J. 1995b, “Sensitivity of striatal [11C]cocaine binding to decreases in synaptic dopamine”, Synapse, vol. 20, no. 2, pp. 137–144.CrossRefGoogle ScholarPubMed
Gefvert, O., Lindstrom, L. H., Waters, N., Waters, S., Carlsson, A., & Tedroff, J. 2003, “Different corticostriatal patterns of L-DOPA utilization in patients with untreated schizophrenia and patients treated with classical antipsychotics or clozapine”, Scand. J. Psychol., vol. 44, no. 3, pp. 289–292.CrossRefGoogle ScholarPubMed
Gerasimov, M. R., Ashby, C. R.., Gardner, E. L., Mills, M. J., Brodie, J. D., & Dewey, S. L. 1999, “Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine”, Synapse, vol. 34, no. 1, pp. 11–19.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Gerfen, C. R. 1992, “The neostriatal mosaic: multiple levels of compartmental organization”, Trends Neurosci., vol. 15, no. 4, pp. 133–139.CrossRefGoogle ScholarPubMed
Geurts, M., Hermans, E., & Maloteaux, J. M. 1999, “Enhanced striatal dopamine D(2) receptor-induced [35S]GTPgammaS binding after haloperidol treatment”, Eur. J. Pharmacol., vol. 382, no. 2, pp. 119–127.CrossRefGoogle ScholarPubMed
Giardino, L. 1996, “Right-left asymmetry of D1- and D2-receptor density is lost in the basal ganglia of old rats”, Brain Res., vol. 720, no. 1–2, pp. 235–238.CrossRefGoogle ScholarPubMed
Gibson, C. J. 1992, “Tyrosine augments dopamine release in stimulated rat retina”, Brain Res., vol. 595, no. 2, pp. 201–205.CrossRefGoogle ScholarPubMed
Gifford, A. N., Gatley, S. J., & Ashby, C. R.. 1996, “Endogenously released dopamine inhibits the binding of dopaminergic PET and SPECT ligands in superfused rat striatal slices”, Synapse, vol. 22, no. 3, pp. 232–238.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Gilman, S., Frey, K. A., Koeppe, R. A., Junck, L., Little, R., Vander Borght, T. M., Lohman, M., Martorello, S., Lee, L. C., Jewett, D. M., & Kilbourn, M. R. 1996, “Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography”, Ann. Neurol., vol. 40, no. 6, pp. 885–892.CrossRefGoogle ScholarPubMed
Gilman, S., Koeppe, R. A., Adams, K. M., Junck, L., Kluin, K. J., Johnson-Greene, D., Martorello, S., Heumann, M., & Bandekar, R. 1998, “Decreased striatal monoaminergic terminals in severe chronic alcoholism demonstrated with (+)[11C]dihydrotetrabenazine and positron emission tomography”, Ann. Neurol., vol. 44, no. 3, pp. 326–333.CrossRefGoogle ScholarPubMed
Gilman, S., Koeppe, R. A., Junck, L., Little, R., Kluin, K. J., Heumann, M., Martorello, S., & Johanns, J. 1999, “Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography”, Ann. Neurol., vol. 45, no. 6, pp. 769–777.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Gilman, S., Koeppe, R. A., Little, R., An, H., Junck, L., Giordani, B., Persad, C., Heumann, M., & Wernette, K. 2004, “Striatal monoamine terminals in Lewy body dementia and Alzheimer's disease”, Ann. Neurol., vol. 55, no. 6, pp. 774–780.CrossRefGoogle ScholarPubMed
Ginovart, N., Farde, L., Halldin, C., & Swahn, C. G. 1997a, “Effect of reserpine-induced depletion of synaptic dopamine on [11C]raclopride binding to D2-dopamine receptors in the monkey brain”, Synapse, vol. 25, no. 4, pp. 321–325.3.0.CO;2-C>CrossRefGoogle Scholar
Ginovart, N., Galineau, L., Willeit, M., Mizrahi, R., Bloomfield, P. M., Seeman, P., Houle, S., Kapur, S., & Wilson, A. A. 2006, “Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography”, J. Neurochem., vol. 97, no. 4, pp. 1089–1103.CrossRefGoogle Scholar
Ginovart, N., Lundin, A., Farde, L., Halldin, C., Backman, L., Swahn, C. G., Pauli, S., & Sedvall, G. 1997b, “PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington's disease”, Brain, vol. 120 (Pt 3), pp. 503–514.CrossRefGoogle ScholarPubMed
Ginovart, N., Willeit, M., Rusjan, P., Graff, A., Bloomfield, P. M., Houle, S., Kapur, S., & Wilson, A. A. 2007, “Positron emission tomography quantification of [(11)C]-(+)-PHNO binding in the human brain”, J. Cereb. Blood Flow Metab., vol. 27, no. 4, pp. 857–871.CrossRefGoogle Scholar
Ginovart, N., Wilson, A. A., Houle, S., & Kapur, S. 2004, “Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a [11C]raclopride positron emission tomography study in cats”, Biol. Psychiatry, vol. 55, no. 12, pp. 1188–1194.CrossRefGoogle Scholar
Giros, B., el Mestikawy, S., Bertrand, L., & Caron, M. G. 1991, “Cloning and functional characterization of a cocaine-sensitive dopamine transporter”, FEBS Lett., vol. 295, no. 1–3, pp. 149–154.CrossRefGoogle ScholarPubMed
Giros, B., el Mestikawy, S., Godinot, N., Zheng, K., Han, H., Yang-Feng, T., & Caron, M. G. 1992, “Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter”, Mol. Pharmacol., vol. 42, no. 3, pp. 383–390.Google ScholarPubMed
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. 1996, “Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter”, Nature, vol. 379, no. 6566, pp. 606–612.CrossRefGoogle ScholarPubMed
Giros, B., Sokoloff, P., Martres, M. P., Riou, J. F., Emorine, L. J., & Schwartz, J. C. 1989, “Alternative splicing directs the expression of two D2 dopamine receptor isoforms”, Nature, vol. 342, no. 6252, pp. 923–926.CrossRefGoogle ScholarPubMed
Gjedde, A. 1981, “High- and low-affinity transport of D-glucose from blood to brain”, J. Neurochem., vol. 36, no. 4, pp. 1463–1471.CrossRefGoogle ScholarPubMed
Gjedde, A., Leger, G. C., Cumming, P., Yasuhara, Y., Evans, A. C., Guttman, M., & Kuwabara, H. 1993, “Striatal L-dopa decarboxylase activity in Parkinson's disease in vivo: implications for the regulation of dopamine synthesis”, J. Neurochem., vol. 61, no. 4, pp. 1538–1541.CrossRefGoogle ScholarPubMed
Gjedde, A., Reith, J., Dyve, S., Leger, G., Guttman, M., Diksic, M., Evans, A., & Kuwabara, H. 1991, “Dopa decarboxylase activity of the living human brain”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 7, pp. 2721–2725.CrossRefGoogle ScholarPubMed
Glenthoj, B. Y., Mackeprang, T., Svarer, C., Rasmussen, H., Pinborg, L. H., Friberg, L., Baare, W., Hemmingsen, R., & Videbaek, C. 2006, “Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender”, Biol. Psychiatry, vol. 60, no. 6, pp. 621–629.CrossRefGoogle ScholarPubMed
Gonzalez-Quevedo, A., Garcia, J. C., Fernandez, R., & Fernandez, C. L. 1993, “Monoamine metabolites in normal human cerebrospinal fluid and in degenerative diseases of the central nervous system”, Bol. Estud. Med. Biol., vol. 41, no. 1–4, pp. 13–19.Google ScholarPubMed
Gordon, I., Rehavi, M., & Mintz, M. 1994, “Bilateral imbalance in striatal DA-uptake controls rotation behavior”, Brain Res., vol. 646, no. 2, pp. 207–210.CrossRefGoogle ScholarPubMed
Goridis, C. & Neff, N. H. 1971, “Monoamine oxidase: an approximation of turnover rates”, J. Neurochem., vol. 18, no. 9, pp. 1673–1682.CrossRefGoogle ScholarPubMed
Grace, A. A. 1991, “Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia”, Neuroscience, vol. 41, no. 1, pp. 1–24.CrossRefGoogle ScholarPubMed
Grace, A. A. & Bunney, B. S. 1983, “Intracellular and extracellular electrophysiology of nigral dopaminergic neurons – 3. Evidence for electrotonic coupling”, Neuroscience, vol. 10, no. 2, pp. 333–348.CrossRefGoogle ScholarPubMed
Grace, A. A., Bunney, B. S., Moore, H., & Todd, C. L. 1997, “Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs”, Trends Neurosci., vol. 20, no. 1, pp. 31–37.CrossRefGoogle Scholar
Graff-Guerrero, A., Willeit, M., Ginovart, N., Mamo, D., Mizrahi, R., Rusjan, P., Vitcu, I., Seeman, P., Wilson, A. A., & Kapur, S. 2008, “Brain region binding of the D(2/3) agonist [(11)C]-(+)-PHNO and the D(2/3) antagonist [(11)C]raclopride in healthy humans”, Hum. Brain Mapp., vol. 29, no. 4, pp. 400–410.CrossRefGoogle Scholar
Graham, R. C.. & Karnovsky, M. J. 1965, “The histochemical demonstration of monoamine oxidase activity by coupled peroxidatic oxidation”, J. Histochem. Cytochem., vol. 13, no. 7, pp. 604–605.CrossRefGoogle ScholarPubMed
Graham, W. C., Clarke, C. E., Boyce, S., Sambrook, M. A., Crossman, A. R., & Woodruff, G. N. 1990, “Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. II. Unilateral intra-carotid infusion of MPTP in the monkey (Macaca fascicularis)”, Brain Res., vol. 514, no. 1, pp. 103–110.CrossRefGoogle Scholar
Graham, W. C., Sambrook, M. A., & Crossman, A. R. 1993, “Differential effect of chronic dopaminergic treatment on dopamine D1 and D2 receptors in the monkey brain in MPTP-induced parkinsonism”, Brain Res., vol. 602, no. 2, pp. 290–303.CrossRefGoogle ScholarPubMed
Grima, B., Lamouroux, A., Boni, C., Julien, J. F., Javoy-Agid, F., & Mallet, J. 1987, “A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics”, Nature, vol. 326, no. 6114, pp. 707–711.CrossRefGoogle ScholarPubMed
Grimsby, J., Chen, K., Wang, L. J., Lan, N. C., & Shih, J. C. 1991, “Human monoamine oxidase A and B genes exhibit identical exon-intron organization”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 9, pp. 3637–3641.CrossRefGoogle Scholar
Grimsby, J., Toth, M., Chen, K., Kumazawa, J., Klaidman, L., Adams, J. D., Karoum, J., Gal, J., & Shih, J. C. 1997, “Increased stress response and beta-phenylethylamine in MAOB-deficient mice”, Nat. Genet., vol. 17, no. 2, pp. 206–210.CrossRefGoogle ScholarPubMed
Groppetti, A., Algeri, S., Cattabeni, F., Di Giulio, A. M., Galli, C. L., Ponzio, F., & Spano, P. F. 1977, “Changes in specific activity of dopamine metabolites as evidence of a multiple compartmentation of dopamine in striatal neurons”, J. Neurochem., vol. 28, no. 1, pp. 193–197.CrossRefGoogle ScholarPubMed
Grunder, G., Landvogt, C., Vernaleken, I., Buchholz, H. G., Ondracek, J., Siessmeier, T., Hartter, S., Schreckenberger, M., Stoeter, P., Hiemke, C., Rosch, F., Wong, D. F., & Bartenstein, P. 2006, “The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia”, Neuropsychopharmacology, vol. 31, no. 5, pp. 1027–1035.CrossRefGoogle ScholarPubMed
Grunder, G., Vernaleken, I., Muller, M. J., Davids, E., Heydari, N., Buchholz, H. G., Bartenstein, P., Munk, O. L., Stoeter, P., Wong, D. F., Gjedde, A., & Cumming, P. 2003, “Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo”, Neuropsychopharmacology, vol. 28, no. 4, pp. 787–794.CrossRefGoogle ScholarPubMed
Guigoni, C., Aubert, I., Li, Q., Gurevich, V. V., Benovic, J. L., Ferry, S., Mach, U., Stark, H., Leriche, L., Hakansson, K., Bioulac, B. H., Gross, C. E., Sokoloff, P., Fisone, G., Gurevich, E. V., Bloch, B., & Bezard, E. 2005, “Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors”, Parkinsonism. Relat. Disord., vol. 11 (Suppl. 1), pp. S25–S29.CrossRefGoogle ScholarPubMed
Guivarc'h, D., Vernier, P., & Vincent, J. D. 1995, “Sex steroid hormones change the differential distribution of the isoforms of the D2 dopamine receptor messenger RNA in the rat brain”, Neuroscience, vol. 69, no. 1, pp. 159–166.CrossRefGoogle ScholarPubMed
Guo, N., Hwang, D. R., Lo, E. S., Huang, Y. Y., Laruelle, M., & Abi-Dargham, A. 2003, “Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia”, Neuropsychopharmacology, vol. 28, no. 9, pp. 1703–1711.CrossRefGoogle Scholar
Hadjiconstantinou, M., Neff, N. H., Zhou, L. W., & Weiss, B. 1996, “D2 dopamine receptor antisense increases the activity and mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in mouse brain”, Neurosci. Lett., vol. 217, no. 2–3, pp. 105–108.Google ScholarPubMed
Hadjiconstantinou, M., Rossetti, Z., Silvia, C., Krajnc, D., & Neff, N. H. 1988, “Aromatic L-amino acid decarboxylase activity of the rat retina is modulated in vivo by environmental light”, J. Neurochem., vol. 51, no. 5, pp. 1560–1564.Google ScholarPubMed
Hadjiconstantinou, M., Wemlinger, T. A., Sylvia, C. P., Hubble, J. P., & Neff, N. H. 1993, “Aromatic L-amino acid decarboxylase activity of mouse striatum is modulated via dopamine receptors”, J. Neurochem., vol. 60, no. 6, pp. 2175–2180.CrossRefGoogle ScholarPubMed
Hagberg, G. E., Torstenson, R., Marteinsdottir, I., Fredrikson, M., Langstrom, B., & Blomqvist, G. 2002, “Kinetic compartment modeling of [11C]-5-hydroxy-L-tryptophan for positron emission tomography assessment of serotonin synthesis in human brain”, J. Cereb. Blood Flow Metab., vol. 22, no. 11, pp. 1352–1366.CrossRefGoogle Scholar
Hagelberg, N., Aalto, S., Kajander, J., Oikonen, V., Hinkka, S., Nagren, K., Hietala, J., & Scheinin, H. 2004, “Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects”, Pain, vol. 109, no. 1–2, pp. 86–93.CrossRefGoogle ScholarPubMed
Hagelberg, N., Kajander, J. K., Nagren, K., Hinkka, S., Hietala, J., & Scheinin, H. 2002, “Mu-receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man”, Synapse, vol. 45, no. 1, pp. 25–30.CrossRefGoogle ScholarPubMed
Hajnal, A. & Lenard, L. 1997, “Feeding-related dopamine in the amygdala of freely moving rats”, Neuroreport, vol. 8, no. 12, pp. 2817–2820.CrossRefGoogle ScholarPubMed
Hakyemez, H. S., Dagher, A., Smith, S. D., & Zald, D. H. 2008, “Striatal dopamine transmission in healthy humans during a passive monetary reward task”, Neuroimage, vol. 39, no. 4, pp. 2058–2065.CrossRefGoogle ScholarPubMed
Hall, H., Wedel, I., Halldin, C., Kopp, J., & Farde, L. 1990, “Comparison of the in vitro receptor binding properties of N-[3H]methylspiperone and [3H]raclopride to rat and human brain membranes”, J. Neurochem., vol. 55, no. 6, pp. 2048–2057.CrossRefGoogle Scholar
Hall, M. D., Jenner, P., & Marsden, C. D. 1983, “Turnover of specific [3H]spiperone and [3H]N, n-propylnorapomorphine binding sites in rat striatum following phenoxybenzamine administration”, Biochem. Pharmacol., vol. 32, no. 19, pp. 2973–2977.CrossRefGoogle Scholar
Halldin, C., Foged, C., Chou, Y. H., Karlsson, P., Swahn, C. G., Sandell, J., Sedvall, G., & Farde, L. 1998, “Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors”, J. Nucl. Med., vol. 39, no. 12, pp. 2061–2068.Google ScholarPubMed
Halliwell, J. V. & Horne, A. L. 1998, “Evidence for enhancement of gap junctional coupling between rat island of Calleja granule cells in vitro by the activation of dopamine D3 receptors”, J. Physiol., vol. 506 (Pt 1), pp. 175–194.CrossRefGoogle ScholarPubMed
Hamblin, M. W., Leff, S. E., & Creese, I. 1984, “Interactions of agonists with D-2 dopamine receptors: evidence for a single receptor population existing in multiple agonist affinity-states in rat striatal membranes”, Biochem. Pharmacol., vol. 33, no. 6, pp. 877–887.CrossRefGoogle ScholarPubMed
Han, S., Rowell, P. P., & Carr, L. A. 1999, “D2 autoreceptors are not involved in the down-regulation of the striatal dopamine transporter caused by alpha-methyl-p-tyrosine”, Res. Commun. Mol. Pathol. Pharmacol., vol. 104, no. 3, pp. 331–338.Google Scholar
Harada, N., Nishiyama, S., Ohba, H., Sato, K., Kakiuchi, T., & Tsukada, H. 2002, “Age differences in phosphodiesterase type-IV and its functional response to dopamine D1 receptor modulation in the living brain: a PET study in conscious monkeys”, Synapse, vol. 44, no. 3, pp. 139–145.CrossRefGoogle ScholarPubMed
Harrington, C. A., Lewis, E. J., Krzemien, D., & Chikaraishi, D. M. 1987, “Identification and cell type specificity of the tyrosine hydroxylase gene promoter”, Nucleic Acids Res., vol. 15, no. 5, pp. 2363–2384.CrossRefGoogle ScholarPubMed
Harrington, K. A., Augood, S. J., Kingsbury, A. E., Foster, O. J., & Emson, P. C. 1996, “Dopamine transporter (Dat) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease”, Brain Res. Mol. Brain Res., vol. 36, no. 1, pp. 157–162.CrossRefGoogle ScholarPubMed
Harris, G. C. & Aston-Jones, G. 1994, “Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome”, Nature, vol. 371, no. 6493, pp. 155–157.CrossRefGoogle ScholarPubMed
Hartvig, P., Lindner, K. J., Bjurling, P., Laengstrom, B., & Tedroff, J. 1995, “Pyridoxine effect on synthesis rate of serotonin in the monkey brain measured with positron emission tomography”, J. Neural Transm. Gen. Sect., vol. 102, no. 2, pp. 91–97.CrossRefGoogle ScholarPubMed
Hartvig, P., Tedroff, J., Lindner, K. J., Bjurling, P., Chang, C. W., Tsukada, H., Watanabe, Y., & Langstrom, B. 1993, “Positron emission tomographic studies on aromatic L-amino acid decarboxylase activity in vivo for L-dopa and 5-hydroxy-L-tryptophan in the monkey brain”, J. Neural Transm. Gen. Sect., vol. 94, no. 2, pp. 127–135.CrossRefGoogle ScholarPubMed
Hassoun, W., Cavorsin, M., Ginovart, N., Zimmer, L., Gualda, V., Bonnefoi, F., & Leviel, V. 2003, “PET study of the [11C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow”, Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 1, pp. 141–148.CrossRefGoogle ScholarPubMed
Hassoun, W., Thobois, S., Ginovart, N., Garcia-Larrea, L., Cavorsin, M. L., Guillouet, S., Bonnefoi, F., Costes, N., Lavenne, F., Martin, J. P., Broussolle, E., & Leviel, V. 2005, “Striatal dopamine during sensorial stimulations: a [18F]FDOPA PET study in human and cats”, Neurosci. Lett., vol. 383, no. 1–2, pp. 63–67.CrossRefGoogle Scholar
Hattori, S., Naoi, M., & Nishino, H. 1994, “Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running”, Brain Res. Bull., vol. 35, no. 1, pp. 41–49.CrossRefGoogle ScholarPubMed
Hauptmann, N., Grimsby, J., Shih, J. C., & Cadenas, E. 1996, “The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA”, Arch. Biochem. Biophys., vol. 335, no. 2, pp. 295–304.CrossRefGoogle Scholar
Haycock, J. W. 1987, “Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum”, Brain Res. Bull., vol. 19, no. 6, pp. 619–622.CrossRefGoogle ScholarPubMed
Hedner, T. & Lundborg, P. 1985, “Development of dopamine autoreceptors in the postnatal rat brain”, J. Neural Transm., vol. 62, no. 1–2, pp. 53–63.CrossRefGoogle ScholarPubMed
Heffner, T. G. & Seiden, L. S. 1980, “Synthesis of catecholamines from [3H]tyrosine in brain during the performance of operant behavior”, Brain Res., vol. 183, no. 2, pp. 403–419.CrossRefGoogle Scholar
Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., Lee, K. S., Linnoila, M., & Weinberger, D. R. 2000, “Genotype influences in vivo dopamine transporter availability in human striatum”, Neuropsychopharmacology, vol. 22, no. 2, pp. 133–139.CrossRefGoogle ScholarPubMed
Heinz, A., Siessmeier, T., Wrase, J., Buchholz, H. G., Grunder, G., Kumakura, Y., Cumming, P., Schreckenberger, M., Smolka, M. N., Rosch, F., Mann, K., & Bartenstein, P. 2005, “Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients”, Am. J. Psychiatry, vol. 162, no. 8, pp. 1515–1520.CrossRefGoogle Scholar
Henry, J. P. & Scherman, D. 1989, “Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles”, Biochem.Pharmacol., vol. 38, no. 15, pp. 2395–2404.CrossRefGoogle ScholarPubMed
Hernandez-Lopez, S., Gongora-Alfaro, J. L., Martinez-Fong, D., Rosales, M. G., & Aceves, J. 1994, “Cholinergic stimulation of rostral and caudal substantia nigra pars compacta produces opposite effects on circling behavior and striatal dopamine release measured by brain microdialysis”, Neuroscience, vol. 62, no. 2, pp. 441–447.CrossRefGoogle ScholarPubMed
Herraiz, T. & Chaparro, C. 2005, “Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors”, Biochem. Biophys. Res. Commun., vol. 326, no. 2, pp. 378–386.CrossRefGoogle ScholarPubMed
Herve, D., Trovero, F., Blanc, G., Glowinski, J., & Tassin, J. P. 1992, “Autoradiographic identification of D1 dopamine receptors labelled with [3H]dopamine: distribution, regulation and relationship to coupling”, Neuroscience, vol. 46, no. 3, pp. 687–700.CrossRefGoogle Scholar
Hess, E. J., Battaglia, G., Norman, A. B., Iorio, L. C., & Creese, I. 1986, “Guanine nucleotide regulation of agonist interactions at [3H]SCH23390-labeled D1 dopamine receptors in rat striatum”, Eur. J. Pharmacol., vol. 121, no. 1, pp. 31–38.CrossRefGoogle Scholar
Hietala, J., Syvalahti, E., Vilkman, H., Vuorio, K., Rakkolainen, V., Bergman, J., Haaparanta, M., Solin, O., Kuoppamaki, M., Eronen, E., Ruotsalainen, U., & Salokangas, R. K. 1999, “Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia”, Schizophr. Res., vol. 35, no. 1, pp. 41–50.CrossRefGoogle ScholarPubMed
Hietala, J., West, C., Syvalahti, E., Nagren, K., Lehikoinen, P., Sonninen, P., & Ruotsalainen, U. 1994, “Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence”, Psychopharmacology (Berl), vol. 116, no. 3, pp. 285–290.CrossRefGoogle ScholarPubMed
Hilker, R., Klein, C., Hedrich, K., Ozelius, L. J., Vieregge, P., Herholz, K., Pramstaller, P. P., & Heiss, W. D. 2002, “The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans”, Neurosci. Lett., vol. 323, no. 1, pp. 50–54.CrossRefGoogle Scholar
Hilker, R., Schweitzer, K., Coburger, S., Ghaemi, M., Weisenbach, S., Jacobs, A. H., Rudolf, J., Herholz, K., & Heiss, W. D. 2005, “Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity”, Arch. Neurol., vol. 62, no. 3, pp. 378–382.CrossRefGoogle ScholarPubMed
Hilker, R., Voges, J., Ghaemi, M., Lehrke, R., Rudolf, J., Koulousakis, A., Herholz, K., Wienhard, K., Sturm, V., & Heiss, W. D. 2003, “Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans”, Mov. Disord., vol. 18, no. 1, pp. 41–48.CrossRefGoogle Scholar
Hillefors, M., Euler, M., Hedlund, P. B., & Euler, G. 1999, “Prominent binding of the dopamine D3 agonist [3H]PD 128907 in the caudate-putamen of the adult rat”, Brain Res., vol. 822, no. 1–2, pp. 126–131.CrossRefGoogle ScholarPubMed
Hilton, M. A., Fonda, M. L., & Hilton, F. K. 1998, “The effect of tyrosine-deficient total parenteral nutrition on the synthesis of dihydroxyphenylalanine in neural tissue and the activities of tyrosine and branched-chain aminotransferases”, Metabolism, vol. 47, no. 2, pp. 168–176.CrossRefGoogle ScholarPubMed
Hirvonen, J., Erp, T. G., Huttunen, J., Aalto, S., Nagren, K., Huttunen, M., Lonnqvist, J., Kaprio, J., Cannon, T. D., & Hietala, J. 2006, “Brain dopamine d1 receptors in twins discordant for schizophrenia”, Am. J. Psychiatry, vol. 163, no. 10, pp. 1747–1753.CrossRefGoogle Scholar
Hirvonen, J., Erp, T. G., Huttunen, J., Aalto, S., Nagren, K., Huttunen, M., Lonnqvist, J., Kaprio, J., Hietala, J., & Cannon, T. D. 2005, “Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia”, Arch. Gen. Psychiatry, vol. 62, no. 4, pp. 371–378.CrossRefGoogle Scholar
Holden, J. E., Doudet, D., Endres, C. J., Chan, G. L., Morrison, K. S., Vingerhoets, F. J., Snow, B. J., Pate, B. D., Sossi, V., Buckley, K. R., & Ruth, T. J. 1997, “Graphical analysis of 6-fluoro-L-dopa trapping: effect of inhibition of catechol-O-methyltransferase”, J. Nucl. Med., vol. 38, no. 10, pp. 1568–1574.Google ScholarPubMed
Hollerman, J. R. & Schultz, W. 1998, “Dopamine neurons report an error in the temporal prediction of reward during learning”, Nat. Neurosci., vol. 1, no. 4, pp. 304–309.CrossRefGoogle ScholarPubMed
Holtje, M., Jagow, B., Pahner, I., Lautenschlager, M., Hortnagl, H., Nurnberg, B., Jahn, R., & Ahnert-Hilger, G. 2000, “The neuronal monoamine transporter VMAT2 is regulated by the trimeric GTPase Go(2)”, J. Neurosci., vol. 20, no. 6, pp. 2131–2141.CrossRefGoogle Scholar
Hong, J., Shu-Leong, H., Tao, X., & Lap-Ping, Y. 1998, “Distribution of catechol-O-methyltransferase expression in human central nervous system”, Neuroreport, vol. 9, no. 12, pp. 2861–2864.CrossRefGoogle ScholarPubMed
Hope, B. T., Michael, G. J., Knigge, K. M., & Vincent, S. R. 1991, “Neuronal NADPH diaphorase is a nitric oxide synthase”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 7, pp. 2811–2814.CrossRefGoogle ScholarPubMed
Horie, C., Suzuki, Y., Kiyosawa, M., Mochizuki, M., Wakakura, M., Oda, K., Ishiwata, K., & Ishii, K. 2008, “Decreased dopamine, D.(2) receptor binding in essential blepharospasm”, Acta Neurol. Scand. [Epub ahead of print].Google ScholarPubMed
Horne, M. K., Cheng, C. H., & Wooten, G. F. 1984, “The cerebral metabolism of L-dihydroxyphenylalanine. An autoradiographic and biochemical study”, Pharmacology, vol. 28, no. 1, pp. 12–26.Google ScholarPubMed
Hoshi, H., Kuwabara, H., Leger, G., Cumming, P., Guttman, M., & Gjedde, A. 1993, “6-[18F]fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods”, J. Cereb. Blood Flow Metab., vol. 13, no. 1, pp. 57–69.CrossRefGoogle ScholarPubMed
Hoshiga, M., Hatakeyama, K., Watanabe, M., Shimada, M., & Kagamiyama, H. 1993, “Autoradiographic distribution of [14C]tetrahydrobiopterin and its developmental change in mice”, J. Pharmacol. Exp. Ther., vol. 267, no. 2, pp. 971–978.Google ScholarPubMed
Hosoi, R., Ishikawa, M., Kobayashi, K., Gee, A., Yamaguchi, M., & Inoue, O. 2002, “Effects of rolipram on in vivo dopamine receptor binding”, J. Neural Transm., vol. 109, no. 9, pp. 1139–1149.CrossRefGoogle ScholarPubMed
Hsiao, M. C., Lin, K. J., Liu, C. Y., Tzen, K. Y., & Yen, T. C. 2003, “Dopamine transporter change in drug-naive schizophrenia: an imaging study with 99mTc-TRODAT-1”, Schizophr. Res., vol. 65, no. 1, pp. 39–46.CrossRefGoogle ScholarPubMed
Huang, C. C., Weng, Y. H., Lu, C. S., Chu, N. S., & Yen, T. C. 2003, “Dopamine transporter binding in chronic manganese intoxication”, J. Neurol., vol. 250, no. 11, pp. 1335–1339.CrossRefGoogle ScholarPubMed
Huang, J. T. & Wajda, I. J. 1977, “The influence of 3,4-dihydroxyphenylacetic acid on the accumulation of 5-hydroxyindoleacetic acid in the choroid plexus and kidney cortex slices of rats”, Res. Commun. Chem. Pathol. Pharmacol., vol. 16, no. 4, pp. 649–668.Google ScholarPubMed
Huang, N., Ase, A. R., Hebert, C., Gelder, N. M., & Reader, T. A. 1997, “Effects of chronic neuroleptic treatments on dopamine D1 and D2 receptors: homogenate binding and autoradiographic studies”, Neurochem. Int., vol. 30, no. 3, pp. 277–290.CrossRefGoogle ScholarPubMed
Huang, S. C., Stout, D. B., Yee, R. E., Satyamurthy, N., & Barrio, J. R. 1998, “Distribution volume of radiolabeled large neutral amino acids in brain tissue”, J. Cereb. Blood Flow Metab., vol. 18, no. 12, pp. 1288–1293.CrossRefGoogle ScholarPubMed
Huang, S. C., Yu, D. C., Barrio, J. R., Grafton, S., Melega, W. P., Hoffman, J. M., Satyamurthy, N., Mazziotta, J. C., & Phelps, M. E. 1991, “Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies”, J. Cereb. Blood Flow Metab., vol. 11, no. 6, pp. 898–913.CrossRefGoogle ScholarPubMed
Hunter, L. W., Rorie, D. K., & Tyce, G. M. 1993, “Inhibition of aromatic L-amino acid decarboxylase under physiological conditions: optimization of 3-hydroxybenzylhydrazine concentration to prevent concurrent inhibition of monoamine oxidase”, Biochem. Pharmacol., vol. 45, no. 6, pp. 1363–1366.CrossRefGoogle ScholarPubMed
Hurd, Y. L. & Ungerstedt, U. 1989, “Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum”, Synapse, vol. 3, no. 1, pp. 48–54.CrossRefGoogle Scholar
Hutson, P. H. & Curzon, G. 1986, “Dopamine metabolites in rat cisternal cerebrospinal fluid: major contribution from extrastriatal dopamine neurones”, J. Neurochem., vol. 46, no. 1, pp. 186–190.CrossRefGoogle ScholarPubMed
Huttunen, J., Heinimaa, M., Svirskis, T., Nyman, M., Kajander, J., Forsback, S., Solin, O., Ilonen, T., Korkeila, J., Ristkari, T., McGlashan, T., Salokangas, R. K., & Hietala, J. 2008, “Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia”, Biol. Psychiatry., vol. 63, no. 1, pp. 114–117.CrossRefGoogle ScholarPubMed
Hwang, D. R., Kegeles, L. S., & Laruelle, M. 2000, “(-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors”, Nucl. Med. Biol., vol. 27, no. 6, pp. 533–539.CrossRefGoogle ScholarPubMed
Hwang, W. J., Yao, W. J., Wey, S. P., Shen, L. H., & Ting, G. 2002, “Downregulation of striatal dopamine D2 receptors in advanced Parkinson's disease contributes to the development of motor fluctuation”, Eur. Neurol., vol. 47, no. 2, pp. 113–117.CrossRefGoogle ScholarPubMed
Ichinose, H., Kojima, K., Togari, A., Kato, Y., Parvez, S., Parvez, H., & Nagatsu, T. 1985, “Simple purification of aromatic L-amino acid decarboxylase from human pheochromocytoma using high-performance liquid chromatography”, Anal. Biochem., vol. 150, no. 2, pp. 408–414.CrossRefGoogle ScholarPubMed
Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., et al. 1994, “Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene”, Nat. Genet., vol. 8, no. 3, pp. 236–242.CrossRefGoogle ScholarPubMed
Ikeda, M., Levitt, M., & Udenfriend, S. 1967, “Phenylalanine as substrate and inhibitor of tyrosine hydroxylase”, Arch. Biochem. Biophys., vol. 120, no. 2, pp. 420–427.CrossRefGoogle ScholarPubMed
Ikemoto, K., Kitahama, K., Maeda, T., Tokunaga, Y., Valatx, J. L., De, M. E., & Seif, I. 1997, “Electron-microscopic study of MAOB-containing structures in the nucleus accumbens shell: using MAOA-deficient transgenic mice”, Brain Res., vol. 771, no. 1, pp. 163–166.CrossRefGoogle ScholarPubMed
Imperato, A., Angelucci, L., Casolini, P., Zocchi, A., & Puglisi-Allegra, S. 1992, “Repeated stressful experiences differently affect limbic dopamine release during and following stress”, Brain Res., vol. 577, no. 2, pp. 194–199.CrossRefGoogle ScholarPubMed
Inaji, M., Okauchi, T., Ando, K., Maeda, J., Nagai, Y., Yoshizaki, T., Okano, H., Nariai, T., Ohno, K., Obayashi, S., Higuchi, M., & Suhara, T. 2005a, “Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats”, Brain Res., vol. 1064, no. 1–2, pp. 136–145.CrossRefGoogle ScholarPubMed
Inaji, M., Yoshizaki, T., Okauchi, T., Maeda, J., Nagai, Y., Nariai, T., Ohno, K., Ando, K., Okano, H., Obayashi, S., & Suhara, T. 2005b, “In vivo PET measurements with [11C]PE2I to evaluate fetal mesencephalic transplantations to unilateral 6-OHDA-lesioned rats”, Cell Transplant., vol. 14, no. 9, pp. 655–663.CrossRefGoogle Scholar
Innis, R. B., Marek, K. L., Sheff, K., Zoghbi, S., Castronuovo, J., Feigin, A., & Seibyl, J. P. 1999, “Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT”, Mov. Disord., vol. 14, no. 3, pp. 436–442.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Innis, R. B., Seibyl, J. P., Scanley, B. E., Laruelle, M., Abi-Dargham, A., Wallace, E., Baldwin, R. M., Zea-Ponce, Y., Zoghbi, S., Wang, S., et al. 1993, “Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease”, Proc. Natl. Acad. Sci. USA, vol. 90, no. 24, pp. 11965–11969.CrossRefGoogle ScholarPubMed
Inoue, M., Katsumi, Y., Hayashi, T., Mukai, T., Ishizu, K., Hashikawa, K., Saji, H., & Fukuyama, H. 2004, “Sensory stimulation accelerates dopamine release in the basal ganglia”, Brain Res., vol. 1026, no. 2, pp. 179–184.CrossRefGoogle ScholarPubMed
Inoue, O., Kobayashi, K., Hosoi, R., Yamaguchi, M., & Gee, A. 1999, “Discrepancies in apparent dopamine D2 receptor occupancy between 3H-raclopride and 3H-N-methylspiperone”, J. Neural Transm., vol. 106, no. 11–12, pp. 1099–1104.CrossRefGoogle ScholarPubMed
Inoue, O., Tsukada, H., Yonezawa, H., Suhara, T., & Langstrom, B. 1991, “Reserpine-induced reduction of in vivo binding of SCH 23390 and N-methylspiperone and its reversal by d-amphetamine”, Eur. J. Pharmacol., vol. 197, no. 2–3, pp. 143–149.Google ScholarPubMed
Ishikawa, T., Dhawan, V., Chaly, T., Robeson, W., Belakhlef, A., Mandel, F., Dahl, R., Margouleff, C., & Eidelberg, D. 1996, “Fluorodopa positron emission tomography with an inhibitor of catechol-O-methyltransferase: effect of the plasma 3-O-methyldopa fraction on data analysis”, J. Cereb. Blood Flow Metab., vol. 16, no. 5, pp. 854–863.CrossRefGoogle ScholarPubMed
Ishiwata, K., Kawamura, K., Yanai, K., & Hendrikse, N. H. 2007, “In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically”, J. Nucl. Med., vol. 48, no. 1, pp. 81–87.Google ScholarPubMed
Ito, K., Haga, T., Lameh, J., & Sadee, W. 1999, “Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5”, Eur. J. Biochem., vol. 260, no. 1, pp. 112–119.CrossRefGoogle ScholarPubMed
Iurlo, M., Leone, G., Schilstrom, B., Linner, L., Nomikos, G., Hertel, P., Silvestrini, B., & Svensson, H. 2001, “Effects of harmine on dopamine output and metabolism in rat striatum: role of monoamine oxidase-A inhibition”, Psychopharmacology (Berl), vol. 159, no. 1, pp. 98–104.CrossRefGoogle ScholarPubMed
Iuvone, P. M. 1984, “Calcium, ATP, and magnesium activate soluble tyrosine hydroxylase from rat striatum”, J. Neurochem., vol. 43, no. 5, pp. 1359–1368.CrossRefGoogle ScholarPubMed
Iuvone, P. M., Rauch, A. L., Marshburn, P. B., Glass, D. B., & Neff, N. H. 1982, “Activation of retinal tyrosine hydroxylase in vitro by cyclic AMP-dependent protein kinase: characterization and comparison to activation in vivo by photic stimulation”, J. Neurochem., vol. 39, no. 6, pp. 1632–1640.CrossRefGoogle ScholarPubMed
Jahng, J. W., Houpt, T. A., Wessel, T. C., Chen, K., Shih, J. C., & Joh, T. H. 1997, “Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization”, Synapse, vol. 25, no. 1, pp. 30–36.3.0.CO;2-G>CrossRefGoogle Scholar
Janson, A. M., Hedlund, P. B., Hillefors, M., & Euler, G. 1992, “Chronic nicotine treatment decreases dopamine D2 agonist binding in the rat basal ganglia”, Neuroreport, vol. 3, no. 12, pp. 1117–1120.CrossRefGoogle ScholarPubMed
Javoy, F. & Glowinski, J. 1971, “Dynamic characteristic of the ‘functional compartment’ of dopamine in dopaminergic terminals of the rat striatum”, J. Neurochem., vol. 18, no. 7, pp. 1305–1311.CrossRefGoogle ScholarPubMed
Javoy, F., Sotelo, C., Herbet, A., & Agid, Y. 1976, “Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system”, Brain Res., vol. 102, no. 2, pp. 201–215.CrossRefGoogle ScholarPubMed
Jeffery, D. R. & Roth, J. A. 1984, “Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex”, J. Neurochem., vol. 42, no. 3, pp. 826–832.CrossRefGoogle ScholarPubMed
Jeffery, D. R. & Roth, J. A. 1987, “Kinetic reaction mechanism for magnesium binding to membrane-bound and soluble catechol O-methyltransferase”, Biochemistry, vol. 26, no. 10, pp. 2955–2958.CrossRefGoogle ScholarPubMed
Jensen, S. B., Olsen, A. K., Pedersen, K., & Cumming, P. 2006, “Effect of monoamine oxidase inhibition on amphetamine-evoked changes in dopamine receptor availability in the living pig: a dual tracer PET study with [11C]harmine and [11C]raclopride”, Synapse, vol. 59, no. 7, pp. 427–434.CrossRefGoogle Scholar
Jensen, S. B., Di Santo, R., Olsen, A. K., Pedersen, K., Costi, R., Cirilli, R., & Cumming, P. 2008, “Synthesis and cerebral uptake of 1-(1-[(11C)]methyl-1H-pyrrol-2-yl)-2-phenyl-2-(1-pyrrolidinyl)ethanone, a novel tracer for positron emission tomography studies of monoamine oxidase type A”, J. Med. Chem., vol. 51, no. 6, pp. 1617–1622.CrossRefGoogle Scholar
Johansson, A., Engler, H., Blomquist, G., Scott, B., Wall, A., Aquilonius, S. M., Langstrom, B., & Askmark, H. 2007, “Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET”, J. Neurol. Sci., vol. 255, no. 1–2, pp. 17–22.CrossRefGoogle Scholar
Johnson, E. A., Tsai, C. E., Shahan, Y. H., & Azzaro, A. J. 1993, “Serotonin 5-HT1A receptors mediate inhibition of tyrosine hydroxylation in rat striatum”, J. Pharmacol. Exp. Ther., vol. 266, no. 1, pp. 133–141.Google ScholarPubMed
Johnson, L. A., Furman, C. A., Zhang, M., Guptaroy, B., & Gnegy, M. E. 2005, “Rapid delivery of the dopamine transporter to the plasmalemmal membrane upon amphetamine stimulation”, Neuropharmacology, vol. 49, no. 6, pp. 750–758.CrossRefGoogle ScholarPubMed
Johnson, R. G., Carty, S., & Scarpa, A. 1982, “A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient”, Fed. Proc., vol. 41, no. 11, pp. 2746–2754.Google ScholarPubMed
Johnson, R. G., Carty, S. E., & Scarpa, A. 1981, “Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts”, J. Biol. Chem., vol. 256, no. 11, pp. 5773–5780.Google ScholarPubMed
Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M., & Caron, M. G. 1998a, “Profound neuronal plasticity in response to inactivation of the dopamine transporter”, Proc. Natl. Acad. Sci. USA, vol. 95, no. 7, pp. 4029–4034.CrossRefGoogle ScholarPubMed
Jones, S. R., Gainetdinov, R. R., Wightman, R. M., & Caron, M. G. 1998b, “Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter”, J. Neurosci., vol. 18, no. 6, pp. 1979–1986.CrossRefGoogle ScholarPubMed
Jones, S. R., Garris, P. A., Kilts, C. D., & Wightman, R. M. 1995, “Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat”, J. Neurochem., vol. 64, no. 6, pp. 2581–2589.CrossRefGoogle ScholarPubMed
Jones, S. R., Joseph, J. D., Barak, L. S., Caron, M. G., & Wightman, R. M. 1999, “Dopamine neuronal transport kinetics and effects of amphetamine”, J. Neurochem., vol. 73, no. 6, pp. 2406–2414.CrossRefGoogle ScholarPubMed
Jonsson, E. G., Nothen, M. M., Grunhage, F., Farde, L., Nakashima, Y., Propping, P., & Sedvall, G. C. 1999, “Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers”, Mol. Psychiatry, vol. 4, no. 3, pp. 290–296.CrossRefGoogle ScholarPubMed
Jordan, S., Bankiewicz, K. S., Eberling, J. L., VanBrocklin, H. F., O'Neil, J. P., & Jagust, W. J. 1998, “An in vivo microdialysis study of striatal 6-[18F]fluoro-L-m-tyrosine metabolism”, Neurochem. Res., vol. 23, no. 4, pp. 513–517.CrossRefGoogle Scholar
Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., & Farde, L. 2005, “Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity”, Biol. Psychiatry, vol. 57, no. 3, pp. 229–238.CrossRefGoogle ScholarPubMed
Juorio, A. V. & Yu, P. H. 1985, “Effects of benzene and other organic solvents on the decarboxylation of some brain aromatic-L-amino acids”, Biochem. Pharmacol., vol. 34, no. 9, pp. 1381–1387.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Nagren, K., Hietala, J., Sonninen, P., & Rinne, J. O. 2003, “Extrastriatal dopamine D(2) receptors in Parkinson's disease: a longitudinal study”, J. Neural Transm., vol. 110, no. 6, pp. 591–601.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Nagren, K., & Rinne, J. O. 2004a, “Dopaminergic effects of caffeine in the human striatum and thalamus”, Neuroreport, vol. 15, no. 2, pp. 281–285.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Nagren, K., & Rinne, J. O. 2004b, “Expectation of caffeine induces dopaminergic responses in humans”, Eur. J. Neurosci., vol. 19, no. 8, pp. 2352–2356.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Nagren, K., & Rinne, J. O. 2004c, “Insular dopamine D2 receptors and novelty seeking personality in Parkinson's disease”, Mov. Disord., vol. 19, no. 11, pp. 1348–1351.CrossRefGoogle ScholarPubMed
Kaasinen, V., Kemppainen, N., Nagren, K., Helenius, H., Kurki, T., & Rinne, J. O. 2002a, “Age-related loss of extrastriatal dopamine D(2)-like receptors in women”, J. Neurochem., vol. 81, no. 5, pp. 1005–1010.CrossRefGoogle ScholarPubMed
Kaasinen, V., Nagren, K., Hietala, J., Farde, L., & Rinne, J. O. 2001a, “Sex differences in extrastriatal dopamine D(2)-like receptors in the human brain”, Am. J. Psychiatry, vol. 158, no. 2, pp. 308–311.CrossRefGoogle ScholarPubMed
Kaasinen, V., Nurmi, E., Bergman, J., Eskola, O., Solin, O., Sonninen, P., & Rinne, J. O. 2001b, “Personality traits and brain dopaminergic function in Parkinson's disease”, Proc. Natl. Acad. Sci. USA, vol. 98, no. 23, pp. 13272–13277.CrossRefGoogle ScholarPubMed
Kaasinen, V., Nurmi, E., Bergman, J., Solin, O., Kurki, T., & Rinne, J. O. 2002b, “Personality traits and striatal 6-[18F]fluoro-L-dopa uptake in healthy elderly subjects”, Neurosci. Lett., vol. 332, no. 1, pp. 61–64.CrossRefGoogle ScholarPubMed
Kaasinen, V., Nurmi, E., Bruck, A., Eskola, O., Bergman, J., Solin, O., & Rinne, J. O. 2001c, “Increased frontal [(18)F]fluorodopa uptake in early Parkinson's disease: sex differences in the prefrontal cortex”, Brain, vol. 124 (Pt 6), pp. 1125–1130.CrossRefGoogle ScholarPubMed
Kaasinen, V., Ruottinen, H. M., Nagren, K., Lehikoinen, P., Oikonen, V., & Rinne, J. O. 2000, “Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone”, J. Nucl. Med., vol. 41, no. 1, pp. 65–70.Google Scholar
Kafetzopoulos, E. & Papadopoulos, G. 1983, “Turning behavior after unilateral lesion of the subthalamic nucleus in the rat”, Behav. Brain Res., vol. 8, no. 2, pp. 217–223.CrossRefGoogle ScholarPubMed
Kahlig, K. M., Javitch, J. A., & Galli, A. 2004, “Amphetamine regulation of dopamine transport. Combined measurements of transporter currents and transporter imaging support the endocytosis of an active carrier”, J. Biol. Chem., vol. 279, no. 10, pp. 8966–8975.CrossRefGoogle ScholarPubMed
Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., & Endou, H. 1998, “Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98)”, J. Biol. Chem., vol. 273, no. 37, pp. 23629–23632.CrossRefGoogle Scholar
Kaneda, N., Kobayashi, K., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., & Nagatsu, T. 1987, “Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene”, Biochem. Biophys. Res. Commun., vol. 146, no. 3, pp. 971–975.CrossRefGoogle ScholarPubMed
Kang, S. J., Scott, W. K., Li, Y. J., Hauser, M. A., Walt, J. M., Fujiwara, K., Mayhew, G. M., West, S. G., Vance, J. M., & Martin, E. R. 2006, “Family-based case-control study of MAOA and MAOB polymorphisms in Parkinson disease”, Mov. Disord., vol. 21, no. 12, pp. 2175–2180.CrossRefGoogle ScholarPubMed
Kao, P. F., Tzen, K. Y., Yen, T. C., Lu, C. S., Weng, Y. H., Wey, S. P., & Ting, G. 2001, “The optimal imaging time for [99Tcm]TRODAT-1/SPET in normal subjects and patients with Parkinson's disease”, Nucl. Med. Commun., vol. 22, no. 2, pp. 151–154.CrossRefGoogle ScholarPubMed
Kapatos, G. & Kaufman, S. 1981, “Peripherally administered reduced pterins do enter the brain”, Science, vol. 212, no. 4497, pp. 955–956.CrossRefGoogle Scholar
Kapatos, G. & Zigmond, M. 1977, “Dopamine biosynthesis from L-tyrosine and L-phenylalanine in rat brain synaptosomes: preferential use of newly accumulated precursors”, J. Neurochem., vol. 28, no. 5, pp. 1109–1119.CrossRefGoogle ScholarPubMed
Karhunen, T., Tilgmann, C., Ulmanen, I., & Panula, P. 1995, “Catechol-O-methyltransferase (COMT) in rat brain: immunoelectron microscopic study with an antiserum against rat recombinant COMT protein”, Neurosci. Lett., vol. 187, no. 1, pp. 57–60.CrossRefGoogle ScholarPubMed
Karlsson, P., Farde, L., Halldin, C., & Sedvall, G. 2002, “PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia”, Am. J. Psychiatry, vol. 159, no. 5, pp. 761–767.CrossRefGoogle ScholarPubMed
Karoum, F., Chrapusta, S. J., & Egan, M. F. 1994, “3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model”, J. Neurochem., vol. 63, no. 3, pp. 972–979.CrossRefGoogle ScholarPubMed
Karoum, F., Neff, N. H., & Wyatt, R. J. 1977, “The dynamics of dopamine metabolism in various regions of rat brain”, Eur. J. Pharmacol., vol. 44, no. 4, pp. 311–318.CrossRefGoogle ScholarPubMed
Kashihara, K., Ishihara, T., Akiyama, K., & Abe, K. 1999, “D1/D2 receptor synergism on CREB DNA-binding activities in the caudate-putamen of rat”, Neurol. Res., vol. 21, no. 8, pp. 781–784.CrossRefGoogle ScholarPubMed
Katoh, A., Nabeshima, T., Kuno, A., Wada, M., Ukai, R., & Kameyama, T. 1996, “Changes in striatal dopamine release in stress-induced conditioned suppression of motility in rats”, Behav. Brain Res., vol. 77, no. 1–2, pp. 219–221.CrossRefGoogle ScholarPubMed
Katz, I., Lloyd, T., & Kaufman, S. 1976, “Studies on phenylalanine and tyrosine hydroxylation by rat brain tyrosine hydroxylase”, Biochim. Biophys. Acta, vol. 445, no. 3, pp. 567–578.CrossRefGoogle ScholarPubMed
Kaufman, S. 1987, “Tetrahyrdobiopterin and hydroxylation systems in health and disease,” in Unconjugated Pterins in Neurobiology: Basic and Clinical Aspects, Lovenberg, W. & Levine, R. A., eds., Taylor and Francis, London, pp. 1–28.Google Scholar
Kawasaki, Y., Hayashi, H., Hatakeyama, K., & Kagamiyama, H. 1992, “Evaluation of the holoenzyme content of aromatic L-amino acid decarboxylase in brain and liver tissues”, Biochem. Biophys. Res. Commun., vol. 186, no. 3, pp. 1242–1248.CrossRefGoogle ScholarPubMed
Kebabian, J. W. & Calne, D. B. 1979, “Multiple receptors for dopamine”, Nature, vol. 277, no. 5692, pp. 93–96.CrossRefGoogle ScholarPubMed
Keefe, K. A. & Gerfen, C. R. 1995, “D1-D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression”, Neuroscience, vol. 66, no. 4, pp. 903–913.CrossRefGoogle ScholarPubMed
Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., Heertum, R. L., Cooper, T. B., Carlsson, A., & Laruelle, M. 2000, “Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia”, Biol. Psychiatry, vol. 48, no. 7, pp. 627–640.CrossRefGoogle Scholar
Kegeles, L. S., Martinez, D., Kochan, L. D., Hwang, D. R., Huang, Y., Mawlawi, O., Suckow, R. F., Heertum, R. L., & Laruelle, M. 2002, “NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans”, Synapse, vol. 43, no. 1, pp. 19–29.CrossRefGoogle ScholarPubMed
Kehr, W. 1974, “Temporal changes in catecholamine synthesis of rat forebrain structures after axotomy”, J. Neural Transm., vol. 35, no. 4, pp. 307–317.CrossRefGoogle ScholarPubMed
Kemppainen, N., Laine, M., Laakso, M. P., Kaasinen, V., Nagren, K., Vahlberg, T., Kurki, T., & Rinne, J. O. 2003, “Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer's disease”, Eur. J. Neurosci., vol. 18, no. 1, pp. 149–154.CrossRefGoogle ScholarPubMed
Kemppainen, N., Ruottinen, H., Nagren, K., & Rinne, J. O. 2000, “PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD”, Neurology, vol. 55, no. 2, pp. 205–209.CrossRefGoogle ScholarPubMed
Kessler, R. M., Ansari, M. S., Riccardi, P., Li, R., Jayathilake, K., Dawant, B., & Meltzer, H. Y. 2005, “Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol”, Neuropsychopharmacology, vol. 30, no. 12, pp. 2283–2289.CrossRefGoogle ScholarPubMed
Kestler, L. P., Malhotra, A. K., Finch, C., Adler, C., & Breier, A. 2000, “The relation between dopamine D2 receptor density and personality: preliminary evidence from the NEO personality inventory-revised”, Neuropsychiatry Neuropsychol. Behav. Neurol., vol. 13, no. 1, pp. 48–52.Google ScholarPubMed
Khan, N. L., Brooks, D. J., Pavese, N., Sweeney, M. G., Wood, N. W., Lees, A. J., & Piccini, P. 2002, “Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study”, Brain, vol. 125 (Pt 10), pp. 2248–2256.CrossRefGoogle Scholar
Khan, Z. U., Mrzljak, L., Gutierrez, A., Calle, A., & Goldman-Rakic, P. S. 1998, “Prominence of the dopamine D2 short isoform in dopaminergic pathways”, Proc. Natl. Acad. Sci. USA, vol. 95, no. 13, pp. 7731–7736.CrossRefGoogle ScholarPubMed
Kilbourn, M. & Sherman, P. 1997, “In vivo binding of (+)-alpha-[3H]dihydrotetrabenazine to the vesicular monoamine transporter of rat brain: bolus vs. equilibrium studies”, Eur. J. Pharmacol., vol. 331, no. 2–3, pp. 161–168.CrossRefGoogle ScholarPubMed
Kilbourn, M. R., DaSilva, J. N., Frey, K. A., Koeppe, R. A., & Kuhl, D. E. 1993, “In vivo imaging of vesicular monoamine transporters in human brain using [11C]tetrabenazine and positron emission tomography”, J. Neurochem., vol. 60, no. 6, pp. 2315–2318.CrossRefGoogle Scholar
Kilbourn, M. R., Hockley, B., Lee, L., Hou, C., Goswami, R., Ponde, D. E., Kung, M. P., & Kung, H. F. 2007, “Pharmacokinetics of [(18)F]fluoroalkyl derivatives of dihydrotetrabenazine in rat and monkey brain”, Nucl. Med. Biol., vol. 34, no. 3, pp. 233–237.CrossRefGoogle Scholar
Kilts, C. D., Anderson, C. M., Ely, T. D., & Nishita, J. K. 1987, “Absence of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations”, J. Neurosci., vol. 7, no. 12, pp. 3961–3975.CrossRefGoogle ScholarPubMed
Kim, C. H., Koo, M. S., Cheon, K. A., Ryu, Y. H., Lee, J. D., & Lee, H. S. 2003, “Dopamine transporter density of basal ganglia assessed with [123I]IPT SPET in obsessive-compulsive disorder”, Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 12, pp. 1637–1643.CrossRefGoogle Scholar
Kim, K. S., Lee, M. K., Carroll, J., & Joh, T. H. 1993, “Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element”, J. Biol. Chem., vol. 268, no. 21, pp. 15689–15695.Google ScholarPubMed
Kim, K. S., Tinti, C., Song, B., Cubells, J. F., & Joh, T. H. 1994, “Cyclic AMP-dependent protein kinase regulates basal and cyclic AMP-stimulated but not phorbol ester-stimulated transcription of the tyrosine hydroxylase gene”, J. Neurochem., vol. 63, no. 3, pp. 834–842.CrossRefGoogle Scholar
Kish, S. J., Robitaille, Y., el-Awar, M., Clark, B., Schut, L., Ball, M. J., Young, L. T., Currier, R., & Shannak, K. 1992a, “Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy”, Neurology, vol. 42, no. 8, pp. 1573–1577.CrossRefGoogle ScholarPubMed
Kish, S. J., Shannak, K., Rajput, A., Deck, J. H., & Hornykiewicz, O. 1992b, “Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson's disease”, J. Neurochem., vol. 58, no. 2, pp. 642–648.CrossRefGoogle ScholarPubMed
Kish, S. J., Zhong, X. H., Hornykiewicz, O., & Haycock, J. W. 1995, “Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies?”, Ann. Neurol., vol. 38, no. 2, pp. 260–264.CrossRefGoogle ScholarPubMed
Kishore, A., Nygaard, T. G., Fuente-Fernandez, R., Naini, A. B., Schulzer, M., Mak, E., Ruth, T. J., Calne, D. B., Snow, B. J., & Stoessl, A. J. 1998, “Striatal D2 receptors in symptomatic and asymptomatic carriers of dopa-responsive dystonia measured with [11C]-raclopride and positron-emission tomography”, Neurology, vol. 50, no. 4, pp. 1028–1032.CrossRefGoogle ScholarPubMed
Klebaur, J. E., Bevins, R. A., Segar, T. M., & Bardo, M. T. 2001, “Individual differences in behavioral responses to novelty and amphetamine self-administration in male and female rats”, Behav. Pharmacol., vol. 12, no. 4, pp. 267–275.CrossRefGoogle ScholarPubMed
Klimke, A., Larisch, R., Janz, A., Vosberg, H., Muller-Gartner, H. W., & Gaebel, W. 1999, “Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT”, Psychiatry Res., vol. 90, no. 2, pp. 91–101.CrossRefGoogle Scholar
Klint, T., Hillegaart, V., Edlund, P. O., Wijkstrom, A., & Ahlenius, S. 1988, “Effects of postpuberal castration on dopamine receptor sensitivity in the male rat brain”, Pharmacol. Toxicol., vol. 62, no. 2, pp. 64–68.CrossRefGoogle ScholarPubMed
Knable, M. B., Hyde, T. M., Murray, A. M., Herman, M. M., & Kleinman, J. E. 1996, “A postmortem study of frontal cortical dopamine D1 receptors in schizophrenics, psychiatric controls, and normal controls”, Biol. Psychiatry, vol. 40, no. 12, pp. 1191–1199.CrossRefGoogle ScholarPubMed
Knoll, J., Miklya, I., Knoll, B., Marko, R., & Racz, D. 1996, “Phenylethylamine and tyramine are mixed-acting sympathomimetic amines in the brain”, Life Sci., vol. 58, no. 23, pp. 2101–2114.CrossRefGoogle Scholar
Knoth, J., Peabody, J. O., Huettl, P., & Njus, D. 1984, “Kinetics of tyramine transport and permeation across chromaffin-vesicle membranes”, Biochemistry, vol. 23, no. 9, pp. 2011–2016.CrossRefGoogle ScholarPubMed
Knudsen, G. M., Karlsborg, M., Thomsen, G., Krabbe, K., Regeur, L., Nygaard, T., Videbaek, C., & Werdelin, L. 2004, “Imaging of dopamine transporters and D2 receptors in patients with Parkinson's disease and multiple system atrophy”, Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 12, pp. 1631–1638.CrossRefGoogle ScholarPubMed
Kobayashi, K., Inoue, O., Watanabe, Y., Onoe, H., & Langstrom, B. 1995, “Difference in response of D2 receptor binding between 11C-N-methylspiperone and 11C-raclopride against anesthetics in rhesus monkey brain”, J. Neural Transm. Gen. Sect., vol. 100, no. 2, pp. 147–151.CrossRefGoogle ScholarPubMed
Kochersperger, L. M., Parker, E. L., Siciliano, M., Darlington, G. J., & Denney, R. M. 1986, “Assignment of genes for human monoamine oxidases A and B to the X chromosome”, J. Neurosci. Res., vol. 16, no. 4, pp. 601–616.CrossRefGoogle Scholar
Koe, B. K. & Weissman, A. 1968, “The pharmacology of para-chlorophenylalanine, a selective depletor of serotonin stores”, Adv. Pharmacol., vol. 6 (Pt B, Suppl.), p. 47.Google ScholarPubMed
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J., & Grasby, P. M. 1998, “Evidence for striatal dopamine release during a video game”, Nature, vol. 393, no. 6682, pp. 266–268.CrossRefGoogle ScholarPubMed
Koeppe, R. A., Frey, K. A., Kuhl, D. E., & Kilbourn, M. R. 1999, “Assessment of extrastriatal vesicular monoamine transporter binding site density using stereoisomers of [11C]dihydrotetrabenazine”, J. Cereb. Blood Flow Metab., vol. 19, no. 12, pp. 1376–1384.CrossRefGoogle Scholar
Koeppe, R. A., Frey, K. A., Kume, A., Albin, R., Kilbourn, M. R., & Kuhl, D. E. 1997, “Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-alpha-[11C]dihydrotetrabenazine (DTBZ) and positron emission tomography”, J. Cereb. Blood Flow Metab., vol. 17, no. 9, pp. 919–931.CrossRefGoogle ScholarPubMed
Koeppe, R. A., Frey, K. A., Vander Borght, T. M., Karlamangla, A., Jewett, D. M., Lee, L. C., Kilbourn, M. R., & Kuhl, D. E. 1996, “Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of vesicular monoamine transporter”, J. Cereb. Blood Flow Metab., vol. 16, no. 6, pp. 1288–1299.CrossRefGoogle ScholarPubMed
Koerts, J., Leenders, K. L., Koning, M., Portman, A. T., & Beilen, M. 2007, “Striatal dopaminergic activity (FDOPA-PET) associated with cognitive items of a depression scale (MADRS) in Parkinson's disease”, Eur. J. Neurosci., vol. 25, no. 10, pp. 3132–3136.CrossRefGoogle Scholar
Kohler, C., Hall, H., Ogren, S. O., & Gawell, L. 1985, “Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain”, Biochem. Pharmacol., vol. 34, no. 13, pp. 2251–2259.CrossRefGoogle ScholarPubMed
Koochesfahani, K. M., Fuente-Fernandez, R., Sossi, V., Schulzer, M., Yatham, L. N., Ruth, T. J., Blinder, S., & Stoessl, A. J. 2006, “Oral methylphenidate fails to elicit significant changes in extracellular putaminal dopamine levels in Parkinson's disease patients: positron emission tomographic studies”, Mov. Disord., vol. 21, no. 7, pp. 970–975.CrossRefGoogle ScholarPubMed
Korotkova, T. M., Ponomarenko, A. A., Haas, H. L., & Sergeeva, O. A. 2005, “Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons”, Eur. J. Neurosci., vol. 22, no. 6, pp. 1287–1293.CrossRefGoogle ScholarPubMed
Kortekaas, R., Maguire, R. P., Cremers, T. I., Dijkstra, D., Waarde, A., & Leenders, K. L. 2004, “In vivo binding behavior of dopamine receptor agonist (+)-PD 128907 and implications for the ‘ceiling effect’ in endogenous competition studies with [(11)C]raclopride-a positron emission tomography study in Macaca mulatta”, J. Cereb. Blood Flow Metab., vol. 24, no. 5, pp. 531–535.CrossRefGoogle Scholar
Koshimura, K., Miwa, S., Lee, K., Fujiwara, M., & Watanabe, Y. 1990, “Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin”, J. Neurochem., vol. 54, no. 4, pp. 1391–1397.CrossRefGoogle ScholarPubMed
Koshimura, K., Takagi, Y., Miwa, S., Kido, T., Watanabe, Y., Murakami, Y., Kato, Y., & Masaki, T. 1995, “Characterization of a dopamine-releasing action of 6R-L-erythro-tetrahydrobiopterin: comparison with a 6S-form”, J. Neurochem., vol. 65, no. 2, pp. 827–830.CrossRefGoogle ScholarPubMed
Koulu, M., Pesonen, U., Koskinen, S., Scheinin, H., Virtanen, R., & Scheinin, M. 1993, “Reduced turnover of dopamine and 5-hydroxytryptamine in discrete dopaminergic, noradrenergic and serotonergic rat brain areas after acutely administered medetomidine, a selective alpha 2-adrenoceptor agonist”, Pharmacol. Toxicol., vol. 72, no. 3, pp. 182–187.CrossRefGoogle ScholarPubMed
Krantz, D. E., Peter, D., Liu, Y., & Edwards, R. H. 1997, “Phosphorylation of a vesicular monoamine transporter by casein kinase II”, J. Biol. Chem., vol. 272, no. 10, pp. 6752–6759.CrossRefGoogle ScholarPubMed
Krieger, M., Coge, F., Gros, F., & Thibault, J. 1991, “Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 6, pp. 2161–2165.CrossRefGoogle ScholarPubMed
Kuczenski, R. 1983, “Effects of phospholipases on the kinetic properties of rat striatal membrane-bound tyrosine hydroxylase”, J. Neurochem., vol. 40, no. 3, pp. 821–829.CrossRefGoogle ScholarPubMed
Kuczenski, R., Segal, D. S., & Manley, L. D. 1990, “Apomorphine does not alter amphetamine-induced dopamine release measured in striatal dialysates”, J. Neurochem., vol. 54, no. 5, pp. 1492–1499.CrossRefGoogle Scholar
Kugaya, A., Seneca, N. M., Snyder, P. J., Williams, S. A., Malison, R. T., Baldwin, R. M., Seibyl, J. P., & Innis, R. B. 2003, “Changes in human in vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration”, Neuropsychopharmacology, vol. 28, no. 2, pp. 413–420.CrossRefGoogle ScholarPubMed
Kumakura, Y., Cumming, P., Vernaleken, I., Buchholz, H. G., Siessmeier, T., Bartenstein, P., & Gründer, G. 2007a, “Elevated turnover of [18F]dopamine formed in the basal ganglia of patients with schizophrenia; An [18F]FDOPA/PET study”, J. Neurosci., vol. 25, no. 30, pp. 8080–8087.CrossRefGoogle Scholar
Kumakura, Y., Cumming, P., Vernaleken, I., Buchholz, H. G., Siessmeier, T., Heinz, A., Kienast, T., Bartenstein, P., & Grunder, G. 2007b, “Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study”, J. Neurosci., vol. 27, no. 30, pp. 8080–8087.CrossRefGoogle Scholar
Kumakura, Y., Gjedde, A., Danielsen, E. H., Christensen, S., & Cumming, P. 2006, “Dopamine storage capacity in caudate and putamen of patients with early Parkinson's disease: correlation with asymmetry of motor symptoms”, J. Cereb. Blood Flow Metab., vol. 26, no. 3, pp. 358–370.CrossRefGoogle ScholarPubMed
Kumakura, Y., Vernaleken, I., Grunder, G., Bartenstein, P., Gjedde, A., & Cumming, P. 2005, “PET studies of net blood-brain clearance of FDOPA to human brain: age-dependent decline of [18F]fluorodopamine storage capacity”, J. Cereb. Blood Flow Metab., vol. 25, no. 7, pp. 807–819.CrossRefGoogle Scholar
Kumar, A., Mann, S., Sossi, V., Ruth, T. J., Stoessl, A. J., Schulzer, M., & Lee, C. S. 2003, “[11C]DTBZ-PET correlates of levodopa responses in asymmetric Parkinson's disease”, vol. 126 (Pt 12), pp. 2648–2655.Google ScholarPubMed
Kumlien, E., Bergstrom, M., Lilja, A., Andersson, J., Szekeres, V., Westerberg, C. E., Westerberg, G., Antoni, G., & Langstrom, B. 1995, “Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy”, Epilepsia, vol. 36, no. 7, pp. 712–721.CrossRefGoogle Scholar
Kumlien, E., Hilton-Brown, P., Spannare, B., & Gillberg, P. G. 1992, “In vitro quantitative autoradiography of [3H]-L-deprenyl and [3H]-PK 11195 binding sites in human epileptic hippocampus”, Epilepsia, vol. 33, no. 4, pp. 610–617.CrossRefGoogle Scholar
Kung, M. P., Chumpradit, S., Frederick, D., Garner, S., Burris, K. D., Molinoff, P. B., & Kung, H. F. 1994, “Characterization of binding sites for [125I]R(+)trans-7-OH-PIPAT in rat brain”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 350, no. 6, pp. 611–617.CrossRefGoogle ScholarPubMed
Kung, M. P., Hou, C., Goswami, R., Ponde, D. E., Kilbourn, M. R., & Kung, H. F. 2007, “Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters”, Nucl. Med. Biol., vol. 34, no. 3, pp. 239–246.CrossRefGoogle ScholarPubMed
Kung, M. P., Stevenson, D. A., Plossl, K., Meegalla, S. K., Beckwith, A., Essman, W. D., Mu, M., Lucki, I., & Kung, H. F. 1997, “[99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent”, Eur. J. Nucl. Med., vol. 24, no. 4, pp. 372–380.Google ScholarPubMed
Kuroda, Y., Motohashi, N., Ito, H., Ito, S., Takano, A., Nishikawa, T., & Suhara, T. 2006, “Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression”, J. Affect. Disord., vol. 95, no. 1–3, pp. 35–42.CrossRefGoogle ScholarPubMed
Kuwabara, H., Cumming, P., Yasuhara, Y., Leger, G. C., Guttman, M., Diksic, M., Evans, A. C., & Gjedde, A. 1995, “Regional striatal DOPA transport and decarboxylase activity in Parkinson's disease”, J. Nucl. Med., vol. 36, no. 7, pp. 1226–1231.Google ScholarPubMed
Kwan, S. W., Bergeron, J. M., & Abell, C. W. 1992, “Molecular properties of monoamine oxidases A and B”, Psychopharmacology (Berl), vol. 106 (Suppl. 106), pp. S1–S5.CrossRefGoogle ScholarPubMed
Fougere, C., Krause, J., Krause, K. H., Josef, G. F., Hacker, M., Koch, W., Hahn, K., Tatsch, K., & Dresel, S. 2006, “Value of 99mTc-TRODAT-1 SPECT to predict clinical response to methylphenidate treatment in adults with attention deficit hyperactivity disorder”, Nucl. Med. Commun., vol. 27, no. 9, pp. 733–737.CrossRefGoogle ScholarPubMed
Laakso, A., Bergman, J., Haaparanta, M., Vilkman, H., Solin, O., & Hietala, J. 1998, “[18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects”, Synapse, vol. 28, no. 3, pp. 244–250.3.0.CO;2-A>CrossRefGoogle Scholar
Laakso, A., Bergman, J., Haaparanta, M., Vilkman, H., Solin, O., Syvalahti, E., & Hietala, J. 2001, “Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia”, Schizophr. Res., vol. 52, no. 1–2, pp. 115–120.CrossRefGoogle ScholarPubMed
Laakso, A., Pohjalainen, T., Bergman, J., Kajander, J., Haaparanta, M., Solin, O., Syvalahti, E., & Hietala, J. 2005, “The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects”, Pharmacogenet. Genomics, vol. 15, no. 6, pp. 387–391.CrossRefGoogle ScholarPubMed
Laakso, A., Vilkman, H., Alakare, B., Haaparanta, M., Bergman, J., Solin, O., Peurasaari, J., Rakkolainen, V., Syvalahti, E., & Hietala, J. 2000a, “Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography”, Am. J. Psychiatry, vol. 157, no. 2, pp. 269–271.CrossRefGoogle ScholarPubMed
Laakso, A., Vilkman, H., Bergman, J., Haaparanta, M., Solin, O., Syvalahti, E., Salokangas, R. K., & Hietala, J. 2002, “Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects”, Biol. Psychiatry, vol. 52, no. 7, pp. 759–763.CrossRefGoogle ScholarPubMed
Laakso, A., Vilkman, H., Kajander, J., Bergman, J., Haaparanta, M., Solin, O., & Hietala, J. 2000b, “Prediction of detached personality in healthy subjects by low dopamine transporter binding”, Am. J. Psychiatry, vol. 157, no. 2, pp. 290–292.CrossRefGoogle ScholarPubMed
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., Ilonen, T., Salokangas, R. K., Syvalahti, E., & Hietala, J. 2003, “Personality traits and striatal dopamine synthesis capacity in healthy subjects”, Am. J. Psychiatry, vol. 160, no. 5, pp. 904–910.CrossRefGoogle ScholarPubMed
Laine, T. P., Ahonen, A., Räsänen, P., Pohjalainen, T., Tiihonen, J., & Hietala, J. 2001, “The A1 allele of the D2 dopamine receptor gene is associated with high dopamine transporter density in detoxified alcoholics”, Alcohol Alcohol, vol. 36, no. 3, pp. 262–265.CrossRefGoogle ScholarPubMed
Laine, T. P., Ahonen, A., Räsänen, P., & Tiihonen, J. 1999, “Dopamine transporter availability and depressive symptoms during alcohol withdrawal”, Psychiatry Res., vol. 90, no. 3, pp. 153–157.CrossRefGoogle ScholarPubMed
Lamensdorf, I. & Finberg, J. P. 1997, “Reduced striatal tyrosine hydroxylase activity is not accompanied by change in responsiveness of dopaminergic receptors following chronic treatment with deprenyl”, Neuropharmacology, vol. 36, no. 10, pp. 1455–1461.CrossRefGoogle Scholar
Lammertsma, A. A., Bench, C. J., Price, G. W., Cremer, J. E., Luthra, S. K., Turton, D., Wood, N. D., & Frackowiak, R. S. 1991, “Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography”, J. Cereb. Blood Flow Metab., vol. 11, no. 4, pp. 545–556.CrossRefGoogle ScholarPubMed
Lan, N. C., Heinzmann, C., Gal, A., Klisak, I., Orth, U., Lai, E., Grimsby, J., Sparkes, R. S., Mohandas, T., & Shih, J. C. 1989, “Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease”, Genomics, vol. 4, no. 4, pp. 552–559.CrossRefGoogle Scholar
Landvogt, C., Mengel, E., Bartenstein, P., Buchholz, H. G., Schreckenberger, M., Siessmeier, T., Scheurich, A., Feldmann, R., Weglage, J., Cumming, P., Zepp, F., & Ullrich, K. 2007, “Reduced cerebral fluoro-L-dopamine uptake in adult patients suffering from phenylketonuria”, J. Cereb. Blood Flow Metab., vol. 28, no. 4, pp. 824–831.CrossRefGoogle ScholarPubMed
Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. 1983, “Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis”, Science, vol. 219, no. 4587, pp. 979–980.CrossRefGoogle ScholarPubMed
Larisch, R., Meyer, W., Klimke, A., Kehren, F., Vosberg, H., & Muller-Gartner, H. W. 1998, “Left-right asymmetry of striatal dopamine D2 receptors”, Nucl. Med. Commun., vol. 19, no. 8, pp. 781–787.CrossRefGoogle ScholarPubMed
Laruelle, M. 2000, “Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review”, J. Cereb. Blood Flow Metab., vol. 20, no. 3, pp. 423–451.CrossRefGoogle ScholarPubMed
Laruelle, M., Baldwin, R. M., Malison, R. T., Zea-Ponce, Y., Zoghbi, S. S., al-Tikriti, M. S., Sybirska, E. H., Zimmermann, R. C., Wisniewski, G., Neumeyer, J. L., et al. 1993, “SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates”, Synapse, vol. 13, no. 4, pp. 295–309.CrossRefGoogle Scholar
Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., & Innis, R. 1999, “Increased dopamine transmission in schizophrenia: relationship to illness phases”, Biol.Psychiatry, vol. 46, no. 1, pp. 56–72.CrossRefGoogle ScholarPubMed
Laruelle, M., Abi-Dargham, A., Dyck, C., Gil, R., D'Souza, D. C., Krystal, J., Seibyl, J., Baldwin, R., & Innis, R. 2000, “Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT”, Biol. Psychiatry, vol. 47, no. 5, pp. 371–379.CrossRefGoogle Scholar
Laruelle, M., D'Souza, C. D., Baldwin, R. M., Abi-Dargham, A., Kanes, S. J., Fingado, C. L., Seibyl, J. P., Zoghbi, S. S., Bowers, M. B., Jatlow, P., Charney, D. S., & Innis, R. B. 1997a, “Imaging D2 receptor occupancy by endogenous dopamine in humans”, Neuropsychopharmacology, vol. 17, no. 3, pp. 162–174.CrossRefGoogle ScholarPubMed
Laruelle, M., Gelernter, J., & Innis, R. B. 1998, “D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene”, Mol. Psychiatry, vol. 3, no. 3, pp. 261–265.CrossRefGoogle Scholar
Laruelle, M., Giddings, S. S., Zea-Ponce, Y., Charney, D. S., Neumeyer, J. L., Baldwin, R. M., & Innis, R. B. 1994, “Methyl 3 beta-(4-[125I]iodophenyl)tropane-2 beta-carboxylate in vitro binding to dopamine and serotonin transporters under ‘physiological’ conditions”, J. Neurochem., vol. 62, no. 3, pp. 978–986.CrossRefGoogle ScholarPubMed
Laruelle, M., Iyer, R. N., al-Tikriti, M. S., Zea-Ponce, Y., Malison, R., Zoghbi, S. S., Baldwin, R. M., Kung, H. F., Charney, D. S., Hoffer, P. B., Innis, R. B., & Bradberry, C. W. 1997b, “Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates”, Synapse, vol. 25, no. 1, pp. 1–14.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Laschinski, G., Kittner, B., & Brautigam, M. 1986, “Direct inhibition of tyrosine hydroxylase from PC-12 cells by catechol derivatives”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 332, no. 4, pp. 346–350.CrossRefGoogle ScholarPubMed
Lavalaye, J., Booij, J., Reneman, L., Habraken, J. B., & Royen, E. A. 2000, “Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers”, Eur. J. Nucl. Med., vol. 27, no. 7, pp. 867–869.CrossRefGoogle Scholar
Lavigne, J. A., Helzlsouer, K. J., Huang, H. Y., Strickland, P. T., Bell, D. A., Selmin, O., Watson, M. A., Hoffman, S., Comstock, G. W., & Yager, J. D. 1997, “An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer”, Cancer Res., vol. 57, no. 24, pp. 5493–5497.Google ScholarPubMed
Lazar, M. A., Lockfeld, A. J., Truscott, R. J., & Barchas, J. D. 1982, “Tyrosine hydroxylase from bovine striatum: catalytic properties of the phosphorylated and nonphosphorylated forms of the purified enzyme”, J. Neurochem., vol. 39, no. 2, pp. 409–422.CrossRefGoogle ScholarPubMed
Lazar, M. A., Mefford, I. N., & Barchas, J. D. 1982, “Tyrosine hydroxylase activation. Comparison of in vitro phosphorylation and in vivo administration of haloperidol”, Biochem. Pharmacol., vol. 31, no. 16, pp. 2599–2607.CrossRefGoogle ScholarPubMed
Lazareno, S. & Nahorski, S. R. 1982, “Selective labelling of dopamine (D2) receptors in rat striatum by [3H]domperidone but not by [3H]spiperone”, Eur. J. Pharmacol., vol. 81, no. 2, pp. 273–285.CrossRefGoogle Scholar
Moine, C. & Bloch, B. 1995, “D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum”, J. Comp Neurol., vol. 355, no. 3, pp. 418–426.CrossRefGoogle ScholarPubMed
Moine, C. & Bloch, B. 1996, “Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors”, Neuroscience, vol. 73, no. 1, pp. 131–143.CrossRefGoogle ScholarPubMed
Moine, C., Svenningsson, P., Fredholm, B. B., & Bloch, B. 1997, “Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos expression”, J. Neurosci., vol. 17, no. 20, pp. 8038–8048.CrossRefGoogle ScholarPubMed
Van Thai, A., Coste, E., Allen, J. M., Palmiter, R. D., & Weber, M. J. 1993, “Identification of a neuron-specific promoter of human aromatic L-amino acid decarboxylase gene”, Brain Res. Mol. Brain Res., vol. 17, no. 3–4, pp. 227–238.CrossRefGoogle ScholarPubMed
Lee, C. S., Samii, A., Sossi, V., Ruth, T. J., Schulzer, M., Holden, J. E., Wudel, J., Pal, P. K., Fuente-Fernandez, , Calne, D. B., & Stoessl, A. J. 2000, “In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease”, Ann. Neurol., vol. 47, no. 4, pp. 493–503.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lee, S. P., O'Dowd, B. F., Rajaram, R. D., Nguyen, T., & George, S. R. 2003, “D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4”, Biochemistry, vol. 42, no. 37, pp. 11023–11031.CrossRefGoogle ScholarPubMed
Leger, G., Gjedde, A., Kuwabara, H., Guttman, M., & Cumming, P. 1998, “Effect of catechol-O-methyltransferase inhibition on brain uptake of [18F]fluorodopa: implications for compartmental modelling and clinical usefulness”, Synapse, vol. 30, no. 4, pp. 351–361.3.0.CO;2-2>CrossRefGoogle Scholar
Lehericy, S., Brandel, J. P., Hirsch, E. C., Anglade, P., Villares, J., Scherman, D., Duyckaerts, C., Javoy-Agid, F., & Agid, Y. 1994, “Monoamine vesicular uptake sites in patients with Parkinson's disease and Alzheimer's disease, as measured by tritiated dihydrotetrabenazine autoradiography”, Brain Res., vol. 659, no. 1–2, pp. 1–9.CrossRefGoogle ScholarPubMed
Lenders, J. W., Eisenhofer, G., Abeling, N. G., Berger, W., Murphy, D. L., Konings, C. H., Wagemakers, L. M., Kopin, I. J., Karoum, F., Gennip, A. H., & Brunner, H. G. 1996, “Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes”, J. Clin. Invest, vol. 97, no. 4, pp. 1010–1019.CrossRefGoogle Scholar
Leroux-Nicollet, I. & Costentin, J. 1994, “Comparison of the subregional distributions of the monoamine vesicular transporter and dopamine uptake complex in the rat striatum and changes during aging”, J. Neural Transm. Gen. Sect., vol. 97, no. 2, pp. 93–106.CrossRefGoogle ScholarPubMed
Leroux-Nicollet, I., Darchen, F., Scherman, D., & Costentin, J. 1990, “Postnatal development of the monoamine vesicular transporter in mesencephalic and telencephalic regions of the rat brain: a quantitative autoradiographic study with [3H]dihydrotetrabenazine”, Neurosci. Lett., vol. 117, no. 1–2, pp. 1–7.CrossRefGoogle Scholar
Leslie, C. A. & Bennett, J. P., Jr. 1987, “[3H]spiperone binds selectively to rat striatal D2 dopamine receptors in vivo: a kinetic and pharmacological analysis”, Brain Res., vol. 407, no. 2, pp. 253–262.CrossRefGoogle ScholarPubMed
Leung, T. K., Lai, J. C., & Lim, L. 1981, “The regional distribution of monoamine oxidase activities towards different substrates: effects in rat brain of chronic administration of manganese chloride and of ageing”, J. Neurochem., vol. 36, no. 6, pp. 2037–2043.CrossRefGoogle ScholarPubMed
Levesque, D. & Di Paolo, T. 1993, “Modulation by estradiol and progesterone of the GTP effect on striatal D-2 dopamine receptors”, Biochem. Pharmacol., vol. 45, no. 3, pp. 723–733.CrossRefGoogle ScholarPubMed
Levesque, D., Gagnon, S., & Di Paolo, T. 1989, “Striatal D1 dopamine receptor density fluctuates during the rat estrous cycle”, Neurosci. Lett., vol. 98, no. 3, pp. 345–350.CrossRefGoogle ScholarPubMed
Leviel, V., Gobert, A., & Guibert, B. 1989, “Direct observation of dopamine compartmentation in striatal nerve terminal by ‘in vivo’ measurement of the specific activity of released dopamine”, Brain Res., vol. 499, no. 2, pp. 205–213.CrossRefGoogle ScholarPubMed
Leviel, V. & Guibert, B. 1987, “Involvement of intraterminal dopamine compartments in the amine release in the cat striatum”, Neurosci. Lett., vol. 76, no. 2, pp. 197–202.CrossRefGoogle ScholarPubMed
Levine, J., Martine, T., Feraro, R., Kimhi, R., & Bracha, H. S. 1997, “Medicated chronic schizophrenic patients do not demonstrate left turning asymmetry”, Neuropsychobiology, vol. 36, no. 1, pp. 22–24.CrossRefGoogle Scholar
Levine, R. A., Kuhn, D. M., & Lovenberg, W. 1979, “The regional distribution of hydroxylase cofactor in rat brain”, J. Neurochem., vol. 32, no. 5, pp. 1575–1578.CrossRefGoogle ScholarPubMed
Levitt, P., Pintar, J. E., & Breakefield, X. O. 1982, “Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons”, Proc. Natl. Acad. Sci. USA, vol. 79, no. 20, pp. 6385–6389.CrossRefGoogle ScholarPubMed
Lew, J. Y., Garcia-Espana, A., Lee, K. Y., Carr, K. D., Goldstein, M., Haycock, J. W., & Meller, E. 1999, “Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity”, Mol. Pharmacol., vol. 55, no. 2, pp. 202–209.CrossRefGoogle ScholarPubMed
Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G., & Dagher, A. 2002, “Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men”, Neuropsychopharmacology, vol. 27, no. 6, pp. 1027–1035.CrossRefGoogle Scholar
Leyton, M., Dagher, A., Boileau, I., Casey, K., Baker, G. B., Diksic, M., Gunn, R., Young, S. N., & Benkelfat, C. 2004, “Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: A PET/[11C]raclopride study in healthy men”, Neuropsychopharmacology, vol. 29, no. 2, pp. 427–432.CrossRefGoogle Scholar
Li, P. P., Warsh, J. J., & Godse, D. D. 1984, “Formation and clearance of norepinephrine glycol metabolites in mouse brain”, J. Neurochem., vol. 43, no. 5, pp. 1425–1433.CrossRefGoogle ScholarPubMed
Li, T., Vallada, H., Curtis, D., Arranz, M., Xu, K., Cai, G., Deng, H., Liu, J., Murray, R., Liu, X., & Collier, D. A. 1997, “Catechol-O-methyltransferase Val158Met polymorphism: frequency analysis in Han Chinese subjects and allelic association of the low activity allele with bipolar affective disorder”, Pharmacogenetics, vol. 7, no. 5, pp. 349–353.CrossRefGoogle Scholar
Li, X. M., Juorio, A. V., & Boulton, A. A. 1993, “NSD-1015 alters the gene expression of aromatic L-amino acid decarboxylase in rat PC12 pheochromocytoma cells”, Neurochem. Res., vol. 18, no. 8, pp. 915–919.CrossRefGoogle ScholarPubMed
Li, X. M., Juorio, A. V., Paterson, I. A., Zhu, M. Y., & Boulton, A. A. 1992, “Specific irreversible monoamine oxidase B inhibitors stimulate gene expression of aromatic L-amino acid decarboxylase in PC12 cells”, J. Neurochem., vol. 59, no. 6, pp. 2324–2327.CrossRefGoogle ScholarPubMed
Liang, N. Y. & Rutledge, C. O. 1982, “Evidence for carrier-mediated efflux of dopamine from corpus striatum”, Biochem. Pharmacol., vol. 31, no. 15, pp. 2479–2484.CrossRefGoogle ScholarPubMed
Linazasoro, G., Obeso, J. A., Gómez, J. C., Martínez, M., Antonini, A., & Leenders, K. L. 1999, “Modification of dopamine D2 receptor activity by pergolide in Parkinson's disease: an in vivo study by PET”, Clin Neuropharmacol., vol. 22, no. 5, pp. 277–280.Google Scholar
Lind, N. M., Gjedde, A., Moustgaard, A., Olsen, A. K., Jensen, S. B., Jakobsen, S., Arnfred, S. M., Hansen, A. K., Hemmingsen, R. P., & Cumming, P. 2005, “Behavioral response to novelty correlates with dopamine receptor availability in striatum of Gottingen minipigs”, Behav. Brain Res., vol. 164, no. 2, pp. 172–177.CrossRefGoogle ScholarPubMed
Lindsey, K. P., Wilcox, K. M., Votaw, J. R., Goodman, M. M., Plisson, C., Carroll, F. I., Rice, K. C., & Howell, L. L. 2004, “Effects of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging”, J. Pharmacol. Exp. Ther., vol. 309, no. 3, pp. 959–969.CrossRefGoogle ScholarPubMed
Lindskog, M., Svenningsson, P., Fredholm, B. B., Greengard, P., & Fisone, G. 1999, “Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms”, Neuroscience, vol. 88, no. 4, pp. 1005–1008.CrossRefGoogle ScholarPubMed
Lindstrom, L. H., Gefvert, O., Hagberg, G., Lundberg, T., Bergstrom, M., Hartvig, P., & Langstrom, B. 1999, “Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET”, Biol. Psychiatry, vol. 46, no. 5, pp. 681–688.CrossRefGoogle ScholarPubMed
Lippens, F. J. P., Krogt, J. A., Noach, E. L., & Valkenburg, C. F. M. 1988, “Monitoring the specific activities of dopamine and its metabolites in striatum and olfactory tubercle after intravenous administration of L-[3H]tyrosine: complex relations, indicating more than two compartments”, Neurochem. Int, vol. 12, pp. 203–208.CrossRefGoogle Scholar
Liskowsky, D. R. & Potter, L. T. 1985, “A pre-positron emission tomography study of L-3,4-dihydroxy-[3H]phenylalanine distribution in the rat”, Neurosci. Lett., vol. 53, no. 2, pp. 161–167.CrossRefGoogle Scholar
List, S. J. & Seeman, P. 1981, “Resolution of dopamine and serotonin receptor components of [3H]spiperone binding to rat brain regions”, Proc. Natl. Acad. Sci. USA, vol. 78, no. 4, pp. 2620–2624.CrossRefGoogle Scholar
Liste, I., Rozas, G., Guerra, M. J., & Labandeira-Garcia, J. L. 1995, “Cortical stimulation induces Fos expression in striatal neurons via NMDA glutamate and dopamine receptors”, Brain Res., vol. 700, no. 1–2, pp. 1–12.CrossRefGoogle ScholarPubMed
Little, K. Y., Kirkman, J. A., Carroll, F. I., Clark, T. B., & Duncan, G. E. 1993, “Cocaine use increases [3H]WIN 35428 binding sites in human striatum”, Brain Res., vol. 628, no. 1–2, pp. 17–25.CrossRefGoogle ScholarPubMed
Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G. G., Eisenberg, D., Brecha, N., & Edwards, R. H. 1992, “A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter”, Cell, vol. 70, no. 4, pp. 539–551.CrossRefGoogle ScholarPubMed
Lodge, D. J. & Grace, A. A. 2006, “The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons”, Proc. Natl. Acad. Sci. USA, vol. 103, no. 13, pp. 5167–5172.CrossRefGoogle ScholarPubMed
Logan, J., Fowler, J. S., Dewey, S. L., Volkow, N. D., & Gatley, S. J. 2001, “A consideration of the dopamine D2 receptor monomer-dimer equilibrium and the anomalous binding properties of the dopamine D2 receptor ligand, N-methyl spiperone”, J. Neural Transm., vol. 108, no. 3, pp. 279–286.CrossRefGoogle ScholarPubMed
Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendriem, B., Gatley, S. J., et al. 1990, “Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects”, J. Cereb. Blood Flow Metab., vol. 10, no. 5, pp. 740–747.CrossRefGoogle Scholar
Logan, J., Volkow, N. D., Fowler, J. S., Wang, G. J., Fischman, M. W., Foltin, R. W., Abumrad, N. N., Vitkun, S., Gatley, S. J., Pappas, N., Hitzemann, R., & Shea, C. E. 1997, “Concentration and occupancy of dopamine transporters in cocaine abusers with [11C]cocaine and PET”, Synapse, vol. 27, no. 4, pp. 347–356.3.0.CO;2-C>CrossRefGoogle Scholar
Lokkegaard, A., Werdelin, L. M., Regeur, L., Karlsborg, M., Jensen, S. R., Brodsgaard, E., Madsen, F. F., Lonsdale, M. N., & Friberg, L. 2007, “Dopamine transporter imaging and the effects of deep brain stimulation in patients with Parkinson's disease”, Eur. J. Nucl. Med. Mol. Imaging, vol. 34, no. 4, pp. 508–516.CrossRefGoogle ScholarPubMed
Lopez-Martin, E., Rozas, G., Rodriguez, J., Guerra, M. J., & Labandeira-Garcia, J. L. 1998, “The corticostriatal system mediates the ‘paradoxical’ contraversive rotation but not the striatal hyperexpression of Fos induced by amphetamine early after 6-hydroxydopamine lesion of the nigrostriatal pathway”, Exp. Brain Res., vol. 120, no. 2, pp. 153–163.CrossRefGoogle Scholar
Lorberboym, M., Djaldetti, R., Melamed, E., Sadeh, M., & Lampl, Y. 2004, “123I-FP-CIT SPECT imaging of dopamine transporters in patients with cerebrovascular disease and clinical diagnosis of vascular parkinsonism”, J. Nucl. Med., vol. 45, no. 10, pp. 1688–1693.Google ScholarPubMed
Lorberboym, M., Treves, T. A., Melamed, E., Lampl, Y., Hellmann, M., & Djaldetti, R. 2006, “[123I]-FP/CIT SPECT imaging for distinguishing drug-induced parkinsonism from Parkinson's disease”, Mov. Disord., vol. 21, no. 4, pp. 510–514.CrossRefGoogle ScholarPubMed
Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melen, K., Julkunen, I., & Taskinen, J. 1995, “Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme”, Biochemistry, vol. 34, no. 13, pp. 4202–4210.CrossRefGoogle ScholarPubMed
Lovenberg, W., Barchas, J., Weissbach, H., & Udenfriend, S. 1963, “Characteristics of the inhibition of aromatic L-amino acid decarboxylase by alpha-methylamino acids”, Arch. Biochem. Biophys., vol. 103, pp. 9–14.CrossRefGoogle ScholarPubMed
Lovenberg, W., Weissbach, H., & Udenfriend, S. 1962, “Aromatic L-amino acid decarboxylase”, J. Biol. Chem., vol. 237, pp. 89–93.Google ScholarPubMed
Ludecke, B., Knappskog, P. M., Clayton, P. T., Surtees, R. A., Clelland, J. D., Heales, S. J., Brand, M. P., Bartholome, K., & Flatmark, T. 1996, “Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene”, Hum. Mol. Genet., vol. 5, no. 7, pp. 1023–1028.CrossRefGoogle ScholarPubMed
Ludolph, A. G., Kassubek, J., Schmeck, K., Glaser, C., Wunderlich, A., Buck, A. K., Reske, S. N., Fegert, J. M., & Mottaghy, F. M. 2008, “Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3,4-dihdroxy-6-[18F]fluorophenyl-l-alanine PET study”, Neuroimage., vol. 41, no. 3, pp. 718–727.CrossRefGoogle ScholarPubMed
Lundkvist, C., Halldin, C., Ginovart, N., Swahn, C. G., & Farde, L. 1997, “[18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter”, Nucl. Med. Biol., vol. 24, no. 7, pp. 621–627.CrossRefGoogle ScholarPubMed
Lundquist, P., Blomquist, G., Hartvig, P., Hagberg, G. E., Torstenson, R., Hammarlund-Udenaes, M., & Langstrom, B. 2006, “Validation studies on the 5-hydroxy-L-[beta-11C]-tryptophan/PET method for probing the decarboxylase step in serotonin synthesis”, Synapse, vol. 59, no. 8, pp. 521–531.CrossRefGoogle ScholarPubMed
Lyon, R. A., Titeler, M., Frost, J. J., Whitehouse, P. J., Wong, D. F., Wagner, H. N., Jr., Dannals, R. F., Links, J. M., & Kuhar, M. J. 1986, “3H-3-N-methylspiperone labels D2 dopamine receptors in basal ganglia and S2 serotonin receptors in cerebral cortex”, J. Neurosci., vol. 6, no. 10, pp. 2941–2949.CrossRefGoogle ScholarPubMed
Ma, S. Y., Roytt, M., Collan, Y., & Rinne, J. O. 1999, “Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing”, Neuropathol. Appl. Neurobiol., vol. 25, no. 5, pp. 394–399.CrossRefGoogle ScholarPubMed
Mach, R. H., Ehrenkaufer, R. L., Greenberg, J. H., Shao, L., Morton, T. E., Evora, P. H., Nowak, P. A., Luedtke, R. R., Cohen, D., & Reivich, M. 1995, “PET imaging studies of dopamine D2 receptors: comparison of [18F]N-methylspiperone and the benzamide analogues [18F]MABN and [18F]MBP in baboon brain”, Synapse, vol. 19, no. 3, pp. 177–187.CrossRefGoogle Scholar
Mackay, A. V., Davies, P., Dewar, A. J., & Yates, C. M. 1978, “Regional distribution of enzymes associated with neurotransmission by monoamines, acetylcholine and GABA in the human brain”, J. Neurochem., vol. 30, no. 4, pp. 827–839.CrossRefGoogle ScholarPubMed
MacKenzie, R. G. & Zigmond, M. J. 1984, “High- and low-affinity states of striatal D2 receptors are not affected by 6-hydroxydopamine or chronic haloperidol treatment”, J. Neurochem., vol. 43, no. 5, pp. 1310–1318.CrossRefGoogle ScholarPubMed
MacRae, P. G., Spirduso, W. W., Walters, T. J., Farrar, R. P., & Wilcox, R. E. 1987, “Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats”, Psychopharmacology (Berl), vol. 92, no. 2, pp. 236–240.CrossRefGoogle ScholarPubMed
MacRae, P. G., Spirduso, W. W., & Wilcox, R. E. 1988, “Reaction time and nigrostriatal dopamine function: the effects of age and practice”, Brain Res., vol. 451, no. 1–2, pp. 139–146.CrossRefGoogle ScholarPubMed
Madras, B. K., Fahey, M. A., Bergman, J., Canfield, D. R., & Spealman, R. D. 1989, “Effects of cocaine and related drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen”, J. Pharmacol. Exp. Ther., vol. 251, no. 1, pp. 131–141.Google Scholar
Madras, B. K., Fahey, M. A., Goulet, M., Lin, Z., Bendor, J., Goodrich, C., Meltzer, P. C., Elmaleh, D. R., Livni, E., Bonab, A. A., & Fischman, A. J. 2006, “Dopamine transporter (DAT) inhibitors alleviate specific parkinsonian deficits in monkeys: association with DAT occupancy in vivo”, J. Pharmacol. Exp. Ther., vol. 319, no. 2, pp. 570–585.CrossRefGoogle ScholarPubMed
Madras, B. K., Gracz, L. M., Fahey, M. A., Elmaleh, D., Meltzer, P. C., Liang, A. Y., Stopa, E. G., Babich, J., & Fischman, A. J. 1998, “Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson's diseased brain”, Synapse, vol. 29, no. 2, pp. 116–127.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Maggos, C. E., Tsukada, H., Kakiuchi, T., Nishiyama, S., Myers, J. E., Kreuter, J., Schlussman, S. D., Unterwald, E. M., Ho, A., & Kreek, M. J. 1998, “Sustained withdrawal allows normalization of in vivo [11C]N-methylspiperone dopamine D2 receptor binding after chronic binge cocaine: a positron emission tomography study in rats”, Neuropsychopharmacology, vol. 19, no. 2, pp. 146–153.CrossRefGoogle ScholarPubMed
Major, L. J., Murphy, D. L., Lipper, S., & Gordon, E. 1979, “Effects of clorgyline and pargyline on deaminated metabolites of norepinephrine, dopamine and serotonin in human cerebrospinal fluid”, J. Neurochem., vol. 32, no. 1, pp. 229–231.CrossRefGoogle ScholarPubMed
Malison, R. T., Best, S. E., Dyck, C. H., McCance, E. F., Wallace, E. A., Laruelle, M., Baldwin, R. M., Seibyl, J. P., Price, L. H., Kosten, T. R., & Innis, R. B. 1998a, “Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I] beta-CIT SPECT”, Am. J. Psychiatry, vol. 155, no. 6, pp. 832–834.Google Scholar
Malison, R. T., Best, S. E., Wallace, E. A., McCance, E., Laruelle, M., Zoghbi, S. S., Baldwin, R. M., Seibyl, J. S., Hoffer, P. B., Price, L. H., et al. 1995a, “Euphorigenic doses of cocaine reduce [123I]beta-CIT SPECT measures of dopamine transporter availability in human cocaine addicts”, Psychopharmacology (Berl), vol. 122, no. 4, pp. 358–362.CrossRefGoogle ScholarPubMed
Malison, R. T., McCance, E., Carpenter, L. L., Baldwin, R. M., Seibyl, J. P., Price, L. H., Kosten, T. R., & Innis, R. B. 1998b, “[123I]beta-CIT SPECT imaging of dopamine transporter availability after mazindol administration in human cocaine addicts”, Psychopharmacology (Berl), vol. 137, no. 4, pp. 321–325.CrossRefGoogle ScholarPubMed
Malison, R. T., McDougle, C. J., Dyck, C. H., Scahill, L., Baldwin, R. M., Seibyl, J. P., Price, L. H., Leckman, J. F., & Innis, R. B. 1995b, “[123I]beta-CIT SPECT imaging of striatal dopamine transporter binding in Tourette's disorder”, Am. J. Psychiatry, vol. 152, no. 9, pp. 1359–1361.Google ScholarPubMed
Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., Di Monte, D. A., Macarthur, H., & Andersen, J. K. 2008, “MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology”, PLoS ONE, vol. 3, no. 2, pp. e1616.CrossRefGoogle ScholarPubMed
Mamelak, M., Chiu, S., & Mishra, R. K. 1993, “High- and low-affinity states of dopamine D1 receptors in schizophrenia”, Eur. J. Pharmacol., vol. 233, no. 1, pp. 175–176.CrossRefGoogle Scholar
Mamo, D., Kapur, S., Shammi, C. M., Papatheodorou, G., Mann, S., Therrien, F., & Remington, G. 2004a, “A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone”, Am. J. Psychiatry, vol. 161, no. 5, pp. 818–825.CrossRefGoogle ScholarPubMed
Mamo, D., Remington, G., Nobrega, J., Hussey, D., Chirakal, R., Wilson, A. A., Baker, G., Houle, S., & Kapur, S. 2004b, “Effect of acute antipsychotic administration on dopamine synthesis in rodents and human subjects using 6-[18F]-L-m-tyrosine”, Synapse, vol. 52, no. 2, pp. 153–162.CrossRefGoogle ScholarPubMed
Mann, S. P. & Hill, M. W. 1983, “Activation and inactivation of striatal tyrosine hydroxylase: the effects of pH, ATP and cyclic AMP, S-adenosylmethionine and S-adenosylhomocysteine”, Biochem. Pharmacol., vol. 32, no. 22, pp. 3369–3374.CrossRefGoogle ScholarPubMed
Marek, K., Jennings, D., & Seibyl, J. 2002, “Do dopamine agonists or levodopa modify Parkinson's disease progression?”, Eur. J. Neurol., vol. 9 (Suppl. 3), pp. 15–22.CrossRefGoogle ScholarPubMed
Marshall, J. F., O'Dell, S. J., Navarrete, R., & Rosenstein, A. J. 1990, “Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum”, Neuroscience, vol. 37, no. 1, pp. 11–21.CrossRefGoogle ScholarPubMed
Marshall, V. L., Patterson, J., Hadley, D. M., Grosset, K. A., & Grosset, D. G. 2006, “Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging”, Nucl. Med. Commun., vol. 27, no. 12, pp. 933–937.CrossRefGoogle ScholarPubMed
Martikainen, I. K., Hagelberg, N., Mansikka, H., Hietala, J., Nagren, K., Scheinin, H., & Pertovaara, A. 2005, “Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia”, Neurosci. Lett., vol. 376, no. 3, pp. 149–153.CrossRefGoogle ScholarPubMed
Martin, W. R., Palmer, M. R., Patlak, C. S., & Calne, D. B. 1989, “Nigrostriatal function in humans studied with positron emission tomography”, Ann. Neurol., vol. 26, no. 4, pp. 535–542.CrossRefGoogle ScholarPubMed
Martin, W. R., Wieler, M., Stoessl, A. J., & Schulzer, M. 2008, “Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson's disease”, Ann. Neurol., vol. 63, no. 3, pp. 388–394.CrossRefGoogle ScholarPubMed
Martinez, D., Broft, A., Foltin, R. W., Slifstein, M., Hwang, D. R., Huang, Y., Perez, A., Frankle, W. G., Cooper, T., Kleber, H. D., Fischman, M. W., & Laruelle, M. 2004, “Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior”, Neuropsychopharmacology, vol. 29, no. 6, pp. 1190–1202.CrossRefGoogle ScholarPubMed
Martinez, D., Gelernter, J., Abi-Dargham, A., Dyck, C. H., Kegeles, L., Innis, R. B., & Laruelle, M. 2001, “The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans”, Neuropsychopharmacology, vol. 24, no. 5, pp. 553–560.CrossRefGoogle Scholar
Martinez, D., Gil, R., Slifstein, M., Hwang, D. R., Huang, Y., Perez, A., Kegeles, L., Talbot, P., Evans, S., Krystal, J., Laruelle, M., & Abi-Dargham, A. 2005, “Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum”, Biol. Psychiatry, vol. 58, no. 10, pp. 779–786.CrossRefGoogle ScholarPubMed
Martinez, D., Narendran, R., Foltin, R. W., Slifstein, M., Hwang, D. R., Broft, A., Huang, Y., Cooper, T. B., Fischman, M. W., Kleber, H. D., & Laruelle, M. 2007, “Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine”, Am. J. Psychiatry, vol. 164, no. 4, pp. 622–629.CrossRefGoogle ScholarPubMed
Martinez, D., Slifstein, M., Broft, A., Mawlawi, O., Hwang, D. R., Huang, Y., Cooper, T., Kegeles, L., Zarahn, E., Abi-Dargham, A., Haber, S. N., & Laruelle, M. 2003, “Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum”, J. Cereb. Blood Flow Metab., vol. 23, no. 3, pp. 285–300.CrossRefGoogle ScholarPubMed
Mata, I., Arranz, M. J., Staddon, S., Lopez-Ilundain, J. M., Tabares-Seisdedos, R., & Murray, R. M. 2006, “The high-activity Val allele of the catechol-O-methyltransferase gene predicts greater cognitive deterioration in patients with psychosis”, Psychiatr. Genet., vol. 16, no. 5, pp. 213–216.CrossRefGoogle ScholarPubMed
Mateo, Y., Budygin, E. A., John, C. E., & Jones, S. R. 2004, “Role of serotonin in cocaine effects in mice with reduced dopamine transporter function”, Proc. Natl. Acad. Sci. USA, vol. 101, no. 1, pp. 372–377.CrossRefGoogle ScholarPubMed
Matsumoto, M., Weickert, C. S., Beltaifa, S., Kolachana, B., Chen, J., Hyde, T. M., Herman, M. M., Weinberger, D. R., & Kleinman, J. E. 2003, “Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia”, Neuropsychopharmacology, vol. 28, no. 8, pp. 1521–1530.CrossRefGoogle ScholarPubMed
May, T., Rommelspacher, H., & Pawlik, M. 1991, “[3H]Harman binding experiments. I: A reversible and selective radioligand for monoamine oxidase subtype A in the CNS of the rat”, J. Neurochem., vol. 56, no. 2, pp. 490–499.CrossRefGoogle ScholarPubMed
Maycock, A. L., Aster, S. D., & Patchett, A. A. 1980, “Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine”, Biochemistry, vol. 19, no. 4, pp. 709–718.CrossRefGoogle ScholarPubMed
Mayfield, R. D., Jones, B. A., Miller, H. A., Simosky, J. K., Larson, G. A., & Zahniser, N. R. 1999, “Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamineD1 receptor interaction in rat brain limbic regions but not basal ganglia”, Synapse, vol. 33, no. 4, pp. 274–281.3.0.CO;2-3>CrossRefGoogle Scholar
Mazei-Robison, M. S., Bowton, E., Holy, M., Schmudermaier, M., Freissmuth, M., Sitte, H. H., Galli, A., & Blakely, R. D. 2008, “Anomalous dopamine release associated with a human dopamine transporter coding variant”, J. Neurosci., vol. 28, no. 28, pp. 7040–7046.CrossRefGoogle ScholarPubMed
McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. 1998, “Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35428”, J. Neurosci., vol. 18, no. 20, pp. 8417–8422.CrossRefGoogle Scholar
McCormick, P. N., Kapur, S., Seeman, P., Wilson, A. A. 2008, “Dopamine D2 receptor radiotracers [(11)C](+)-PHNO and [(3)H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo”, Nucl. Med. Biol., vol. 35, no. 1, pp. 11–17.CrossRefGoogle Scholar
McGowan, S., Lawrence, A. D., Sales, T., Quested, D., & Grasby, P. 2004, “Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study”, Arch. Gen. Psychiatry, vol. 61, no. 2, pp. 134–142.CrossRefGoogle ScholarPubMed
McKenna, D. J., Towers, G. H., & Abbott, F. 1984, “Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca”, J. Ethnopharmacol., vol. 10, no. 2, pp. 195–223.CrossRefGoogle ScholarPubMed
McMillen, B. A. & Shore, P. A. 1980, “Role of dopamine storage function in the control of rat striatal tyrosine hydroxylase activity”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 313, no. 1, pp. 39–44.CrossRefGoogle ScholarPubMed
Meek, J. K. & Neff, N. H. 1973, “Biogenic amines and their metabolites as substrates for phenol sulphotransferase (EC 2.8.2.1) of brain and liver”, J. Neurochem., vol. 21, no. 1, pp. 1–9.CrossRefGoogle Scholar
Melamed, E., Hefti, F., & Wurtman, R. J. 1980, “Tyrosine administration increases striatal dopamine release in rats with partial nigrostriatal lesions”, Proc. Natl. Acad. Sci. USA, vol. 77, no. 7, pp. 4305–4309.CrossRefGoogle ScholarPubMed
Melega, W. P., Lacan, G., Desalles, A. A., & Phelps, M. E. 2000, “Long-term methamphetamine-induced decreases of [(11)C]WIN 35,428 binding in striatum are reduced by GDNF: PET studies in the vervet monkey”, Synapse, vol. 35, no. 4, pp. 243–249.3.0.CO;2-N>CrossRefGoogle Scholar
Melega, W. P., Raleigh, M. J., Stout, D. B., DeSalles, A. A., Cherry, S. R., Blurton-Jones, M., Morton, G. G., Huang, S. C., & Phelps, M. E. 1996, “Longitudinal behavioral and 6-[18F]fluoro-L-DOPA-PET assessment in MPTP-hemiparkinsonian monkeys”, Exp. Neurol., vol. 141, no. 2, pp. 318–329.CrossRefGoogle ScholarPubMed
Melis, M. R. & Gale, K. 1984, “Intranigral application of substance P antagonists prevents the haloperidol-induced activation of striatal tyrosine hydroxylase”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 326, no. 1, pp. 83–86.CrossRefGoogle ScholarPubMed
Mellick, G. D., Buchanan, D. D., McCann, S. J., James, K. M., Johnson, A. G., Davis, D. R., Liyou, N., Chan, D., & Couteur, D. G. 1999, “Variations in the monoamine oxidase B (MAOB) gene are associated with Parkinson's disease”, Mov. Disord., vol. 14, no. 2, pp. 219–224.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Menza, M. A., Mark, M. H., Burn, D. J., & Brooks, D. J. 1995, “Personality correlates of [18F]dopa striatal uptake: results of positron-emission tomography in Parkinson's disease”, J. Neuropsychiatry Clin. Neurosci., vol. 7, no. 2, pp. 176–179.Google Scholar
Merickel, A., Rosandich, P., Peter, D., & Edwards, R. H. 1995, “Identification of residues involved in substrate recognition by a vesicular monoamine transporter”, J. Biol. Chem., vol. 270, no. 43, pp. 25798–25804.CrossRefGoogle ScholarPubMed
Meshgin-Azarian, S., Chang, W., Cugier, D. L., Vincent, M. S., & Near, J. A. 1988, “Distribution of [3H]dihydrotetrabenazine binding in bovine striatal subsynaptic fractions: enrichment of higher affinity binding in a synaptic vesicle fraction”, J. Neurochem., vol. 50, no. 3, pp. 824–830.CrossRefGoogle Scholar
Meyer, J. H., Ginovart, N., Boovariwala, A., Sagrati, S., Hussey, D., Garcia, A., Young, T., Praschak-Rieder, N., Wilson, A. A., & Houle, S. 2006a, “Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression”, Arch. Gen. Psychiatry, vol. 63, no. 11, pp. 1209–1216.CrossRefGoogle ScholarPubMed
Meyer, J. H., Kruger, S., Wilson, A. A., Christensen, B. K., Goulding, V. S., Schaffer, A., Minifie, C., Houle, S., Hussey, D., & Kennedy, S. H. 2001, “Lower dopamine transporter binding potential in striatum during depression”, Neuroreport, vol. 12, no. 18, pp. 4121–4125.CrossRefGoogle ScholarPubMed
Meyer, J. H., McNeely, H. E., Sagrati, S., Boovariwala, A., Martin, K., Verhoeff, N. P., Wilson, A. A., & Houle, S. 2006b, “Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study”, Am. J. Psychiatry, vol. 163, no. 9, pp. 1594–1602.CrossRefGoogle ScholarPubMed
Meyer, P., Bohnen, N. I., Minoshima, S., Koeppe, R. A., Wernette, K., Kilbourn, M. R., Kuhl, D. E., Frey, K. A., & Albin, R. L. 1999, “Striatal presynaptic monoaminergic vesicles are not increased in Tourette's syndrome”, Neurology, vol. 53, no. 2, pp. 371–374.CrossRefGoogle Scholar
Meyer-Lindenberg, A., Miletich, R. S., Kohn, P. D., Esposito, G., Carson, R. E., Quarantelli, M., Weinberger, D. R., & Berman, K. F. 2002, “Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia”, Nat. Neurosci., vol. 5, no. 3, pp. 267–271.CrossRefGoogle Scholar
Mignot, E. & Laude, D. 1985, “Study of dopamine turnover by monitoring the decline of dopamine metabolites in rat CSF after alpha-methyl-p-tyrosine”, J. Neurochem., vol. 45, no. 5, pp. 1527–1533.CrossRefGoogle ScholarPubMed
Mignot, E., Laude, D., & Elghozi, J. L. 1984, “Kinetics of drug-induced changes in dopamine and serotonin metabolite concentrations in the CSF of the rat”, J. Neurochem., vol. 42, no. 3, pp. 819–825.CrossRefGoogle ScholarPubMed
Milner, J. D., Irie, K., & Wurtman, R. J. 1986, “Effects of phenylalanine on the release of endogenous dopamine from rat striatal slices”, J. Neurochem., vol. 47, no. 5, pp. 1444–1448.CrossRefGoogle ScholarPubMed
Minuzzi, L., Nomikos, G. G., Wade, M. R., Jensen, S. B., Olsen, A. K., & Cumming, P. 2005, “Interaction between LSD and dopamine D2/3 binding sites in pig brain”, Synapse, vol. 56, no. 4, pp. 198–204.CrossRefGoogle ScholarPubMed
Minuzzi, L., Olsen, A. K., Bender, D., Arnfred, S., Grant, R., Danielsen, E. H., & Cumming, P. 2006, “Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Gottingen minipig: comparison with results in vivo”, Synapse, vol. 59, no. 4, pp. 211–219.CrossRefGoogle ScholarPubMed
Mireylees, S. E., Brammer, N. T., & Buckley, G. A. 1986, “A kinetic study of the in vitro uptake of [3H]dopamine over a wide range of concentrations by rat striatal preparations”, Biochem. Pharmacol., vol. 35, no. 22, pp. 4065–4071.CrossRefGoogle Scholar
Miwa, S., Gillberg, P. G., Bjurling, P., Yumoto, N., Odano, I., Watanabe, Y., & Langstrom, B. 1992, “Assessment of dopamine and its metabolites in the intracellular and extracellular compartments of the rat striatum after peripheral administration of L-[11C]dopa”, Brain Res., vol. 578, no. 1–2, pp. 122–128.CrossRefGoogle Scholar
Miwa, S., Watanabe, Y., & Hayaishi, O. 1985, “6R-L-erythro-5,6,7,8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain”, Arch. Biochem. Biophys., vol. 239, no. 1, pp. 234–241.CrossRefGoogle ScholarPubMed
Miyamoto, J. K., Uezu, E., Jiang, P. J., & Miyamoto, A. T. 1993, “H(+)-ATPase and transport of DOPAC, HVA, and 5-HIAA in monoamine neurons”, Physiol. Behav., vol. 53, no. 1, pp. 65–74.CrossRefGoogle ScholarPubMed
Miyamoto, J. K., Uezu, E., & Terashima, S. 1991, “Active transport pumps of HVA and DOPAC in dopaminergic nerve terminals”, Physiol. Behav., vol. 49, no. 1, pp. 141–147.CrossRefGoogle ScholarPubMed
Miyamoto, J. K., Uezu, E., Yusa, T., & Terashima, S. 1990, “Efflux of 5-HIAA from 5-HT neurons: a membrane potential-dependent process”, Physiol. Behav., vol. 47, no. 4, pp. 767–772.CrossRefGoogle ScholarPubMed
Moghaddam, B. & Bunney, B. S. 1989, “Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine”, J. Neurochem., vol. 53, no. 2, pp. 652–654.CrossRefGoogle ScholarPubMed
Mogi, M., Harada, M., Kiuchi, K., Kojima, K., Kondo, T., Narabayashi, H., Rausch, D., Riederer, P., Jellinger, K., & Nagatsu, T. 1988, “Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain”, J. Neural Transm., vol. 72, no. 1, pp. 77–82.CrossRefGoogle ScholarPubMed
Mollard, P., Seward, E. P., & Nowycky, M. C. 1995, “Activation of nicotinic receptors triggers exocytosis from bovine chromaffin cells in the absence of membrane depolarization”, Proc. Natl. Acad. Sci. USA, vol. 92, no. 7, pp. 3065–3069.CrossRefGoogle ScholarPubMed
Monchi, O., Ko, J. H., & Strafella, A. P. 2006, “Striatal dopamine release during performance of executive functions: A [(11)C]raclopride PET study”, Neuroimage, vol. 33, no. 3, pp. 907–912.CrossRefGoogle Scholar
Montague, D. M., Lawler, C. P., Mailman, R. B., & Gilmore, J. H. 1999, “Developmental regulation of the dopamine D1 receptor in human caudate and putamen”, Neuropsychopharmacology, vol. 21, no. 5, pp. 641–649.CrossRefGoogle ScholarPubMed
Montgomery, A. J., Asselin, M. C., Farde, L., & Grasby, P. M. 2007a, “Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET”, J. Cereb. Blood Flow Metab., vol. 27, no. 2, pp. 369–377.CrossRefGoogle Scholar
Montgomery, A. J., Lingford-Hughes, A. R., Egerton, A., Nutt, D. J., & Grasby, P. M. 2007b, “The effect of nicotine on striatal dopamine release in man: a [11C]raclopride PET study”, Synapse, vol. 61, no. 8, pp. 637–645.CrossRefGoogle Scholar
Montgomery, A. J., Mehta, M. A., & Grasby, P. M. 2006, “Is psychological stress in man associated with increased striatal dopamine levels? A [11C]raclopride PET study”, Synapse, vol. 60, no. 2, pp. 124–131.CrossRefGoogle Scholar
Montgomery, A. J., Stokes, P., Kitamura, Y., & Grasby, P. M. 2007, “Extrastriatal D(2) and striatal D(2) receptors in depressive illness: Pilot PET studies using [(11)C]FLB 457 and [(11)C]raclopride”, J. Affect. Disord., vol. 101, no. 1–3, pp. 113–122.CrossRefGoogle Scholar
Morgan, M. E., Yamamoto, B. K., & Freed, C. R. 1984, “Unilateral activation of caudate tyrosine hydroxylase during voluntary circling behavior”, J. Neurochem., vol. 43, no. 3, pp. 737–741.CrossRefGoogle ScholarPubMed
Moriyama, Y., Amakatsu, K., & Futai, M. 1993, “Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter”, Arch. Biochem. Biophys., vol. 305, no. 2, pp. 271–277.CrossRefGoogle ScholarPubMed
Moron, J. A., Brockington, A., Wise, R. A., Rocha, B. A., & Hope, B. T. 2002, “Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines”, J. Neurosci., vol. 22, no. 2, pp. 389–395.CrossRefGoogle ScholarPubMed
Morris, E. D., Babich, J. W., Alpert, N. M., Bonab, A. A., Livni, E., Weise, S., Hsu, H., Christian, B. T., Madras, B. K., & Fischman, A. J. 1996, “Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT”, Synapse, vol. 24, no. 3, pp. 262–272.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Morris, E. D., Chefer, S. I., Lane, M. A., Muzic, R. F., Jr., Wong, D. F., Dannals, R. F., Matochik, J. A., Bonab, A. A., Villemagne, V. L., Grant, S. J., Ingram, D. K., Roth, G. S., & London, E. D. 1999, “Loss of D2 receptor binding with age in rhesus monkeys: importance of correction for differences in striatal size”, J. Cereb. Blood Flow Metab., vol. 19, no. 2, pp. 218–229.CrossRefGoogle ScholarPubMed
Morris, E. D., & Yoder, K. K. 2007, “Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics”, J. Cereb. Blood Flow Metab., vol. 27, no. 3, pp. 606–617.CrossRefGoogle ScholarPubMed
Morrish, P. K., Sawle, G. V., & Brooks, D. J. 1995, “Clinical and [18F] dopa PET findings in early Parkinson's disease”, J. Neurol. Neurosurg. Psychiatry, vol. 59, no. 6, pp. 597–600.CrossRefGoogle ScholarPubMed
Morrish, P. K., Sawle, G. V., & Brooks, D. J. 1996, “An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease”, Brain, vol. 119 (Pt 2), pp. 585–591.CrossRefGoogle ScholarPubMed
Moser, T. & Neher, E. 1997, “Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells”, Proc. Natl. Acad. Sci. USA, vol. 94, no. 13, pp. 6735–6740.CrossRefGoogle ScholarPubMed
Mozley, P. D., Acton, P. D., Barraclough, E. D., Plossl, K., Gur, R. C., Alavi, A., Mathur, A., Saffer, J., & Kung, H. F. 1999, “Effects of age on dopamine transporters in healthy humans”, J. Nucl. Med., vol. 40, no. 11, pp. 1812–1817.Google ScholarPubMed
Mueller, R. A., Thoenen, H., & Axelrod, J. 1969, “Adrenal tyrosine hydroxylase: compensatory increase in activity after chemical sympathectomy”, Science, vol. 163, no. 866, pp. 468–469.CrossRefGoogle ScholarPubMed
Mukherjee, J., Yang, Z. Y., Lew, R., Brown, T., Kronmal, S., Cooper, M. D., & Seiden, L. S. 1997, “Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography”, Synapse, vol. 27, no. 1, pp. 1–13.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Munro, C. A., McCaul, M. E., Wong, D. F., Oswald, L. M., Zhou, Y., Brasic, J., Kuwabara, H., Kumar, A., Alexander, M., Ye, W., & Wand, G. S. 2006, “Sex differences in striatal dopamine release in healthy adults”, Biol. Psychiatry, vol. 59, no. 10, pp. 966–974.CrossRefGoogle ScholarPubMed
Nagai, Y., Obayashi, S., Ando, K., Inaji, M., Maeda, J., Okauchi, T., Ito, H., & Suhara, T. 2007, “Progressive changes of pre- and post-synaptic dopaminergic biomarkers in conscious MPTP-treated cynomolgus monkeys measured by positron emission tomography”, Synapse, vol. 61, no. 10, pp. 809–819.CrossRefGoogle ScholarPubMed
Nagatsu, I., Sakai, M., Takeuchi, T., Arai, R., Karasawa, N., Yamada, K., & Nagatsu, T. 1997, “Tyrosine hydroxylase (TH)-only-immunoreactive non-catecholaminergic neurons in the brain of wild mice or the human TH transgenic mice do not contain GTP cyclohydrolase I”, Neurosci. Lett., vol. 228, no. 1, pp. 55–57.CrossRefGoogle Scholar
Nakahara, D., Hashiguti, H., Kaneda, N., Sasaoka, T., & Nagatsu, T. 1993, “Normalization of tyrosine hydroxylase activity in vivo in the striatum of transgenic mice carrying human tyrosine hydroxylase gene: a microdialysis study”, Neurosci. Lett., vol. 158, no. 1, pp. 44–46.CrossRefGoogle ScholarPubMed
Nakashima, A., Mori, K., Suzuki, T., Kurita, H., Otani, M., Nagatsu, T., & Ota, A. 1999, “Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme”, J. Neurochem., vol. 72, no. 5, pp. 2145–2153.CrossRefGoogle ScholarPubMed
Narendran, R., Hwang, D. R., Slifstein, M., Hwang, Y., Huang, Y., Ekelund, J., Guillin, O., Scher, E., Martinez, D., & Laruelle, M. 2005, “Measurement of the proportion of D2 receptors configured in state of high affinity for agonists in vivo: a positron emission tomography study using [11C]N-propyl-norapomorphine and [11C]raclopride in baboons”, J. Pharmacol. Exp. Ther., vol. 315, no. 1, pp. 80–90.CrossRefGoogle Scholar
Narendran, R., Hwang, D. R., Slifstein, M., Talbot, P. S., Erritzoe, D., Huang, Y., Cooper, T. B., Martinez, D., Kegeles, L. S., Abi-Dargham, A., & Laruelle, M. 2004, “In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (-)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride”, Synapse, vol. 52, no. 3, pp. 188–208.CrossRefGoogle ScholarPubMed
Narendran, R., Slifstein, M., Guillin, O., Hwang, Y., Hwang, D. R., Scher, E., Reeder, S., Rabiner, E., & Laruelle, M. 2006, “Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo”, Synapse, vol. 60, no. 7, pp. 485–495.CrossRefGoogle ScholarPubMed
Naudon, L., Dourmap, N., Leroux-Nicollet, I., & Costentin, J. 1992, “Kainic acid lesion of the striatum increases dopamine release but reduces 3-methoxytyramine level”, Brain Res., vol. 572, no. 1–2, pp. 247–249.CrossRefGoogle ScholarPubMed
Naumann, M., Pirker, W., Reiners, K., Lange, K. W., Becker, G., & Brucke, T. 1998, “Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study using [123I] epidepride and [123I] beta-CIT”, Mov. Disord., vol. 13, no. 2, pp. 319–323.CrossRefGoogle Scholar
Near, J. A. 1986, “[3H]Dihydrotetrabenazine binding to bovine striatal synaptic vesicles”, Mol. Pharmacol., vol. 30, no. 3, pp. 252–257.Google ScholarPubMed
Near, J. A., & Mahler, H. R. 1983, “Reserpine labels the catecholamine transporter in synaptic vesicles from bovine caudate nucleus”, FEBS Lett., vol. 158, no. 1, pp. 31–35.CrossRefGoogle ScholarPubMed
Neff, N. H. & Tozer, T. N. 1968, “In vivo measurement of brain serotonin turnover”, Adv. Pharmacol., vol. 6 (Pt A), pp. 97–109.CrossRefGoogle ScholarPubMed
Nelson, T. J. & Kaufman, S. 1987, “Activation of rat caudate tyrosine hydroxylase phosphatase by tetrahydropterins”, J. Biol. Chem., vol. 262, no. 34, pp. 16470–16475.Google ScholarPubMed
Neve, K. A., Altar, C. A., Wong, C. A., & Marshall, J. F. 1984, “Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: plasticity of neostriatal dopamine receptors after nigrostriatal injury”, Brain Res., vol. 302, no. 1, pp. 9–18.CrossRefGoogle ScholarPubMed
Neve, K. A. & Neve, R. L. 1997, “Molecular biology of dopamine receptors,” in The Dopamine Receptors, Neve, K. A. & Neve, R. L., eds., Humana Press, Totawa, NJ.CrossRefGoogle Scholar
Newberg, A., Amsterdam, J., & Shults, J. 2007, “Dopamine transporter density may be associated with the depressed affect in healthy subjects”, Nucl. Med. Commun., vol. 28, no. 1, pp. 3–6.CrossRefGoogle ScholarPubMed
Newberg, A., Lerman, C., Wintering, N., Ploessl, K., & Mozley, P. D. 2007, “Dopamine transporter binding in smokers and nonsmokers”, Clin. Nucl. Med., vol. 32, no. 6, pp. 452–455.CrossRefGoogle ScholarPubMed
Newton, A. P. & Justice, J. B., Jr. 1994, “Temporal response of microdialysis probes to local perfusion of dopamine and cocaine followed with one-minute sampling”, Anal. Chem., vol. 66, no. 9, pp. 1468–1472.CrossRefGoogle ScholarPubMed
Ng, G. Y., O'Dowd, B. F., Lee, S. P., Chung, H. T., Brann, M. R., Seeman, P., & George, S. R. 1996, “Dopamine D2 receptor dimers and receptor-blocking peptides”, Biochem. Biophys. Res. Commun., vol. 227, no. 1, pp. 200–204.CrossRefGoogle ScholarPubMed
Ng, G. Y., Trogadis, J., Stevens, J., Bouvier, M., O'Dowd, B. F., & George, S. R. 1995, “Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization”, Proc. Natl. Acad. Sci. USA, vol. 92, no. 22, pp. 10157–10161.CrossRefGoogle ScholarPubMed
Niddam, R., Arbilla, S., Scatton, B., Dennis, T., & Langer, S. Z. 1985, “Amphetamine induced release of endogenous dopamine in vitro is not reduced following pretreatment with reserpine”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 329, no. 2, pp. 123–127.CrossRefGoogle Scholar
Nimura, T., Yamaguchi, K., Ando, T., Shibuya, S., Oikawa, T., Nakagawa, A., Shirane, R., Itoh, M., & Tominaga, T. 2005, “Attenuation of fluctuating striatal synaptic dopamine levels in patients with Parkinson disease in response to subthalamic nucleus stimulation: a positron emission tomography study”, J. Neurosurg, vol. 103, no. 6, pp. 968–973.CrossRefGoogle ScholarPubMed
Nishino, J., Suzuki, H., Sugiyama, D., Kitazawa, T., Ito, K., Hanano, M., & Sugiyama, Y. 1999, “Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein”, J. Pharmacol. Exp. Ther., vol. 290, no. 1, pp. 289–294.Google ScholarPubMed
Nissbrandt, H. & Carlsson, A. 1987, “Turnover of dopamine and dopamine metabolites in rat brain: comparison between striatum and substantia nigra”, J. Neurochem., vol. 49, no. 3, pp. 959–967.CrossRefGoogle ScholarPubMed
Nissbrandt, H., Engberg, G., Wikstrom, H., Magnusson, T., & Carlsson, A. 1988, “NSD 1034: an amino acid decarboxylase inhibitor with a stimulatory action on dopamine synthesis not mediated by classical dopamine receptors”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 338, no. 2, pp. 148–161.CrossRefGoogle Scholar
Nissbrandt, H., Pileblad, E., & Carlsson, A. 1985, “Evidence for dopamine release and metabolism beyond the control of nerve impulses and dopamine receptors in rat substantia nigra”, J. Pharm. Pharmacol., vol. 37, no. 12, pp. 884–889.CrossRefGoogle ScholarPubMed
Nissbrandt, H., Sundstrom, E., Jonsson, G., Hjorth, S., & Carlsson, A. 1989, “Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum”, J. Neurochem., vol. 52, no. 4, pp. 1170–1182.CrossRefGoogle ScholarPubMed
Nobrega, J. N. & Seeman, P. 1994, “Dopamine D2 receptors mapped in rat brain with [3H](+)PHNO”, Synapse, vol. 17, no. 3, pp. 167–172.CrossRefGoogle ScholarPubMed
Nordstrom, A. L., Farde, L., Eriksson, L., & Halldin, C. 1995, “No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone”, Psychiatry Res., vol. 61, no. 2, pp. 67–83.CrossRefGoogle Scholar
Nurmi, E., Ruottinen, H. M., Bergman, J., Haaparanta, M., Solin, O., Sonninen, P., & Rinne, J. O. 2001, “Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study”, Mov. Disord., vol. 16, no. 4, pp. 608–615.CrossRefGoogle ScholarPubMed
Nurmi, E., Bergman, J., Eskola, O., Solin, O., Vahlberg, T., Sonninen, P., & Rinne, J. O. 2003, “Progression of dopaminergic hypofunction in striatal subregions in Parkinson's disease using [18F]CFT PET”, Synapse., vol. 48, no. 3, pp. 109–115.CrossRefGoogle Scholar
Nuutila, J., Kaakkola, S., & Mannisto, P. T. 1987, “Potentiation of central effects of L-dopa by an inhibitor of catechol-O-methyltransferase”, J. Neural Transm., vol. 70, no. 3–4, pp. 233–240.CrossRefGoogle ScholarPubMed
Nygaard, T. G. 1995, “Dopa-responsive dystonia”, Curr. Opin. Neurol., vol. 8, no. 4, pp. 310–313.CrossRefGoogle ScholarPubMed
Oberhauser, A. F., Robinson, I. M., & Fernandez, J. M. 1996, “Simultaneous capacitance and amperometric measurements of exocytosis: a comparison”, Biophys. J., vol. 71, no. 2, pp. 1131–1139.CrossRefGoogle ScholarPubMed
O'Brien, J. T., Colloby, S., Fenwick, J., Williams, E. D., Firbank, M., Burn, D., Aarsland, D., & McKeith, I. G. 2004, “Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies”, Arch. Neurol., vol. 61, no. 6, pp. 919–925.CrossRefGoogle ScholarPubMed
O'Donnell, P. & Grace, A. A. 1993, “Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens”, J. Neurosci., vol. 13, no. 8, pp. 3456–3471.CrossRefGoogle ScholarPubMed
Oh, J. D., Chartisathian, K., Ahmed, S. M., & Chase, T. N. 2003, “Cyclic AMP responsive element binding protein phosphorylation and persistent expression of levodopa-induced response alterations in unilateral nigrostriatal 6-OHDA lesioned rats”, J. Neurosci. Res., vol. 72, no. 6, pp. 768–780.CrossRefGoogle ScholarPubMed
Ohnishi, T., Hayashi, T., Okabe, S., Nonaka, I., Matsuda, H., Iida, H., Imabayashi, E., Watabe, H., Miyake, Y., Ogawa, M., Teramoto, N., Ohta, Y., Ejima, N., Sawada, T., & Ugawa, Y. 2004, “Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C]raclopride positron emission tomography study in anesthetized macaque monkeys”, Biol. Psychiatry, vol. 55, no. 5, pp. 484–489.CrossRefGoogle Scholar
Ohtsuki, S. 2004, “New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system”, Biol. Pharm. Bull., vol. 27, no. 10, pp. 1489–1496.CrossRefGoogle ScholarPubMed
Oiwa, Y., Eberling, J. L., Nagy, D., Pivirotto, P., Emborg, M. E., & Bankiewicz, K. S. 2003, “Overlesioned hemiparkinsonian non human primate model: correlation between clinical, neurochemical and histochemical changes”, Front Biosci., vol. 8, pp. a155–a166.Google ScholarPubMed
Oka, K., Ashiba, G., Sugimoto, T., Matsuura, S., & Nagatsu, T. 1982, “Kinetic properties of tyrosine hydroxylase purified from bovine adrenal medulla and bovine caudate nucleus”, Biochim. Biophys. Acta, vol. 706, no. 2, pp. 188–196.CrossRefGoogle ScholarPubMed
Okauchi, T., Suhara, T., Maeda, J., Kawabe, K., Obayashi, S., & Suzuki, K. 2001, “Effect of endogenous dopamine on endogenous dopamine on extrastriated [(11)C]FLB 457 binding measured by PET”, Synapse, vol. 41, no. 2, pp. 87–95.CrossRefGoogle Scholar
Okuno, S. & Fujisawa, H. 1985, “A new mechanism for regulation of tyrosine 3-monooxygenase by end product and cyclic AMP-dependent protein kinase”, J. Biol. Chem., vol. 260, no. 5, pp. 2633–2635.Google ScholarPubMed
Olanow, C. W. 2006, “Rationale for considering that propargylamines might be neuroprotective in Parkinson's disease”, Neurology, vol. 66, no. 10 (Suppl. 4), pp. S69–S79.CrossRefGoogle ScholarPubMed
Oldendorf, W. H. & Szabo, J. 1976, “Amino acid assignment to one of three blood-brain barrier amino acid carriers”, Am. J. Physiol, vol. 230, no. 1, pp. 94–98.Google ScholarPubMed
Olsson, H., Halldin, C., & Farde, L. 2004, “Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET”, Neuroimage, vol. 22, no. 2, pp. 794–803.CrossRefGoogle ScholarPubMed
Olsson, H., Halldin, C., Swahn, C. G., & Farde, L. 1999, “Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain”, J. Cereb. Blood Flow Metab., vol. 19, no. 10, pp. 1164–1173.CrossRefGoogle Scholar
Oswald, L. M., Wong, D. F., McCaul, M., Zhou, Y., Kuwabara, H., Choi, L., Brasic, J., & Wand, G. S. 2005, “Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine”, Neuropsychopharmacology, vol. 30, no. 4, pp. 821–832.CrossRefGoogle ScholarPubMed
Oswald, L. M., Wong, D. F., Zhou, Y., Kumar, A., Brasic, J., Alexander, M., Ye, W., Kuwabara, H., Hilton, J., & Wand, G. S. 2007, “Impulsivity and chronic stress are associated with amphetamine-induced striatal dopamine release”, Neuroimage, vol. 36, no. 1, pp. 153–166.CrossRefGoogle ScholarPubMed
Otsuka, M., Ichiya, Y., Kuwabara, Y., Hosokawa, S., Sasaki, M., Fukumura, T., Masuda, K., Goto, I., & Kato, M. 1993, “Cerebral glucose metabolism and striatal 18F-dopa uptake by PET in cases of chorea with or without dementia”, J. Neurol. Sci., vol. 115, no. 2, pp. 153–157.CrossRefGoogle ScholarPubMed
Ouchi, Y., Yoshikawa, E., Futatsubashi, M., Okada, H., Torizuka, T., & Sakamoto, M. 2002, “Effect of simple motor performance on regional dopamine release in the striatum in Parkinson disease patients and healthy subjects: a positron emission tomography study”, J. Cereb. Blood Flow Metab., vol. 22, no. 6, pp. 746–752.CrossRefGoogle ScholarPubMed
Ouchi, Y., Yoshikawa, E., Okada, H., Futatsubashi, M., Sekine, Y., Iyo, M., & Sakamoto, M. 1999, “Alterations in binding site density of dopamine transporter in the striatum, orbitofrontal cortex, and amygdala in early Parkinson's disease: compartment analysis for beta-CFT binding with positron emission tomography”, Ann. Neurol., vol. 45, no. 5, pp. 601–610.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Pardridge, W. M. & Oldendorf, W. H. 1977, “Transport of metabolic substrates through the blood-brain barrier”, J. Neurochem., vol. 28, no. 1, pp. 5–12.CrossRefGoogle ScholarPubMed
,Parkinson Study Group, 2002, “Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression”, JAMA, vol. 287, no. 13, pp. 1653–1661.CrossRefGoogle Scholar
Parsey, R. V., Oquendo, M. A., Zea-Ponce, Y., Rodenhiser, J., Kegeles, L. S., Pratap, M., Cooper, T. B., Van, H. R., Mann, J. J., & Laruelle, M. 2001, “Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression”, Biol. Psychiatry, vol. 50, no. 5, pp. 313–322.CrossRefGoogle ScholarPubMed
Parsons, L. H. & Justice, J. B., Jr. 1992, “Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis”, J. Neurochem., vol. 58, no. 1, pp. 212–218.CrossRefGoogle ScholarPubMed
Parsons, L. H., Smith, A. D., & Justice, J. B., Jr. 1991, “The in vivo microdialysis recovery of dopamine is altered independently of basal level by 6-hydroxydopamine lesions to the nucleus accumbens”, J. Neurosci. Methods, vol. 40, no. 2–3, pp. 139–147.CrossRefGoogle ScholarPubMed
Parsons, T. D., Coorssen, J. R., Horstmann, H., & Almers, W. 1995, “Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells”, Neuron, vol. 15, no. 5, pp. 1085–1096.CrossRefGoogle ScholarPubMed
Parvizi, N. & Wuttke, W. 1983, “Catecholestrogens affect catecholamine turnover rates in the anterior part of the mediobasal hypothalamus and medial preoptic area in the male and female castrated rat”, Neuroendocrinology, vol. 36, no. 1, pp. 21–26.CrossRefGoogle ScholarPubMed
Pasinetti, G. M., Morgan, D. G., Johnson, S. A., Millar, S. L., & Finch, C. E. 1990, “Tyrosine hydroxylase mRNA concentration in midbrain dopaminergic neurons is differentially regulated by reserpine”, J. Neurochem., vol. 55, no. 5, pp. 1793–1799.CrossRefGoogle ScholarPubMed
Pasqualini, C., Olivier, V., Guibert, B., Frain, O., & Leviel, V. 1995, “Acute stimulatory effect of estradiol on striatal dopamine synthesis”, J. Neurochem., vol. 65, no. 4, pp. 1651–1657.CrossRefGoogle ScholarPubMed
Pate, B. D., Kawamata, T., Yamada, T., McGeer, E. G., Hewitt, K. A., Snow, B. J., Ruth, T. J., & Calne, D. B. 1993, “Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices”, Ann. Neurol., vol. 34, no. 3, pp. 331–338.CrossRefGoogle ScholarPubMed
Patlak, C. S. & Blasberg, R. G. 1985, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations”, J. Cereb. Blood Flow Metab., vol. 5, no. 4, pp. 584–590.CrossRefGoogle ScholarPubMed
Patlak, C. S., Blasberg, R. G., & Fenstermacher, J. D. 1983, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data”, J. Cereb. Blood Flow Metab., vol. 3, no. 1, pp. 1–7.CrossRefGoogle ScholarPubMed
Paulson, P. E. & Robinson, T. E. 1994, “Relationship between circadian changes in spontaneous motor activity and dorsal versus ventral striatal dopamine neurotransmission assessed with on-line microdialysis”, Behav. Neurosci., vol. 108, no. 3, pp. 624–635.CrossRefGoogle ScholarPubMed
Pavese, N., Evans, A. H., Tai, Y. F., Hotton, G., Brooks, D. J., Lees, A. J., & Piccini, P. 2006, “Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study”, Neurology, vol. 67, no. 9, pp. 1612–1617.CrossRefGoogle ScholarPubMed
Pedersen, K., Simonsen, M., Østergaard, S. D., Lajord, M. O., Rosa-Neto, P., Olsen, A. K., Jensen, S. B., Moller, A., & Cumming, P. 2007, “Mapping the amphetamine-evoked changes in [11C]raclopride binding in living rat using small animal PET: modulation by MAO-inhibition”, Neuroimage, vol. 35, no. 1, pp. 38–46.CrossRefGoogle ScholarPubMed
Pellevoisin, C., Chalon, S., Zouakia, A., Dognon, A. M., Frangin, Y., Baulieu, J. L., Besnard, J. C., & Guilloteau, D. 1993, “Comparison of two radioiodinated ligands of dopamine D2 receptors in animal models: iodobenzamide and iodoethylspiperone”, Life Sci., vol. 52, no. 23, pp. 1851–1860.CrossRefGoogle ScholarPubMed
Pepper, J. P., Baumann, M. H., Ayestas, M., & Rothman, R. B. 2001, “Inhibition of MAO-A fails to alter cocaine-induced increases in extracellular dopamine and norepinephrine in rat nucleus accumbens”, Brain Res. Mol. Brain Res., vol. 87, no. 2, pp. 184–189.CrossRefGoogle ScholarPubMed
Perlmutter, J. S., Stambuk, M. K., Markham, J., Black, K. J., McGee-Minnich, L., Jankovic, J., & Moerlein, S. M. 1998, “Decreased [18F]spiperone binding in putamen in dystonia”, Adv. Neurol., vol. 78, pp. 161–168.Google ScholarPubMed
Perrone-Capano, C., Tino, A., Amadoro, G., Pernas-Alonso, R., & di Porzio, U. 1996, “Dopamine transporter gene expression in rat mesencephalic dopaminergic neurons is increased by direct interaction with target striatal cells in vitro”, Brain Res. Mol. Brain Res., vol. 39, no. 1–2, pp. 160–166.CrossRefGoogle ScholarPubMed
Pertovaara, A., Martikainen, I. K., Hagelberg, N., Mansikka, H., Nagren, K., Hietala, J., & Scheinin, H. 2004, “Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain”, Eur. J. Neurosci., vol. 20, no. 6, pp. 1587–1592.CrossRefGoogle Scholar
Peter, D., Jimenez, J., Liu, Y., Kim, J., & Edwards, R. H. 1994, “The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors”, J. Biol. Chem., vol. 269, no. 10, pp. 7231–7237.Google ScholarPubMed
Pettersson, G., Johannessen, K., Hulthe, P., & Engel, J. A. 1990, “Effect of amperozide on the synthesis and turnover of monoamines in rat brain”, Pharmacol. Toxicol., vol. 66 (Suppl. 1), pp. 40–44.CrossRefGoogle ScholarPubMed
Pfaus, J. G., Damsma, G., Nomikos, G. G., Wenkstern, D. G., Blaha, C. D., Phillips, A. G., & Fibiger, H. C. 1990, “Sexual behavior enhances central dopamine transmission in the male rat”, Brain Res., vol. 530, no. 2, pp. 345–348.CrossRefGoogle ScholarPubMed
Pfaus, J. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. 1995, “Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats”, Brain Res., vol. 693, no. 1–2, pp. 21–30.CrossRefGoogle ScholarPubMed
Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., & Kuhl, D. E. 1979, “Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method”, Ann. Neurol., vol. 6, no. 5, pp. 371–388.CrossRefGoogle ScholarPubMed
Philippu, A. & Beyer, J. 1973, “Dopamine and noradrenaline transport into subcellular vesicles of the striatum”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 278, no. 4, pp. 387–402.CrossRefGoogle ScholarPubMed
Pierce, R. C., Duffy, P., & Kalivas, P. W. 1995, “Sensitization to cocaine and dopamine autoreceptor subsensitivity in the nucleus accumbens”, Synapse, vol. 20, no. 1, pp. 33–36.CrossRefGoogle ScholarPubMed
Pierce, R. C. & Kalivas, P. W. 1995, “Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine”, J. Pharmacol. Exp. Ther., vol. 275, no. 2, pp. 1019–1029.Google ScholarPubMed
Pifl, C., Giros, B., & Caron, M. G. 1993, “Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium”, J. Neurosci., vol. 13, no. 10, pp. 4246–4253.CrossRefGoogle ScholarPubMed
Piggott, M. A., Marshall, E. F., Thomas, N., Lloyd, S., Court, J. A., Jaros, E., Burn, D., Johnson, M., Perry, R. H., McKeith, I. G., Ballard, C., & Perry, E. K. 1999a, “Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer's and Parkinson's diseases: rostrocaudal distribution”, Brain, vol. 122 (Pt 8), pp. 1449–1468.CrossRefGoogle ScholarPubMed
Piggott, M. A., Marshall, E. F., Thomas, N., Lloyd, S., Court, J. A., Jaros, E., Costa, D., Perry, R. H., & Perry, E. K. 1999b, “Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine”, Neuroscience, vol. 90, no. 2, pp. 433–445.CrossRefGoogle ScholarPubMed
Pinborg, L. H., Videbaek, C., Ziebell, M., Mackeprang, T., Friberg, L., Rasmussen, H., Knudsen, G. M., & Glenthoj, B. Y. 2007, “[123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region”, Neuroimage, vol. 34, no. 4, pp. 1450–1453.CrossRefGoogle ScholarPubMed
Pinborg, L. H., Ziebell, M., Frokjaer, V. G., Nijs, R., Svarer, C., Haugbol, S., Yndgaard, S., & Knudsen, G. M. 2005, “Quantification of 123I-PE2I binding to dopamine transporter with SPECT after bolus and bolus/infusion”, J. Nucl. Med., vol. 46, no. 7, pp. 1119–1127.Google ScholarPubMed
Pinna, A., Morelli, M., Drukarch, B., & Stoof, J. C. 1997, “Priming of 6-hydroxydopamine-lesioned rats with L-DOPA or quinpirole results in an increase in dopamine D1 receptor-dependent cyclic AMP production in striatal tissue”, Eur. J. Pharmacol., vol. 331, no. 1, pp. 23–26.CrossRefGoogle ScholarPubMed
Pirker, W., Asenbaum, S., Hauk, M., Kandlhofer, S., Tauscher, J., Willeit, M., Neumeister, A., Praschak-Rieder, N., Angelberger, P., & Brucke, T. 2000, “Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging”, J. Nucl. Med., vol. 41, no. 1, pp. 36–44.Google ScholarPubMed
Pogarell, O., Koch, W., Popperl, G., Tatsch, K., Jakob, F., Zwanzger, P., Mulert, C., Rupprecht, R., Moller, H. J., Hegerl, U., & Padberg, F. 2006, “Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study”, J. Psychiatr. Res., vol. 40, no. 4, pp. 307–314.CrossRefGoogle Scholar
Pohjalainen, T., Rinne, J. O., Nagren, K., Lehikoinen, P., Anttila, K., Syvalahti, E. K., & Hietala, J. 1998a, “The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers”, Mol. Psychiatry, vol. 3, no. 3, pp. 256–260.CrossRefGoogle ScholarPubMed
Pohjalainen, T., Rinne, J. O., Nagren, K., Syvalahti, E., & Hietala, J. 1998b, “Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo”, Am. J. Psychiatry, vol. 155, no. 6, pp. 768–773.Google ScholarPubMed
Poyot, T., Conde, F., Gregoire, M. C., Frouin, V., Coulon, C., Fuseau, C., Hinnen, F., Dolle, F., Hantraye, P., & Bottlaender, M. 2001, “Anatomic and biochemical correlates of the dopamine transporter ligand 11C-PE2I in normal and parkinsonian primates: comparison with 6-[18F]fluoro-L-dopa”, J. Cereb. Blood Flow Metab., vol. 21, no. 7, pp. 782–792.CrossRefGoogle Scholar
Pradhan, S., Alphs, L., & Lovenberg, W. 1981, “Characterization of haloperidol-mediated effects on rat striatal tyrosine hydroxylase”, Neuropharmacology, vol. 20, no. 2, pp. 149–154.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. 2004, “Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride”, J. Neurosci., vol. 24, no. 11, pp. 2825–2831.CrossRefGoogle ScholarPubMed
Przedborski, S., Levivier, M., Jiang, H., Ferreira, M., Jackson-Lewis, V., Donaldson, D., & Togasaki, D. M. 1995, “Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine”, Neuroscience, vol. 67, no. 3, pp. 631–647.CrossRefGoogle ScholarPubMed
Racette, B. A., Good, L., Antenor, J. A., Gee-Minnich, L., Moerlein, S. M., Videen, T. O., & Perlmutter, J. S. 2006, “[18F]FDOPA PET as an endophenotype for Parkinson's Disease linkage studies”, Am. J. Med. Genet. B Neuropsychiatr. Genet., vol. 141, no. 3, pp. 245–249.CrossRefGoogle Scholar
Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J., Dagher, A., Jenkins, I. H., Friston, K. J., & Brooks, D. J. 1999, “Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study”, Brain, vol. 122 (Pt 9), pp. 1637–1650.CrossRefGoogle Scholar
Ramsey, A. J., Hillas, P. J., & Fitzpatrick, P. F. 1996, “Characterization of the active site iron in tyrosine hydroxylase. Redox states of the iron”, J. Biol. Chem., vol. 271, no. 40, pp. 24395–24400.CrossRefGoogle ScholarPubMed
Rao, S. K., Vakil, S. D., Calne, D. B., & Hilson, A. 1972, “Augmenting the action of levodopa”, Postgrad. Med. J., vol. 48, no. 565, pp. 653–656.CrossRefGoogle ScholarPubMed
Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., O'Dowd, B. F., & George, S. R. 2007, “D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum”, Proc. Natl. Acad. Sci. USA, vol. 104, no. 2, pp. 654–659.CrossRefGoogle ScholarPubMed
Reches, A., Wagner, H. R., Jackson-Lewis, V., & Fahn, S. 1985, “Presynaptic inhibition of dopamine synthesis in rat striatum: effects of chronic dopamine depletion and receptor blockade”, Brain Res., vol. 347, no. 2, pp. 346–349.CrossRefGoogle ScholarPubMed
Reenila, I., Tuomainen, P., Soinila, S., & Mannisto, P. T. 1997, “Increase of catechol-O-methyltransferase activity in rat brain microglia after intrastriatal infusion of fluorocitrate, a glial toxin”, Neurosci. Lett., vol. 230, no. 3, pp. 155–158.CrossRefGoogle ScholarPubMed
Reeves, S. J., Grasby, P. M., Howard, R. J., Bantick, R. A., Asselin, M. C., & Mehta, M. A. 2005, “A positron emission tomography (PET) investigation of the role of striatal dopamine (D2) receptor availability in spatial cognition”, Neuroimage, vol. 28, no. 1, pp. 216–226.CrossRefGoogle ScholarPubMed
Reeves, S. J., Mehta, M. A., Montgomery, A. J., Amiras, D., Egerton, A., Howard, R. J., & Grasby, P. M. 2007, “Striatal dopamine (D2) receptor availability predicts socially desirable responding”, Neuroimage, vol. 34, no. 4, pp. 1782–1789.CrossRefGoogle ScholarPubMed
Reinhard, J. F., Jr. & O'Callaghan, J. P. 1991, “Measurement of tyrosine hydroxylase apoenzyme protein by enzyme-linked immunosorbent assay (ELISA): effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal tyrosine hydroxylase activity and content”, Anal. Biochem., vol. 196, no. 2, pp. 296–301.CrossRefGoogle ScholarPubMed
Reith, J., Benkelfat, C., Sherwin, A., Yasuhara, Y., Kuwabara, H., Andermann, F., Bachneff, S., Cumming, P., Diksic, M., Dyve, S. E., Etienne, P., Evans, A. C., Lal, S., Shevell, M., Savard, G., Wong, D. F., Chouinard, G., & Gjedde, A. 1994, “Elevated dopa decarboxylase activity in living brain of patients with psychosis”, Proc. Natl. Acad. Sci. USA, vol. 91, no. 24, pp. 11651–11654.CrossRefGoogle ScholarPubMed
Reith, J., Cumming, P., & Gjedde, A. 1998, “Enhanced [3H]DOPA and [3H]dopamine turnover in striatum and frontal cortex in vivo linked to glutamate receptor antagonism”, J. Neurochem., vol. 70, no. 5, pp. 1979–1985.CrossRefGoogle Scholar
Renskers, K. J., Feor, K. D., & Roth, J. A. 1980, “Sulfation of dopamine and other biogenic amines by human brain phenol sulfotransferase”, J. Neurochem., vol. 34, no. 6, pp. 1362–1368.CrossRefGoogle ScholarPubMed
Riba, J., Valle, M., Urbano, G., Yritia, M., Morte, A., & Barbanoj, M. J. 2003, “Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics”, J. Pharmacol. Exp. Ther., vol. 306, no. 1, pp. 73–83.CrossRefGoogle ScholarPubMed
Riccardi, P., Baldwin, R., Salomon, R., Anderson, S., Ansari, M. S., Li, R., Dawant, B., Bauernfeind, A., Schmidt, D., & Kessler, R. 2007, “Estimation of Baseline Dopamine D(2) Receptor Occupancy in Striatum and Extrastriatal Regions in Humans With Positron Emission Tomography With [(18)F] Fallypride”, Biol. Psychiatry., vol. 15, no. 2, pp. 241–244.Google Scholar
Riccardi, P., Zald, D., Li, R., Park, S., Ansari, M. S., Dawant, B., Anderson, S., Woodward, N., Schmidt, D., Baldwin, R., & Kessler, R. 2006, “Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: a PET study”, Am. J. Psychiatry, vol. 163, no. 9, pp. 1639–1641.CrossRefGoogle Scholar
Richardson, J. R., Caudle, W. M., Guillot, T. S., Watson, J. L., Nakamaru-Ogiso, E., Seo, B. B., Sherer, T. B., Greenamyre, J. T., Yagi, T., Matsuno-Yagi, A., & Miller, G. W. 2007, “Obligatory Role for Complex I Inhibition in the Dopaminergic Neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)”, Toxicol. Sci., vol. 95, no. 1, pp. 196–204.CrossRefGoogle Scholar
Richfield, E. K. 1991, “Quantitative autoradiography of the dopamine uptake complex in rat brain using [3H]GBR 12935: binding characteristics”, Brain Res., vol. 540, no. 1–2, pp. 1–13.CrossRefGoogle Scholar
Richfield, E. K., Penney, J. B., & Young, A. B. 1989, “Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system”, Neuroscience, vol. 30, no. 3, pp. 767–777.CrossRefGoogle ScholarPubMed
Richter, A., Ebert, U., Nobrega, J. N., Vallbacka, J. J., Fedrowitz, M., & Loscher, W. 1999, “Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior”, Neuroscience, vol. 89, no. 2, pp. 461–471.CrossRefGoogle ScholarPubMed
Ridd, M. J., Kitchen, I., & Fosbraey, P. 1998, “The effect of acute kainic acid treatment on dopamine D2 receptors in rat brain”, Neurosci. Res., vol. 30, no. 3, pp. 201–211.CrossRefGoogle ScholarPubMed
Rinne, J. O., Hietala, J., Ruotsalainen, U., Sako, E., Laihinen, A., Nagren, K., Lehikoinen, P., Oikonen, V., & Syvalahti, E. 1993, “Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride”, J. Cereb. Blood Flow Metab., vol. 13, no. 2, pp. 310–314.CrossRefGoogle Scholar
Rinne, J. O., Laihinen, A., Lonnberg, P., Marjamaki, P., & Rinne, U. K. 1991, “A post-mortem study on striatal dopamine receptors in Parkinson's disease”, Brain Res., vol. 556, no. 1, pp. 117–122.CrossRefGoogle ScholarPubMed
Rinne, J. O., Laihinen, A., Ruottinen, H., Ruotsalainen, U., Nagren, K., Lehikoinen, P., Oikonen, V., & Rinne, U. K. 1995, “Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11C]raclopride”, J. Neurol. Sci., vol. 132, no. 2, pp. 156–161.CrossRefGoogle ScholarPubMed
Rinne, J. O., Lonnberg, P., & Marjamaki, P. 1990, “Age-dependent decline in human brain dopamine D1 and D2 receptors”, Brain Res., vol. 508, no. 2, pp. 349–352.CrossRefGoogle ScholarPubMed
Rinne, J. O., Portin, R., Ruottinen, H., Nurmi, E., Bergman, J., Haaparanta, M., & Solin, O. 2000, “Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study”, Arch. Neurol., vol. 57, no. 4, pp. 470–475.CrossRefGoogle ScholarPubMed
Rinne, J. O., Ruottinen, H. M., Nagren, K., Aberg, L. E., & Santavuori, P. 2002, “Positron emission tomography shows reduced striatal dopamine D1 but not D2 receptors in juvenile neuronal ceroid lipofuscinosis”, Neuropediatrics, vol. 33, no. 3, pp. 138–141.CrossRefGoogle Scholar
Rinne, U. K., Larsen, J. P., Siden, A., & Worm-Petersen, J. 1998, “Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group”, Neurology, vol. 51, no. 5, pp. 1309–1314.CrossRefGoogle ScholarPubMed
Rios, M., Habecker, B., Sasaoka, T., Eisenhofer, G., Tian, H., Landis, S., Chikaraishi, D., & Roffler-Tarlov, S. 1999, “Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase”, J. Neurosci., vol. 19, no. 9, pp. 3519–3526.CrossRefGoogle ScholarPubMed
Ritchie, T. & Noble, E. P. 2003, “Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics”, Neurochem. Res., vol. 28, no. 1, pp. 73–82.CrossRefGoogle ScholarPubMed
Rivera, A., Alberti, I., Martin, A. B., Narvaez, J. A., Calle, A., & Moratalla, R. 2002, “Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype”, Eur. J. Neurosci., vol. 16, no. 11, pp. 2049–2058.CrossRefGoogle ScholarPubMed
Rivett, A. J., Eddy, B. J., & Roth, J. A. 1982, “Contribution of sulfate conjugation, deamination, and O-methylation to metabolism of dopamine and norepinephrine in human brain”, J. Neurochem., vol. 39, no. 4, pp. 1009–1016.CrossRefGoogle ScholarPubMed
Rivett, A. J., Francis, A., & Roth, J. A. 1983, “Distinct cellular localization of membrane-bound and soluble forms of catechol-O-methyltransferase in brain”, J. Neurochem., vol. 40, no. 1, pp. 215–219.CrossRefGoogle ScholarPubMed
Rivett, A. J., Francis, A., Whittemore, R., & Roth, J. A. 1984, “Sulfate conjugation of dopamine in rat brain: regional distribution of activity and evidence for neuronal localization”, J. Neurochem., vol. 42, no. 5, pp. 1444–1449.CrossRefGoogle ScholarPubMed
Rivett, A. J. & Roth, J. A. 1982, “Kinetic studies on the O-methylation of dopamine by human brain membrane-bound catechol O-methyltransferase”, Biochemistry, vol. 21, no. 8, pp. 1740–1742.CrossRefGoogle ScholarPubMed
Roberts, D. C., Zis, A. P., & Fibiger, H. C. 1975, “Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine”, Brain Res., vol. 93, no. 3, pp. 441–454.CrossRefGoogle ScholarPubMed
Robinson, T. E., Noordhoorn, M., Chan, E. M., Mocsary, Z., Camp, D. M., & Whishaw, I. Q. 1994, “Relationship between asymmetries in striatal dopamine release and the direction of amphetamine-induced rotation during the first week following a unilateral 6-OHDA lesion of the substantia nigra”, Synapse, vol. 17, no. 1, pp. 16–25.CrossRefGoogle ScholarPubMed
Rodriguez-Pascual, F., Ferrero, R., Miras-Portugal, M. T., & Torres, M. 1999, “Phosphorylation of tyrosine hydroxylase by cGMP-dependent protein kinase in intact bovine chromaffin cells”, Arch. Biochem. Biophys., vol. 366, no. 2, pp. 207–214.CrossRefGoogle ScholarPubMed
Rosa-Neto, P., Doudet, D. J., & Cumming, P. 2004, “Gradients of dopamine D1- and D2/3-binding sites in the basal ganglia of pig and monkey measured by PET”, Neuroimage, vol. 22, no. 3, pp. 1076–1083.CrossRefGoogle ScholarPubMed
Rosa-Neto, P., Gjedde, A., Olsen, A. K., Jensen, S. B., Munk, O. L., Watanabe, H., & Cumming, P. 2004, “MDMA-evoked changes in [11C]raclopride and [11C]NMSP binding in living pig brain”, Synapse, vol. 53, no. 4, pp. 222–233.CrossRefGoogle Scholar
Rosa-Neto, P., Lou, H. C., Cumming, P., Pryds, O., Karrebaek, H., Lunding, J., & Gjedde, A. 2005, “Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder”, Neuroimage, vol. 25, no. 3, pp. 868–876.CrossRefGoogle ScholarPubMed
Rosenberg, R. C. & Lovenberg, W. 1983, “Determination of some molecular parameters of tyrosine hydroxylase from rat adrenal, rat striatum, and human pheochromocytoma”, J. Neurochem., vol. 40, no. 6, pp. 1529–1533.CrossRefGoogle ScholarPubMed
Ross, S. B. 1991, “Synaptic concentration of dopamine in the mouse striatum in relationship to the kinetic properties of the dopamine receptors and uptake mechanism”, J. Neurochem., vol. 56, no. 1, pp. 22–29.CrossRefGoogle ScholarPubMed
Ross, S. B. & Jackson, D. M. 1989a, “Kinetic properties of the accumulation of 3H-raclopride in the mouse brain in vivo”, Naunyn Schmiedebergs Arch.Pharmacol., vol. 340, no. 1, pp. 6–12.Google ScholarPubMed
Ross, S. B. & Jackson, D. M. 1989b, “Kinetic properties of the in vivo accumulation of 3H-(-)-N-n-propylnorapomorphine in mouse brain”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 340, no. 1, pp. 13–20.Google ScholarPubMed
Rossetti, Z., Krajnc, D., Neff, N. H., & Hadjiconstantinou, M. 1989, “Modulation of retinal aromatic L-amino acid decarboxylase via alpha 2 adrenoceptors”, J. Neurochem., vol. 52, no. 2, pp. 647–652.CrossRefGoogle ScholarPubMed
Rossetti, Z. L., Silvia, C. P., Krajnc, D., Neff, N. H., & Hadjiconstantinou, M. 1990, “Aromatic L-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina”, J. Neurochem., vol. 54, no. 3, pp. 787–791.CrossRefGoogle ScholarPubMed
Rousset, O. G., Deep, P., Kuwabara, H., Evans, A. C., Gjedde, A. H., & Cumming, P. 2000, “Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[(18)F]fluoro-L-dopa studied with PET in normal control and Parkinson's disease subjects”, Synapse, vol. 37, no. 2, pp. 81–89.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Ruottinen, H. M., Partinen, M., Hublin, C., Bergman, J., Haaparanta, M., Solin, O., & Rinne, J. O. 2000, “An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome”, Neurology., vol. 54, no. 2, pp. 502–504.CrossRefGoogle ScholarPubMed
Ruottinen, H. M., Rinne, J. O., Haaparanta, M., Solin, O., Bergman, J., Oikonen, V. J., Järvelä, I., & Santavuori, P. 1997, “[18F]fluorodopa PET shows striatal dopaminergic dysfunction in juvenile neuronal ceroid lipofuscinosis”, J. Neurol. Neurosirg. Psychiatry., vol. 62, no. 6, pp. 622–625.CrossRefGoogle ScholarPubMed
Ruprecht-Dorfler, P., Berg, D., Tucha, O., Benz, P., Meier-Meitinger, M., Alders, G. L., Lange, K. W., & Becker, G. 2003, “Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson's disease”, Neuroimage, vol. 18, no. 2, pp. 416–422.CrossRefGoogle ScholarPubMed
Rushlow, W., Flumerfelt, B. A., & Naus, C. C. 1995, “Colocalization of somatostatin, neuropeptide Y, and NADPH-diaphorase in the caudate-putamen of the rat”, J. Comp Neurol., vol. 351, no. 4, pp. 499–508.CrossRefGoogle ScholarPubMed
Ryding, E., Lindstrom, M., Bradvik, B., Grabowski, M., Bosson, P., Traskman-Bendz, L., & Rosen, I. 2004, “A new model for separation between brain dopamine and serotonin transporters in 123I-beta-CIT SPECT measurements: normal values and sex and age dependence”, Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 8, pp. 1114–1118.CrossRefGoogle ScholarPubMed
Saigusa, T., Tuinstra, T., Koshikawa, N., & Cools, A. R. 1999, “High and low responders to novelty: effects of a catecholamine synthesis inhibitor on novelty-induced changes in behaviour and release of accumbal dopamine”, Neuroscience, vol. 88, no. 4, pp. 1153–1163.CrossRefGoogle ScholarPubMed
Sakakibara, Y., Takami, Y., Nakayama, T., Suiko, M., & Liu, M. C. 1998, “Localization and functional analysis of the substrate specificity/catalytic domains of human M-form and P-form phenol sulfotransferases”, J. Biol. Chem., vol. 273, no. 11, pp. 6242–6247.CrossRefGoogle ScholarPubMed
Sakiyama, Y., Hatano, K., Kato, T., Tajima, T., Kawasumi, Y., & Ito, K. 2007, “Stimulation of adenosine A1 receptors decreases in vivo dopamine D1 receptor binding of [11C]SCH23390 in the cat striatum revealed by positron emission tomography”, Ann. Nucl. Med., vol. 21, no. 8, pp. 447–453.CrossRefGoogle Scholar
Salmon, E., Brooks, D. J., Leenders, K. L., Turton, D. R., Hume, S. P., Cremer, J. E., Jones, T., & Frackowiak, R. S. 1990, “A two-compartment description and kinetic procedure for measuring regional cerebral [11C]nomifensine uptake using positron emission tomography”, J. Cereb. Blood Flow Metab., vol. 10, no. 3, pp. 307–316.CrossRefGoogle ScholarPubMed
Salokangas, R. K., Vilkman, H., Ilonen, T., Taiminen, T., Bergman, J., Haaparanta, M., Solin, O., Alanen, A., Syvalahti, E., & Hietala, J. 2000, “High levels of dopamine activity in the basal ganglia of cigarette smokers”, Am. J. Psychiatry, vol. 157, no. 4, pp. 632–634.CrossRefGoogle ScholarPubMed
Samii, A., Markopoulou, K., Wszolek, Z. K., Sossi, V., Dobko, T., Mak, E., Calne, D. B., & Stoessl, A. J. 1999, “PET studies of parkinsonism associated with mutation in the alpha-synuclein gene”, Neurology, vol. 53, no. 9, pp. 2097–2102.CrossRefGoogle ScholarPubMed
Sandell, J. H., Graybiel, A. M., & Chesselet, M. F. 1986, “A new enzyme marker for striatal compartmentalization: NADPH diaphorase activity in the caudate nucleus and putamen of the cat”, J. Comp Neurol., vol. 243, no. 3, pp. 326–334.CrossRefGoogle ScholarPubMed
Sarchiapone, M., Carli, V., Camardese, G., Cuomo, C., Di, G. D., Calcagni, M. L., Focacci, C., & De, R. S. 2006, “Dopamine transporter binding in depressed patients with anhedonia”, Psychiatry Res., vol. 147, no. 2–3, pp. 243–248.CrossRefGoogle ScholarPubMed
Sardar, A., Juorio, A. V., & Boulton, A. A. 1987, “The concentration of p- and m-tyramine in the rat mesolimbic system: its regional distribution and effect of monoamine oxidase inhibition”, Brain Res., vol. 412, no. 2, pp. 370–374.CrossRefGoogle ScholarPubMed
Sarna, G. S., Hutson, P. H., & Curzon, G. 1984, “Effect of alpha-methyl fluorodopa on dopamine metabolites: importance of conjugation and egress”, Eur. J. Pharmacol., vol. 100, no. 3–4, pp. 343–350.CrossRefGoogle ScholarPubMed
Saunders, C., Ferrer, J. V., Shi, L., Chen, J., Merrill, G., Lamb, M. E., Leeb-Lundberg, L. M., Carvelli, L., Javitch, J. A., & Galli, A. 2000, “Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism”, Proc. Natl. Acad. Sci. USA, vol. 97, no. 12, pp. 6850–6855.CrossRefGoogle ScholarPubMed
Savasta, M., Dubois, A., & Scatton, B. 1986, “Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390”, Brain Res., vol. 375, no. 2, pp. 291–301.CrossRefGoogle ScholarPubMed
Sawada, M., Hirata, Y., Arai, H., Iizuka, R., & Nagatsu, T. 1987, “Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type”, J. Neurochem., vol. 48, no. 3, pp. 760–764.CrossRefGoogle ScholarPubMed
Scanley, B. E., Baldwin, R. M., Laruelle, M., al-Tikriti, M. S., Zea-Ponce, Y., Zoghbi, S., Giddings, S. S., Charney, D. S., Hoffer, P. B., Wang, S., et al. 1994, “Active and inactive enantiomers of 2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane: comparison using homogenate binding and single photon emission computed tomographic imaging”, Mol. Pharmacol., vol. 45, no. 1, pp. 136–141.Google ScholarPubMed
Scherfler, C., Boesch, S. M., Donnemiller, E., Seppi, K., Weirich-Schwaiger, H., Goebel, G., Virgolini, I., Wenning, G. K., & Poewe, W. 2006a, “Topography of cerebral monoamine transporter availability in families with SCA2 mutations: a voxel-wise [123I]beta-CIT SPECT analysis”, Eur. J. Nucl. Med. Mol. Imaging, vol. 33, no. 9, pp. 1084–1090.CrossRefGoogle ScholarPubMed
Scherfler, C., Khan, N. L., Pavese, N., Lees, A. J., Quinn, N. P., Brooks, D. J., & Piccini, P. P. 2006b, “Upregulation of dopamine D2 receptors in dopaminergic drug-naive patients with Parkin gene mutations”, Mov. Disord., vol. 21, no. 6, pp. 783–788.CrossRefGoogle ScholarPubMed
Schiffer, W. K., Logan, J., & Dewey, S. L. 2003, “Positron emission tomography studies of potential mechanisms underlying phencyclidine-induced alterations in striatal dopamine”, Neuropsychopharmacology, vol. 28, no. 12, pp. 2192–2198.CrossRefGoogle ScholarPubMed
Schmitt, G. J., Frodl, T., Dresel, S., Fougère, C., Bottlender, R., Koutsouleris, N., Hahn, K., Moller, H. J., & Meisenzahl, E. M. 2006, “Striatal dopamine transporter availability is associated with the productive psychotic state in first episode, drug-naive schizophrenic patients”, Eur. Arch. Psychiatry Clin. Neurosci., vol. 256, no. 2, pp. 115–121.CrossRefGoogle Scholar
Schoepp, D. D. & Azzaro, A. J. 1981a, “Alteration of dopamine synthesis in rat striatum subsequent to selective type A monoamine oxidase inhibition”, J. Neurochem., vol. 37, no. 2, pp. 527–530.CrossRefGoogle ScholarPubMed
Schoepp, D. D. & Azzaro, A. J. 1981b, “Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum”, J. Neurochem., vol. 36, no. 6, pp. 2025–2031.CrossRefGoogle Scholar
Schoepp, D. D. & Azzaro, A. J. 1982, “Role of type A and type B monoamine oxidase in the metabolism of released [3H]dopamine from rat striatal slices”, Biochem. Pharmacol., vol. 31, no. 18, pp. 2961–2968.CrossRefGoogle Scholar
Schoepp, D. D. & Azzaro, A. J. 1983, “Effects of intrastriatal kainic acid injection on [3H]dopamine metabolism in rat striatal slices: evidence for postsynaptic glial cell metabolism by both the type A and B forms of monoamine oxidase”, J. Neurochem., vol. 40, no. 5, pp. 1340–1348.CrossRefGoogle Scholar
Schoots, O., Seeman, P., Guan, H. C., Paterson, A. D., & Tol, H. H. 1995, “Long-term haloperidol elevates dopamine D4 receptors by 2-fold in rats”, Eur. J. Pharmacol., vol. 289, no. 1, pp. 67–72.CrossRefGoogle ScholarPubMed
Schroder, J., Bubeck, B., Silvestri, S., Demisch, S., & Sauer, H. 1997, “Gender differences in D2 dopamine receptor binding in drug-naive patients with schizophrenia: an [123I]iodobenzamide single photon emission computed tomography study”, Psychiatry Res., vol. 75, no. 2, pp. 115–123.CrossRefGoogle ScholarPubMed
Schuldiner, S., Fishkes, H., & Kanner, B. I. 1978, “Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles”, Proc. Natl. Acad. Sci. USA, vol. 75, no. 8, pp. 3713–3716.CrossRefGoogle ScholarPubMed
Schwarz, J., Antonini, A., Kraft, E., Tatsch, K., Vogl, T., Kirsch, C. M., Leenders, K. L., & Oertel, W. H. 1994, “Treatment with D-penicillamine improves dopamine D2-receptor binding and T2-signal intensity in de novo Wilson's disease”, Neurology, vol. 44, no. 6, pp. 1079–1082.CrossRefGoogle ScholarPubMed
Schwarz, J., Oertel, W. H., & Tatsch, K. 1996, “Iodine-123-iodobenzamide binding in parkinsonism: reduction by dopamine agonists but not L-Dopa”, J. Nucl. Med., vol. 37, no. 7, pp. 1112–1115.Google Scholar
Scott, D. J., Domino, E. F., Heitzeg, M. M., Koeppe, R. A., Ni, L., Guthrie, S., & Zubieta, J. K. 2007, “Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotransmission in humans”, Neuropsychopharmacology, vol. 32, no. 2, pp. 450–457.CrossRefGoogle ScholarPubMed
Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S., & Zubieta, J. K. 2006, “Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity”, J. Neurosci., vol. 26, no. 42, pp. 10789–10795.CrossRefGoogle ScholarPubMed
Seeman, P. 1987, “The absolute density of neurotransmitter receptors in the brain. Example for dopamine receptors”, J. Pharmacol. Methods, vol. 17, no. 4, pp. 347–360.CrossRefGoogle ScholarPubMed
Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., Reynolds, G. P., Bird, E. D., Riederer, P., Jellinger, K., Watanabe, S., et al. 1987, “Human brain dopamine receptors in children and aging adults”, Synapse, vol. 1, no. 5, pp. 399–404.CrossRefGoogle ScholarPubMed
Seeman, P., Guan, H. C., & Niznik, H. B. 1989, “Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain”, Synapse, vol. 3, no. 1, pp. 96–97.CrossRefGoogle Scholar
Seeman, P., Guan, H. C., & Tol, H. H. 1993, “Dopamine D4 receptors elevated in schizophrenia”, Nature, vol. 365, no. 6445, pp. 441–445.CrossRefGoogle Scholar
Seeman, P., Ko, F., Willeit, M., McCormick, P., & Ginovart, N. 2005a, “Antiparkinson concentrations of pramipexole and PHNO occupy dopamine D2(high) and D3(high) receptors”, Synapse, vol. 58, no. 2, pp. 122–128.CrossRefGoogle ScholarPubMed
Seeman, P., McCormick, P. N., & Kapur, S. 2007, “Increased dopamine D2(High) receptors in amphetamine-sensitized rats, measured by the agonist [(3)H](+)PHNO”, Synapse, vol. 61, no. 5, pp. 263–267.CrossRefGoogle ScholarPubMed
Seeman, P., Tallerico, T., & Ko, F. 2004, “Alcohol-withdrawn animals have a prolonged increase in dopamine D2 (High) receptors, reversed by general anesthesia: relation to relapse?”, Synapse, vol. 52, no. 2, pp. 77–83.CrossRefGoogle Scholar
Seeman, P., Ulpian, C., Grigoriadis, D., Pri-Bar, I., & Buchman, O. 1985, “Conversion of dopamine D1 receptors from high to low affinity for dopamine”, Biochem. Pharmacol., vol. 34, no. 1, pp. 151–154.CrossRefGoogle ScholarPubMed
Seeman, P., Weinshenker, D., Quirion, R., Srivastava, L. K., Bhardwaj, S. K., Grandy, D. K., Premont, R. T., Sotnikova, T. D., Boksa, P., El-Ghundi, M., O'Dowd, B. F., George, S. R., Perreault, M. L., Mannisto, P. T., Robinson, S., Palmiter, R. D., & Tallerico, T. 2005b, “Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis”, Proc. Natl. Acad. Sci. USA, vol. 102, no. 9, pp. 3513–3518.CrossRefGoogle ScholarPubMed
Segal, D. S., Kuczenski, R., & Okuda, C. 1992, “Clorgyline-induced increases in presynaptic DA: changes in the behavioral and neurochemical effects of amphetamine using in vivo microdialysis”, Pharmacol. Biochem. Behav., vol. 42, no. 3, pp. 421–429.CrossRefGoogle ScholarPubMed
Seibyl, J. P., Marek, K., Sheff, K., Zoghbi, S., Baldwin, R. M., Charney, D. S., Dyck, C. H., & Innis, R. B. 1998, “Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson's patients”, J. Nucl. Med., vol. 39, no. 9, pp. 1500–1508.Google ScholarPubMed
Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., Suzuki, K., Tsukada, H., Okada, H., Yoshikawa, E., Futatsubashi, M., & Mori, N. 2003, “Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms”, Am. J. Psychiatry, vol. 160, no. 9, pp. 1699–1701.CrossRefGoogle ScholarPubMed
Semple, D. M., McIntosh, A. M., & Lawrie, S. M. 2005, “Cannabis as a risk factor for psychosis: systematic review”, J. Psychopharmacol., vol. 19, no. 2, pp. 187–194.CrossRefGoogle ScholarPubMed
Seneca, N., Finnema, S. J., Farde, L., Gulyas, B., Wikstrom, H. V., Halldin, C., & Innis, R. B. 2006, “Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride”, Synapse, vol. 59, no. 5, pp. 260–269.CrossRefGoogle Scholar
Seneca, N., Zoghbi, S. S., Skinbjerg, M., Liow, J. S., Hong, J., Sibley, D. R., Pike, V. W., Halldin, C., & Innis, R. B. 2008, “Occupancy of dopamine D 2/3 receptors in rat brain by endogenous dopamine measured with the agonist positron emission tomography radioligand [11C]MNPA”, Synapse, vol. 62, no. 10, pp. 756–763.CrossRefGoogle ScholarPubMed
Senogles, S. E. 1994, “The D2 dopamine receptor isoforms signal through distinct Gi alpha proteins to inhibit adenylyl cyclase. A study with site-directed mutant Gi alpha proteins”, J. Biol. Chem., vol. 269, no. 37, pp. 23120–23127.Google ScholarPubMed
Senthilkumaran, B. & Joy, K. P. 1995, “A turnover study of hypothalamic monoamine oxidase (MAO) and effects of MAO inhibition on gonadotropin secretion in the female catfish, Heteropneustes fossilis”, Gen. Comp Endocrinol., vol. 97, no. 1, pp. 1–12.CrossRefGoogle ScholarPubMed
Seward, E. P. & Nowycky, M. C. 1996, “Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses”, J. Neurosci., vol. 16, no. 2, pp. 553–562.CrossRefGoogle ScholarPubMed
Shang, Y., Gibbs, M. A., Marek, G. J., Stiger, T., Burstein, A. H., Marek, K., Seibyl, J. P., & Rogers, J. F. 2007, “Displacement of serotonin and dopamine transporters by venlafaxine extended release capsule at steady state: a [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane single photon emission computed tomography imaging study”, J. Clin. Psychopharmacol., vol. 27, no. 1, pp. 71–75.CrossRefGoogle Scholar
Shapiro, R. M., Glick, S. D., & Hough, L. B. 1986, “Striatal dopamine uptake asymmetries and rotational behavior in unlesioned rats: revising the model?”, Psychopharmacology (Berl), vol. 89, no. 1, pp. 25–30.CrossRefGoogle ScholarPubMed
Sharman, D. F. 1967, “A discussion of the modes of action of drugs which increase the concentration of 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid) in the striatum of the mouse”, Br. J. Pharmacol. Chemother., vol. 30, no. 3, pp. 620–626.CrossRefGoogle ScholarPubMed
Shih, J. C., Chen, K., & Ridd, M. J. 1999, “Monoamine oxidase: from genes to behavior”, Annu. Rev. Neurosci., vol. 22, pp. 197–217.CrossRefGoogle Scholar
Siessmeier, T., Kienast, T., Wrase, J., Larsen, J. L., Braus, D. F., Smolka, M. N., Buchholz, H. G., Schreckenberger, M., Rosch, F., Cumming, P., Mann, K., Bartenstein, P., & Heinz, A. 2006, “Net influx of plasma 6-[18F]fluoro-L-DOPA (FDOPA) to the ventral striatum correlates with prefrontal processing of affective stimuli”, Eur. J. Neurosci., vol. 24, no. 1, pp. 305–313.CrossRefGoogle ScholarPubMed
Siessmeier, T., Zhou, Y., Buchholz, H. G., Landvogt, C., Vernaleken, I., Piel, M., Schirrmacher, R., Rosch, F., Schreckenberger, M., Wong, D. F., Cumming, P., Grunder, G., & Bartenstein, P. 2005, “Parametric mapping of binding in human brain of D2 receptor ligands of different affinities”, J. Nucl. Med., vol. 46, no. 6, pp. 964–972.Google ScholarPubMed
Sills, T. L., Onalaja, A. O., & Crawley, J. N. 1998, “Mesolimbic dopaminergic mechanisms underlying individual differences in sugar consumption and amphetamine hyperlocomotion in Wistar rats”, Eur. J. Neurosci., vol. 10, no. 5, pp. 1895–1902.CrossRefGoogle ScholarPubMed
Silvestri, S., Negrete, J. C., Seeman, M. V., Shammi, C. M., & Seeman, P. 2004, “Does nicotine affect D2 receptor upregulation? A case-control study”, Acta Psychiatr. Scand., vol. 109, no. 4, pp. 313–317.CrossRefGoogle ScholarPubMed
Singer, T. P. & Salach, J. I. 1981, “Interaction of suicide inhibitors with the active site of monoamine oxidase,” in Monoamine Oxidase Inhibitors: The State of the Art, Youdim, M. B. H. & Paykel, E. S., eds., John Wiley, New York, pp. 17–29.Google Scholar
Siow, Y. L. & Dakshinamurti, K. 1990, “Neuronal dopa decarboxylase”, Ann. N.Y. Acad. Sci., vol. 585, pp. 173–188.CrossRefGoogle ScholarPubMed
Slifstein, M., Hwang, D. R., Huang, Y., Guo, N., Sudo, Y., Narendran, R., Talbot, P., & Laruelle, M. 2004, “In vivo affinity of [18F]fallypride for striatal and extrastriatal dopamine D2 receptors in nonhuman primates”, Psychopharmacology, vol. 175, no. 3, pp. 274–286.CrossRefGoogle Scholar
Slifstein, M., Kolachana, B., Simpson, E. H., Tabares, P., Cheng, B., Duvall, M., Frankle, W. G., Weinberger, D. R., Laruelle, M., & Abi-Dargham, A. 2008, “COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET”, Mol. Psychiatry., vol. 13, no. 8, pp. 821–827.CrossRefGoogle ScholarPubMed
Small, D. M., Jones-Gotman, M., & Dagher, A. 2003, “Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers”, Neuroimage, vol. 19, no. 4, pp. 1709–1715.CrossRefGoogle ScholarPubMed
Smith, C. B., Sheldon, M. I., Bednarczyk, J. H., & Villarreal, J. E. 1972, “Morphine-induced increases in the incorporation of 14 C-tyrosine into 14 C-dopamine and 14 C-norepinephrine in the mouse brain: antagonism by naloxone and tolerance”, J. Pharmacol. Exp. Ther., vol. 180, no. 3, pp. 547–557.Google ScholarPubMed
Smith, G. S., Dewey, S. L., Brodie, J. D., Logan, J., Vitkun, S. A., Simkowitz, P., Schloesser, R., Alexoff, D. A., Hurley, A., Cooper, T., & Volkow, N. D. 1997, “Serotonergic modulation of dopamine measured with [11C]raclopride and PET in normal human subjects”, Am. J. Psychiatry, vol. 154, no. 4, pp. 490–496.Google ScholarPubMed
Smith, Q. R., Momma, S., Aoyagi, M., & Rapoport, S. I. 1987, “Kinetics of neutral amino acid transport across the blood-brain barrier”, J. Neurochem., vol. 49, no. 5, pp. 1651–1658.CrossRefGoogle ScholarPubMed
Snow, B. J., Tooyama, I., McGeer, E. G., Yamada, T., Calne, D. B., Takahashi, H., & Kimura, H. 1993, “Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels”, Ann. Neurol., vol. 34, no. 3, pp. 324–330.CrossRefGoogle ScholarPubMed
So, C. H., Varghese, G., Curley, K. J., Kong, M. M., Alijaniaram, M., Ji, X., Nguyen, T., O'dowd, B. F., & George, S. R. 2005, “D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor”, Mol. Pharmacol., vol. 68, no. 3, pp. 568–578.Google ScholarPubMed
Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., & Shinohara, M. 1977, “The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat”, J. Neurochem., vol. 28, no. 5, pp. 897–916.CrossRefGoogle Scholar
Soliman, A., O'Driscoll, G. A., Pruessner, J., Holahan, A. L., Boileau, I., Gagnon, D., & Dagher, A. 2008, “Stress-induced dopamine release in humans at risk of psychosis: a [(11)C]raclopride PET study”, Neuropsychopharmacology, vol. 33, no. 8, pp. 2033–2041.CrossRefGoogle Scholar
Sora, I., Wichems, C., Takahashi, N., Li, X. F., Zeng, Z., Revay, R., Lesch, K. P., Murphy, D. L., & Uhl, G. R. 1998, “Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice”, Proc. Natl. Acad. Sci. USA, vol. 95, no. 13, pp. 7699–7704.CrossRefGoogle ScholarPubMed
Sorg, B. A., & Kalivas, P. W. 1993, “Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex”, Neuroscience, vol. 53, no. 3, pp. 695–703.CrossRefGoogle ScholarPubMed
Sossi, V., Fuente-Fernandez, R., Holden, J. E., Schulzer, M., Ruth, T. J., & Stoessl, J. 2004, “Changes of dopamine turnover in the progression of Parkinson's disease as measured by positron emission tomography: their relation to disease-compensatory mechanisms”, J. Cereb. Blood Flow Metab., vol. 24, no. 8, pp. 869–876.CrossRefGoogle ScholarPubMed
Sossi, V., Doudet, D. J., & Holden, J. E. 2001, “A reversible tracer analysis approach to the study of effective dopamine turnover”, J. Cereb. Blood Flow Metab., vol. 21, no. 4, pp. 469–476.CrossRefGoogle Scholar
Sossi, V., Holden, J. E., Topping, G. J., Camborde, M. L., Kornelsen, R. A., McCormick, S. E., Greene, J., Studenov, A. R., Ruth, T. J., & Doudet, D. J. 2007, “In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD”, J. Cereb. Blood Flow Metab., vol. 27, no. 7, pp. 1407–1415.CrossRefGoogle Scholar
Sotnikova, T. D., Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. 2006, “Molecular biology, pharmacology and functional role of the plasma membrane dopamine transporter”, CNS Neurol. Disord. Drug Targets, vol. 5, no. 1, pp. 45–56.Google ScholarPubMed
Sovago, J., Farde, L., Halldin, C., Schukin, E., Schou, M., Laszlovszky, I., Kiss, B., & Gulyas, B. 2005, “Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756”, Brain Res. Bull., vol. 67, no. 3, pp. 219–224.CrossRefGoogle Scholar
Sparks, D. L., Slevin, J. T., & Hunsaker, J. C., III 1986, “3-Methoxytyramine in the putamen as a gauge of the postmortem interval”, J. Forensic Sci., vol. 31, no. 3, pp. 962–971.CrossRefGoogle ScholarPubMed
Spector, R. & Shikuma, S. N. 1978, “The stability of vitamin B6 accumulation and pyridoxal kinase activity in rabbit brain and choroid plexus”, J. Neurochem., vol. 31, no. 6, pp. 1403–1410.CrossRefGoogle ScholarPubMed
Spector, S., Sjoerdsma, A., & Udenfriend, S. 1965, “Blockade of endogenous norepinephrine synthesis by alpha-methyl-tyrosine, an inhibitor of tyrosine hydroxylase”, J. Pharmacol. Exp. Ther., vol. 147, pp. 86–95.Google ScholarPubMed
Spencer, T. J., Biederman, J., Ciccone, P. E., Madras, B. K., Dougherty, D. D., Bonab, A. A., Livni, E., Parasrampuria, D. A., & Fischman, A. J. 2006, “PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate”, Am. J. Psychiatry, vol. 163, no. 3, pp. 387–395.CrossRefGoogle Scholar
Spencer, T. J., Biederman, J., Madras, B. K., Dougherty, D. D., Bonab, A. A., Livni, E., Meltzer, P. C., Martin, J., Rauch, S., & Fischman, A. J. 2007, “Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane”, Biol. Psychiatry, vol. 62, no. 9, pp. 1059–1061.CrossRefGoogle ScholarPubMed
Staley, J. K., Basile, M., Flynn, D. D., & Mash, D. C. 1994, “Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization”, J. Neurochem., vol. 62, no. 2, pp. 549–556.CrossRefGoogle ScholarPubMed
Staley, J. K., Boja, J. W., Carroll, F. I., Seltzman, H. H., Wyrick, C. D., Lewin, A. H., Abraham, P., & Mash, D. C. 1995, “Mapping dopamine transporters in the human brain with novel selective cocaine analog [125I]RTI-121”, Synapse, vol. 21, no. 4, pp. 364–372.CrossRefGoogle ScholarPubMed
Staley, J. K., Krishnan-Sarin, S., Zoghbi, S., Tamagnan, G., Fujita, M., Seibyl, J. P., Maciejewski, P. K., O'Malley, S., & Innis, R. B. 2001, “Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers”, Synapse, vol. 41, no. 4, pp. 275–284.CrossRefGoogle ScholarPubMed
Stark, A. K. & Pakkenberg, B. 2004, “Histological changes of the dopaminergic nigrostriatal system in aging”, Cell Tissue Res., vol. 318, no. 1, pp. 81–92.CrossRefGoogle Scholar
Stein, W. D. 1986, Transport and Diffusion Across Cell Membranes, Academic Press, Orlando, FL.Google Scholar
Stepanov, V., Schou, M., Jarv, J., & Halldin, C. 2007, “Synthesis of 3H-labeled N-(3-iodoprop-2E-enyl)-2beta-carbomethoxy-3beta-(4-methylphenyl)nortropane (PE2I) and its interaction with mice striatal membrane fragments”, Appl. Radiat. Isot., vol. 65, no. 3, pp. 293–300.CrossRefGoogle ScholarPubMed
Stone, A. L. 1980, “Studies on a molecular basis for the heparin-induced regulation of enzymatic activity of mouse striatal tyrosine hydroxylase in vitro. Inhibition of heparin activation and of the enzyme by poly-L-lysyltyrosine and poly-L-lysylphenylalanine and their constituent peptides”, J. Neurochem., vol. 35, no. 5, pp. 1137–1150.CrossRefGoogle Scholar
Stone, J. M., Bressan, R. A., Erlandsson, K., Ell, P. J., & Pilowsky, L. S. 2005, “Non-uniform blockade of intrastriatal D2/D3 receptors by risperidone and amisulpride”, Psychopharmacology (Berl), vol. 180, no. 4, pp. 664–669.CrossRefGoogle ScholarPubMed
Stout, D. B., Huang, S. C., Melega, W. P., Raleigh, M. J., Phelps, M. E., & Barrio, J. R. 1998, “Effects of large neutral amino acid concentrations on 6-[F-18]fluoro-L-DOPA kinetics”, J. Cereb. Blood Flow Metab., vol. 18, no. 1, pp. 43–51.CrossRefGoogle ScholarPubMed
Strafella, A. P., Ko, J. H., Grant, J., Fraraccio, M., & Monchi, O. 2005, “Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study”, Eur. J. Neurosci., vol. 22, no. 11, pp. 2946–2952.CrossRefGoogle Scholar
Strafella, A. P., Ko, J. H., & Monchi, O. 2006, “Therapeutic application of transcranial magnetic stimulation in Parkinson's disease: the contribution of expectation”, Neuroimage, vol. 31, no. 4, pp. 1666–1672.CrossRefGoogle Scholar
Strafella, A. P., Paus, T., Barrett, J., & Dagher, A. 2001, “Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus”, J. Neurosci., vol. 21, no. 15, p. RC157.CrossRefGoogle ScholarPubMed
Strafella, A. P., Paus, T., Fraraccio, M., & Dagher, A. 2003, “Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex”, Brain, vol. 126 (Pt 12), pp. 2609–2615.CrossRefGoogle ScholarPubMed
Strafella, A. P., Sadikot, A. F., & Dagher, A. 2003, “Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson's disease”, Neuroreport, vol. 14, no. 9, pp. 1287–1289.CrossRefGoogle Scholar
Suhara, T., Yasuno, F., Sudo, Y., Yamamoto, M., Inoue, M., Okubo, Y., & Suzuki, K. 2001, “Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking”, Neuroimage, vol. 13, no. 5, pp. 891–895.CrossRefGoogle ScholarPubMed
Sun, W., Ginovart, N., Ko, F., Seeman, P., & Kapur, S. 2003, “In vivo evidence for dopamine-mediated internalization of D2-receptors after amphetamine: differential findings with [3H]raclopride versus [3H]spiperone”, Mol.Pharmacol., vol. 63, no. 2, pp. 456–462.CrossRefGoogle ScholarPubMed
Sunahara, R. K., Guan, H. C., O'Dowd, B. F., Seeman, P., Laurier, L. G., Ng, G., George, S. R., Torchia, J., Tol, H. H., & Niznik, H. B. 1991, “Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1”, Nature, vol. 350, no. 6319, pp. 614–619.CrossRefGoogle ScholarPubMed
Suto, N., Austin, J. D., & Vezina, P. 2001, “Locomotor response to novelty predicts a rat's propensity to self-administer nicotine”, Psychopharmacology (Berl), vol. 158, no. 2, pp. 175–180.CrossRefGoogle ScholarPubMed
Suzuki, M., Hatano, K., Sakiyama, Y., Kawasumi, Y., Kato, T., & Ito, K. 2001, “Age-related changes of dopamine D1-like and D2-like receptor binding in the F344/N rat striatum revealed by positron emission tomography and in vitro receptor autoradiography”, Synapse, vol. 41, no. 4, pp. 285–293.CrossRefGoogle ScholarPubMed
Suzuki, S., Watanabe, Y., Tsubokura, S., Kagamiyama, H., & Hayaishi, O. 1988, “Decrease in tetrahydrobiopterin content and neurotransmitter amine biosynthesis in rat brain by an inhibitor of guanosine triphosphate cyclohydrolase”, Brain Res., vol. 446, no. 1, pp. 1–10.CrossRefGoogle ScholarPubMed
Svenningsson, P., Fienberg, A. A., Allen, P. B., Moine, C. L., Lindskog, M., Fisone, G., Greengard, P., & Fredholm, B. B. 2000, “Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32”, J. Neurochem., vol. 75, no. 1, pp. 248–257.CrossRefGoogle ScholarPubMed
Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. 2004, “DARPP-32: an integrator of neurotransmission”, Annu. Rev. Pharmacol. Toxicol., vol. 44, pp. 269–296.CrossRefGoogle ScholarPubMed
Svingos, A. L., Periasamy, S., & Pickel, V. M. 2000, “Presynaptic dopamine D(4) receptor localization in the rat nucleus accumbens shell”, Synapse, vol. 36, no. 3, pp. 222–232.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Szabo, D., Szabo, G.., Ocsovszki, I., Aszalos, A., & Molnar, J. 1999, “Anti-psychotic drugs reverse multidrug resistance of tumor cell lines and human AML cells ex-vivo”, Cancer Lett., vol. 139, no. 1, pp. 115–119.CrossRefGoogle ScholarPubMed
Szostak, C., Jakubovic, A., Phillips, A. G., & Fibiger, H. C. 1986, “Bilateral augmentation of dopaminergic and serotonergic activity in the striatum and nucleus accumbens induced by conditioned circling”, J. Neurosci., vol. 6, no. 7, pp. 2037–2044.CrossRefGoogle ScholarPubMed
Tai, Y. F., Ahsan, R. L., Yebenes, J. G., Pavese, N., Brooks, D. J., & Piccini, P. 2007, “Characterization of dopaminergic dysfunction in familial progressive supranuclear palsy: an 18F-dopa PET study”, J. Neural Transm., vol. 114, no. 3, pp. 337–340.CrossRefGoogle Scholar
Tajima, T., Hatano, K., Suzuki, M., Ogawa, M., Sakiyama, Y., Kato, T., Endo, H., Miura, H., Matsubara, M., & Ito, K. 2007, “Increased binding potential of [(11)C]raclopride during unilateral continuous microinjection of nicotine in rat striatum observed by positron emission tomography”, Synapse, vol. 61, no. 12, pp. 943–950.CrossRefGoogle Scholar
Takahashi, H., Fujimura, Y., Hayashi, M., Takano, H., Kato, M., Okubo, Y., Kanno, I., Ito, H., & Suhara, T. 2008, “Enhanced dopamine release by nicotine in cigarette smokers: a double-blind, randomized, placebo-controlled pilot study”, Int. J. Neuropsychopharmacol., vol. 11, no. 3, pp. 413–417.CrossRefGoogle ScholarPubMed
Takahashi, H., Kato, M., Hayashi, M., Okubo, Y., Takano, A., Ito, H., & Suhara, T. 2007, “Memory and frontal lobe functions; possible relations with dopamine D2 receptors in the hippocampus”, Neuroimage, vol. 34, no. 4, pp. 1643–1649.CrossRefGoogle ScholarPubMed
Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., & Uhl, G. R. 1997, “VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity”, Proc. Natl. Acad. Sci. USA, vol. 94, no. 18, pp. 9938–9943.CrossRefGoogle ScholarPubMed
Talvik, M., Nordstrom, A. L., Okubo, Y., Olsson, H., Borg, J., Halldin, C., & Farde, L. 2006, “Dopamine D2 receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography”, Psychiatry Res., vol. 148, no. 2–3, pp. 165–173.CrossRefGoogle ScholarPubMed
Talvik, M., Nordstrom, A. L., Olsson, H., Halldin, C., & Farde, L. 2003, “Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457”, Int. J. Neuropsychopharmacol., vol. 6, no. 4, pp. 361–370.CrossRefGoogle Scholar
Tam, S. Y., Elsworth, J. D., Bradberry, C. W., & Roth, R. H. 1990, “Mesocortical dopamine neurons: high basal firing frequency predicts tyrosine dependence of dopamine synthesis”, J. Neural Transm. Gen. Sect., vol. 81, no. 2, pp. 97–110.CrossRefGoogle ScholarPubMed
Tanaka, Y., Meguro, K., Yamaguchi, S., Ishii, H., Watanuki, S., Funaki, Y., Yamaguchi, K., Yamadori, A., Iwata, R., & Itoh, M. 2003, “Decreased striatal D2 receptor density associated with severe behavioral abnormality in Alzheimer's disease”, Ann. Nucl. Med., vol. 17, no. 7, pp. 567–573.CrossRefGoogle ScholarPubMed
Tappaz, M. L. & Pujol, J. F. 1980, “Estimation of the rate of tryptophan hydroxylation in vivo: a sensitive microassay in discrete rat brain nuclei”, J. Neurochem., vol. 34, no. 4, pp. 933–940.CrossRefGoogle ScholarPubMed
Tarazi, F. I., Kula, N. S., & Baldessarini, R. J. 1997, “Regional distribution of dopamine D4 receptors in rat forebrain”, Neuroreport, vol. 8, no. 16, pp. 3423–3426.CrossRefGoogle ScholarPubMed
Tauscher-Wisniewski, S., Kapur, S., Tauscher, J., Jones, C., Daskalakis, Z. J., Papatheodorou, G., Epstein, I., Christensen, B. K., & Zipursky, R. B. 2002, “Quetiapine: an effective antipsychotic in first-episode schizophrenia despite only transiently high dopamine-2 receptor blockade”, J. Clin. Psychiatry, vol. 63, no. 11, pp. 992–997.CrossRefGoogle ScholarPubMed
Taylor, S. F., Koeppe, R. A., Tandon, R., Zubieta, J. K., & Frey, K. A. 2000, “In vivo measurement of the vesicular monoamine transporter in schizophrenia”, Neuropsychopharmacology, vol. 23, no. 6, pp. 667–675.CrossRefGoogle Scholar
Tedroff, J., Pedersen, M., Aquilonius, S. M., Hartvig, P., Jacobsson, G., & Langstrom, B. 1996, “Levodopa-induced changes in synaptic dopamine in patients with Parkinson's disease as measured by [11C]raclopride displacement and PET”, Neurology, vol. 46, no. 5, pp. 1430–1436.CrossRefGoogle Scholar
Telang, F. W., Volkow, N. D., Levy, A., Logan, J., Fowler, J. S., Felder, C., Wong, C., & Wang, G. J. 1999, “Distribution of tracer levels of cocaine in the human brain as assessed with averaged [11C]cocaine images”, Synapse, vol. 31, no. 4, pp. 290–296.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Teng, L., Crooks, P. A., & Dwoskin, L. P. 1998, “Lobeline displaces [3H]dihydrotetrabenazine binding and releases [3H]dopamine from rat striatal synaptic vesicles: comparison with d-amphetamine”, J. Neurochem., vol. 71, no. 1, pp. 258–265.CrossRefGoogle ScholarPubMed
Tenhunen, J., Salminen, M., Lundstrom, K., Kiviluoto, T., Savolainen, R., & Ulmanen, I. 1994, “Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters”, Eur. J. Biochem., vol. 223, no. 3, pp. 1049–1059.CrossRefGoogle ScholarPubMed
Thanos, P. K., Michaelides, M., Benveniste, H., Wang, G. J., & Volkow, N. D. 2007a, “Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents”, Pharmacol. Biochem. Behav., vol. 87, no. 4, pp. 426–433.CrossRefGoogle ScholarPubMed
Thanos, P. K., Michaelides, M., Piyis, Y. K., Wang, G. J., & Volkow, N. D. 2007b, “Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([(11)C] raclopride) and in-vitro ([(3)H] spiperone) autoradiography”, Synapse, vol. 62, no. 1, pp. 50–61.CrossRefGoogle Scholar
Thibaut, F., Faucheux, B. A., Marquez, J., Villares, J., Menard, J. F., Agid, Y., & Hirsch, E. C. 1995, “Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson's disease: a postmortem study using tritiated tetrabenazine”, Brain Res., vol. 692, no. 1–2, pp. 233–243.CrossRefGoogle ScholarPubMed
Thierry, A. M., Tassin, J. P., Blanc, G., & Glowinski, J. 1976, “Selective activation of mesocortical DA system by stress”, Nature, vol. 263, no. 5574, pp. 242–244.CrossRefGoogle ScholarPubMed
Thobois, S., Fraix, V., Savasta, M., Costes, N., Pollak, P., Mertens, P., Koudsie, A., Bass, D., Benabid, A. L., & Broussolle, E. 2003, “Chronic subthalamic nucleus stimulation and striatal D2 dopamine receptors in Parkinson's disease – A [(11)C]raclopride PET study”, J. Neurol., vol. 250, no. 10, pp. 1219–1223.CrossRefGoogle ScholarPubMed
Thobois, S., Hassoun, W., Ginovart, N., Garcia-Larrea, L., Cavorsin, M., Guillouet, S., Bonnefoi, F., Costes, N., Lavenne, F., Broussolle, E., & Leviel, V. 2004, “Effect of sensory stimulus on striatal dopamine release in humans and cats: a [(11)C]raclopride PET study”, Neurosci. Lett., vol. 368, no. 1, pp. 46–51.CrossRefGoogle Scholar
Tidey, J. W. & Miczek, K. A. 1996, “Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study”, Brain Res., vol. 721, no. 1–2, pp. 140–149.CrossRefGoogle Scholar
Tiihonen, J., Kuikka, J., Bergstrom, K., Hakola, P., Karhu, J., Ryynanen, O. P., & Fohr, J. 1995, “Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics”, Nat. Med., vol. 1, no. 7, pp. 654–657.CrossRefGoogle ScholarPubMed
Tiihonen, J., Kuikka, J., Bergstrom, K., Lepola, U., Koponen, H., & Leinonen, E. 1997, “Dopamine reuptake site densities in patients with social phobia”, Am. J. Psychiatry, vol. 154, no. 2, pp. 239–242.Google ScholarPubMed
Tiihonen, J., Kuoppamaki, M., Nagren, K., Bergman, J., Eronen, E., Syvalahti, E., & Hietala, J. 1996, “Serotonergic modulation of striatal D2 dopamine receptor binding in humans measured with positron emission tomography”, Psychopharmacology (Berl), vol. 126, no. 4, pp. 277–280.CrossRefGoogle ScholarPubMed
Tipton, K. F. & Mantle, T. J. 1981, “The inhibition of rat liver monoamine oxidase by clorgyline and deprenyl,” in Monoamine Oxidase Inhibitors: The State of the Art, Youdim, M. B. H. & Paykel, E. S., eds., John Wiley, New York, pp. 3–15.Google Scholar
Tomer, R., Goldstein, R. Z., Wang, G. J., Wong, C., & Volkow, N. D. 2008, “Incentive motivation is associated with striatal dopamine asymmetry”, Biol. Psychol., vol. 77, no. 1, pp. 98–101.CrossRefGoogle ScholarPubMed
Tong, J., Wilson, A. A., Boileau, I., Houle, S., & Kish, S. J. 2008, “Dopamine modulating drugs influence striatal (+)-[(11)C]DTBZ binding in rats: VMAT2 binding is sensitive to changes in vesicular dopamine concentration”, Synapse, vol. 62, no. 11, pp. 873–876.CrossRefGoogle Scholar
Tonissaar, M., Herm, L., Rinken, A., & Harro, J. 2006, “Individual differences in sucrose intake and preference in the rat: circadian variation and association with dopamine D2 receptor function in striatum and nucleus accumbens”, Neurosci. Lett., vol. 403, no. 1–2, pp. 119–124.CrossRefGoogle ScholarPubMed
Torstenson, R., Tedroff, J., Hartvig, P., Fasth, K. J., & Langstrom, B. 1999, “A comparison of 11C-labeled L-DOPA and L-fluorodopa as positron emission tomography tracers for the presynaptic dopaminergic system”, J. Cereb. Blood Flow Metab., vol. 19, no. 10, pp. 1142–1149.CrossRefGoogle ScholarPubMed
Travis, E. R. & Wightman, R. M. 1998, “Spatio-temporal resolution of exocytosis from individual cells”, Annu. Rev. Biophys. Biomol. Struct., vol. 27, pp. 77–103.CrossRefGoogle ScholarPubMed
Tribl, G. G., Asenbaum, S., Happe, S., Bonelli, R. M., Zeitlhofer, J., & Auff, E. 2004, “Normal striatal D2 receptor binding in idiopathic restless legs syndrome with periodic leg movements in sleep”, Nucl. Med. Commun., vol. 25, no. 1, pp. 55–60.CrossRefGoogle ScholarPubMed
Trovero, F., Herve, D., Blanc, G., Glowinski, J., & Tassin, J. P. 1992, “In vivo partial inactivation of dopamine D1 receptors induces hypersensitivity of cortical dopamine-sensitive adenylate cyclase: permissive role of alpha 1-adrenergic receptors”, J. Neurochem., vol. 59, no. 1, pp. 331–337.CrossRefGoogle ScholarPubMed
Tsukada, H., Harada, N., Nishiyama, S., Ohba, H., & Kakiuchi, T. 2000a, “Cholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: positron emission tomography studies with microdialysis in the conscious monkey brain”, J. Neurosci., vol. 20, no. 18, pp. 7067–7073.CrossRefGoogle ScholarPubMed
Tsukada, H., Harada, N., Nishiyama, S., Ohba, H., Sato, K., Fukumoto, D., & Kakiuchi, T. 2000b, “Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis”, Synapse, vol. 37, no. 2, pp. 95–103.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Tsukada, H., Harada, N., Ohba, H., Nishiyama, S., & Kakiuchi, T. 2001, “Facilitation of dopaminergic neural transmission does not affect [(11)C]SCH23390 binding to the striatal D(1) dopamine receptors, but the facilitation enhances phosphodiesterase type-IV activity through D(1) receptors: PET studies in the conscious monkey brain”, Synapse, vol. 42, no. 4, pp. 258–265.CrossRefGoogle Scholar
Tsukada, H., Kreuter, J., Maggos, C. E., Unterwald, E. M., Kakiuchi, T., Nishiyama, S., Futatsubashi, M., & Kreek, M. J. 1996, “Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain: an in vivo study using positron emission tomography”, J. Neurosci., vol. 16, no. 23, pp. 7670–7677.CrossRefGoogle Scholar
Tsukada, H., Miyasato, K., Harada, N., Nishiyama, S., Fukumoto, D., & Kakiuchi, T. 2005, “Nicotine modulates dopamine synthesis rate as determined by L-[beta-11C]DOPA: PET studies compared with [11C]raclopride binding in the conscious monkey brain”, Synapse, vol. 57, no. 2, pp. 120–122.CrossRefGoogle Scholar
Tsukada, H., Miyasato, K., Kakiuchi, T., Nishiyama, S., Harada, N., & Domino, E. F. 2002, “Comparative effects of methamphetamine and nicotine on the striatal [(11)C]raclopride binding in unanesthetized monkeys”, Synapse, vol. 45, no. 4, pp. 207–212.CrossRefGoogle ScholarPubMed
Tsukada, H., Nishiyama, S., Kakiuchi, T., Ohba, H., Sato, K., & Harada, N. 1999, “Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride? PET studies combined with microdialysis in conscious monkeys”, Brain Res., vol. 841, no. 1–2, pp. 160–169.CrossRefGoogle Scholar
Tunbridge, E. M., Bannerman, D. M., Sharp, T., & Harrison, P. J. 2004, “Catechol-O-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex”, J. Neurosci., vol. 24, no. 23, pp. 5331–5335.CrossRefGoogle ScholarPubMed
Tune, L. E., Wong, D. F., Pearlson, G., Strauss, M., Young, T., Shaya, E. K., Dannals, R. F., Wilson, A. A., Ravert, H. T., Sapp, J., &. 1993, “Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone”, Psychiatry Res., vol. 49, no. 3, pp. 219–237.CrossRefGoogle ScholarPubMed
Tunnicliff, G., Brokaw, J. J., Hausz, J. A., Matheson, G. K., & White, G. W. 1992, “Influence of repeated treatment with buspirone on central 5-hydroxytryptamine and dopamine synthesis”, Neuropharmacology, vol. 31, no. 10, pp. 991–995.CrossRefGoogle ScholarPubMed
Tuomainen, P., Tornwall, M., & Mannisto, P. T. 1996, “Minor effect of tolcapone, a catechol-O-methyltransferase inhibitor, on extracellular dopamine levels modified by amphetamine or pargyline: a microdialysis study in anaesthetized rats”, Pharmacol.Toxicol., vol. 78, no. 6, pp. 392–396.CrossRefGoogle ScholarPubMed
Tupala, E., Häkkinen, M., Storvik, M., Tiihonen, J. 2008, “Striatal dopaminergic terminals in type 1 and type 2 alcoholics measured with [3H]dihydrotetrabenazine and human whole hemisphere autoradiography”, Psychiatry Res., vol. 163, no. 1, pp. 70–75.CrossRefGoogle ScholarPubMed
Tupala, E., Kuikka, J. T., Hall, H., Bergström, K., Särkioja, T., Räsänen, P., Mantere, T., Hiltunen, J., Vepsäläinen, J., & Tiihonen, J. 2001, “Measurement of the striatal dopamine transporter density and heterogeneity in type 1 alcoholics using human whole hemisphere autoradiography”, Neuroimage, vol. 14 (1 Pt 1), pp. 87–94.CrossRefGoogle ScholarPubMed
Tuppurainen, H., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Bergstrom, K., & Tiihonen, J. 2003, “Extrastriatal dopamine D2/3 receptor density and distribution in drug-naive schizophrenic patients”, Mol. Psychiatry, vol. 8, no. 4, pp. 453–455.CrossRefGoogle Scholar
Tuppurainen, H., Kuikka, J. T., Laakso, M. P., Viinamaki, H., Husso, M., & Tiihonen, J. 2006, “Midbrain dopamine D2/3 receptor binding in schizophrenia”, Eur. Arch. Psychiatry Clin. Neurosci., vol. 256, no. 6, pp. 382–387.CrossRefGoogle Scholar
Turjanski, N., Lees, A. J., & Brooks, D. J. 1997, “In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson's disease patients with and without dyskinesias”, Neurology, vol. 49, no. 3, pp. 717–723.CrossRefGoogle ScholarPubMed
Tyce, G. M., Messick, J. M., Yaksh, T. L., Byer, D. E., Danielson, D. R., & Rorie, D. K. 1986, “Amine sulfate formation in the central nervous system”, Fed.Proc., vol. 45, no. 8, pp. 2247–2253.Google ScholarPubMed
Udenfriend, S., Zaltzman-Nirenberg, P., & Nagatsu, T. 1965, “Inhibitors of purified beef adrenal tyrosine hydroxylase”, Biochem. Pharmacol., vol. 14, no. 5, pp. 837–845.CrossRefGoogle ScholarPubMed
Udo de Haes, J. I., Kortekaas, R., Waarde, A., Maguire, R. P., Pruim, J., & Boer, J. A. 2005, “Assessment of methylphenidate-induced changes in binding of continuously infused [(11)C]raclopride in healthy human subjects: correlation with subjective effects”, Psychopharmacology (Berl), vol. 183, no. 3, pp. 322–330.CrossRefGoogle ScholarPubMed
Ujike, H., Akiyama, K., & Kuroda, S. 1996, “[3H]YM-09151–2 (nemonapride), a potent radioligand for both sigma 1 and sigma 2 receptor subtypes”, Neuroreport, vol. 7, no. 5, pp. 1057–1061.CrossRefGoogle Scholar
Ulmanen, I., Peranen, J., Tenhunen, J., Tilgmann, C., Karhunen, T., Panula, P., Bernasconi, L., Aubry, J. P., & Lundstrom, K. 1997, “Expression and intracellular localization of catechol O-methyltransferase in transfected mammalian cells”, Eur. J. Biochem., vol. 243, no. 1–2, pp. 452–459.CrossRefGoogle ScholarPubMed
Ungerstedt, U. & Arbuthnott, G. W. 1970, “Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system”, Brain Res., vol. 24, no. 3, pp. 485–493.CrossRefGoogle ScholarPubMed
Urwyler, S. & Coward, D. 1987, “Binding of 3H-spiperone and 3H-(-)-sulpiride to dopamine D2 receptors in rat striatal membranes: methodological considerations and demonstration of the identical nature of the binding sites for the two ligands”, Naunyn Schmiedebergs Arch. Pharmacol., vol. 335, no. 2, pp. 115–122.CrossRefGoogle ScholarPubMed
Valette, H., Bottlaender, M., Dolle, F., Coulon, C., Ottaviani, M., & Syrota, A. 2005, “Acute inhibition of cardiac monoamine oxidase A after tobacco smoke inhalation: validation study of [11C]befloxatone in rats followed by a positron emission tomography application in baboons”, J. Pharmacol. Exp. Ther., vol. 314, no. 1, pp. 431–436.CrossRefGoogle ScholarPubMed
Munckhof, P., Luk, K. C., Ste-Marie, L., Montgomery, J., Blanchet, P. J., Sadikot, A. F., & Drouin, J. 2003, “Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons”, Development, vol. 130, no. 11, pp. 2535–2542.CrossRefGoogle ScholarPubMed
Werf, J. F., Sebens, J. B., & Korf, J. 1984, “In vivo binding of N-n-propylnorapomorphine in the rat striatum: quantification after lesions produced by kainate, 6-hydroxydopamine and decortication”, Eur. J. Pharmacol., vol. 102, no. 2, pp. 251–259.CrossRefGoogle ScholarPubMed
Werf, J. F., Sebens, J. B., & Korf, J. 1986, “Tracer and maximal specific binding of tritiated spiperone or N-n-propylnorapomorphine to quantify dopamine receptors in rat brain regions in vivo”, Life Sci., vol. 39, no. 2, pp. 155–160.CrossRefGoogle ScholarPubMed
Werf, J. F., Sebens, J. B., Vaalburg, W., & Korf, J. 1983, “In vivo binding of N-n-propylnorapomorphine in the rat brain: regional localization, quantification in striatum and lack of correlation with dopamine metabolism”, Eur. J. Pharmacol., vol. 87, no. 2–3, pp. 259–270.CrossRefGoogle ScholarPubMed
Dyck, C. H., Avery, R. A., Macavoy, M. G., Marek, K. L., Quinlan, D. M., Baldwin, R. M., Seibyl, J. P., Innis, R. B., & Arnsten, A. F. 2008, “Striatal dopamine transporters correlate with simple reaction time in elderly subjects”, Neurobiol. Aging., vol. 29, no. 8, pp. 1237–1246.CrossRefGoogle ScholarPubMed
Dyck, C. H., Malison, R. T., Jacobsen, L. K., Seibyl, J. P., Staley, J. K., Laruelle, M., Baldwin, R. M., Innis, R. B., & Gelernter, J. 2005, “Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene”, J.Nucl.Med., vol. 46, no. 5, pp. 745–751.Google ScholarPubMed
Dyck, C. H., Seibyl, J. P., Malison, R. T., Laruelle, M., Wallace, E., Zoghbi, S. S., Zea-Ponce, Y., Baldwin, R. M., Charney, D. S., & Hoffer, P. B. 1995, “Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CIT-SPECT”, J. Nucl. Med., vol. 36, no. 7, pp. 1175–1181.Google Scholar
Laere, K., Ceuninck, L., Dom, R., Eyden, J., Vanbilloen, H., Cleynhens, J., Dupont, P., Bormans, G., Verbruggen, A., & Mortelmans, L. 2004, “Dopamine transporter SPECT using fast kinetic ligands: 123I-FP-beta-CIT versus 99mTc-TRODAT-1”, Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 8, pp. 1119–1127.CrossRefGoogle ScholarPubMed
Oostrom, J. C., Maguire, R. P., Verschuuren-Bemelmans, C. C., Veenma, D. L., Pruim, J., Roos, R. A., & Leenders, K. L. 2005, “Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease”, Neurology, vol. 65, no. 6, pp. 941–943.CrossRefGoogle ScholarPubMed
Valkenburg, C., Krogt, J., Moleman, P., Beerkum, H., Tjaden, U., & Jong, J. 1984, “A procedure to measure the specific activities of dopamine and its metabolites in rat striatum, based on HPLC, electrochemical detection and liquid scintillation counting”, J. Neurosci. Methods, vol. 11, no. 1, pp. 29–38.CrossRefGoogle ScholarPubMed
Zwieten-Boot, B. J. & Noach, E. L. 1975, “The effect of blocking dopamine release on synthesis rate of dopamine in the striatum of the rat”, Eur. J. Pharmacol., vol. 33, no. 2, pp. 247–254.CrossRefGoogle ScholarPubMed
Vander Borght, T., Kilbourn, M., Desmond, T., Kuhl, D., & Frey, K. 1995, “The vesicular monoamine transporter is not regulated by dopaminergic drug treatments”, Eur. J. Pharmacol., vol. 294, no. 2–3, pp. 577–583.CrossRefGoogle Scholar
Vander Borght, T. M., Kilbourn, M. R., Koeppe, R. A., DaSilva, J. N., Carey, J. E., Kuhl, D. E., & Frey, K. A. 1995a, “In vivo imaging of the brain vesicular monoamine transporter”, J. Nucl. Med., vol. 36, no. 12, pp. 2252–2260.Google ScholarPubMed
Vander Borght, T. M., Sima, A. A., Kilbourn, M. R., Desmond, T. J., Kuhl, D. E., & Frey, K. A. 1995b, “[3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity”, Neuroscience, vol. 68, no. 3, pp. 955–962.CrossRefGoogle ScholarPubMed
Vasdev, N., Natesan, S., Galineau, L., Garcia, A., Stableford, W. T., McCormick, P., Seeman, P., Houle, S., & Wilson, A. A. 2006, “Radiosynthesis, ex vivo and in vivo evaluation of [11C]preclamol as a partial dopamine D2 agonist radioligand for positron emission tomography”, Synapse, vol. 60, no. 4, pp. 314–318.CrossRefGoogle ScholarPubMed
Vasdev, N., Seeman, P., Garcia, A., Stableford, W. T., Nobrega, J. N., Houle, S., & Wilson, A. A. 2007, “Syntheses and in vitro evaluation of fluorinated naphthoxazines as dopamine D2/D3 receptor agonists: radiosynthesis, ex vivo biodistribution and autoradiography of [(18)F]F-PHNO”, Nucl. Med. Biol., vol. 34, no. 2, pp. 195–203.CrossRefGoogle Scholar
Vassout, A., Bruinink, A., Krauss, J., Waldmeier, P., & Bischoff, S. 1993, “Regulation of dopamine receptors by bupropion: comparison with antidepressants and CNS stimulants”, J. Recept. Res., vol. 13, no. 1–4, pp. 341–354.CrossRefGoogle ScholarPubMed
Vaughn, D. M., Coleman, E., Simpson, S. T., Whitmer, B., & Satjawatcharaphong, C. 1988, “A rostrocaudal gradient for neurotransmitter metabolites and a caudorostral gradient for protein in canine cerebrospinal fluid”, Am. J. Vet. Res., vol. 49, no. 12, pp. 2134–2137.Google Scholar
Venero, J. L., Machado, A., & Cano, J. 1991, “Turnover of dopamine and serotonin and their metabolites in the striatum of aged rats”, J. Neurochem., vol. 56, no. 6, pp. 1940–1948.CrossRefGoogle ScholarPubMed
Verhoeff, N. P., Hussey, D., Lee, M., Tauscher, J., Papatheodorou, G., Wilson, A. A., Houle, S., & Kapur, S. 2002, “Dopamine depletion results in increased neostriatal D(2), but not D(1), receptor binding in humans”, Mol. Psychiatry, vol. 7, no. 3, pp. 233, 322–328.CrossRefGoogle Scholar
Verma, V., Mann, A., Costain, W., Pontoriero, G., Castellano, J. M., Skoblenick, K., Gupta, S. K., Pristupa, Z., Niznik, H. B., Johnson, R. L., Nair, V. D., & Mishra, R. K. 2005, “Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog”, J. Pharmacol. Exp. Ther., vol. 315, no. 3, pp. 1228–1236.CrossRefGoogle Scholar
Vermeulen, R. J., Drukarch, B., Verhoeff, N. P., Goosen, C., Sahadat, M. C., Wolters, E. C., Royen, E. A., & Stoof, J. C. 1994, “No direct correlation between behaviorally active doses of the dopamine D2 agonist LY 171555 and displacement of [123I]IBZM as measured with SPECT in MPTP monkeys,” Synapse, vol. 17, no. 2, pp. 115–124.CrossRefGoogle Scholar
Vernaleken, I., Buchholz, H. G., Kumakura, Y., Siessmeier, T., Stoeter, P., Bartenstein, P., Cumming, P., & Grunder, G. 2007a, “ ‘Prefrontal’ cognitive performance of healthy subjects positively correlates with cerebral FDOPA influx: An exploratory [(18)F]-fluoro-L-DOPA-PET investigation”, Hum. Brain Mapp., vol. 28, no. 10, pp. 931–939.CrossRefGoogle Scholar
Vernaleken, I., Kumakura, Y., Cumming, P., Buchholz, H. G., Siessmeier, T., Stoeter, P., Muller, M. J., Bartenstein, P., & Grunder, G. 2006, “Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge”, Neuroimage, vol. 30, no. 4, pp. 1332–1339.CrossRefGoogle ScholarPubMed
Vernaleken, I., Weibrich, C., Siessmeier, T., Buchholz, H. G., Rosch, F., Heinz, A., Cumming, P., Stoeter, P., Bartenstein, P., & Grunder, G. 2007b, “Asymmetry in dopamine D(2/3) receptors of caudate nucleus is lost with age”, Neuroimage, vol. 34, no. 3, pp. 870–878.CrossRefGoogle ScholarPubMed
Veronese, M. E., Burgess, W., Zhu, X., & McManus, M. E. 1994, “Functional characterization of two human sulphotransferase cDNAs that encode monoamine- and phenol-sulphating forms of phenol sulphotransferase: substrate kinetics, thermal-stability and inhibitor-sensitivity studies”, Biochem.J., vol. 302 (Pt 2), pp. 497–502.CrossRefGoogle ScholarPubMed
Villemagne, V. L., Wong, D. F., Yokoi, F., Stephane, M., Rice, K. C., Matecka, D., Clough, D. J., Dannals, R. F., & Rothman, R. B. 1999, “GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans”, Synapse, vol. 33, no. 4, pp. 268–273.3.0.CO;2-W>CrossRefGoogle Scholar
Villemagne, V., Yuan, J., Wong, D. F., Dannals, R. F., Hatzidimitriou, G., Mathews, W. B., Ravert, H. T., Musachio, J., McCann, U. D., & Ricaurte, G. A. 1998, “Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations”, J. Neurosci., vol. 18, no. 1, pp. 419–427.CrossRefGoogle ScholarPubMed
Vincent, S. R. 1989, “Histochemical localization of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine oxidation in the mouse brain”, Neuroscience, vol. 28, no. 1, pp. 189–199.CrossRefGoogle ScholarPubMed
Vitale, M. L., Seward, E. P., & Trifaro, J. M. 1995, “Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis”, Neuron, vol. 14, no. 2, pp. 353–363.CrossRefGoogle ScholarPubMed
Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., Logan, J., Franceschi, D., Gatley, J., Hitzemann, R., Gifford, A., Wong, C., & Pappas, N. 2001a, “Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex”, Am. J. Psychiatry, vol. 158, no. 12, pp. 2015–2021.CrossRefGoogle ScholarPubMed
Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., Gatley, S. J., Miller, E., Hitzemann, R., Ding, Y. S., & Logan, J. 2001b, “Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence”, J. Neurosci., vol. 21, no. 23, pp. 9414–9418.CrossRefGoogle ScholarPubMed
Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. 2001c, “Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers”, Am. J. Psychiatry, vol. 158, no. 3, pp. 377–382.CrossRefGoogle ScholarPubMed
Volkow, N. D., Ding, Y. S., Fowler, J. S., Wang, G. J., Logan, J., Gatley, J. S., Dewey, S., Ashby, C., Liebermann, J., Hitzemann, R., et al. 1995a, “Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain”, Arch. Gen. Psychiatry, vol. 52, no. 6, pp. 456–463.CrossRefGoogle ScholarPubMed
Volkow, N. D., Ding, Y. S., Fowler, J. S., Wang, G. J., Logan, J., Gatley, S. J., Hitzemann, R., Smith, G., Fields, S. D., & Gur, R. 1996a, “Dopamine transporters decrease with age”, J. Nucl. Med., vol. 37, no. 4, pp. 554–559.Google ScholarPubMed
Volkow, N. D., Fowler, J. S., Gatley, S. J., Dewey, S. L., Wang, G. J., Logan, J., Ding, Y. S., Franceschi, D., Gifford, A., Morgan, A., Pappas, N., & King, P. 1999a, “Comparable changes in synaptic dopamine induced by methylphenidate and by cocaine in the baboon brain”, Synapse, vol. 31, no. 1, pp. 59–66.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Logan, J., Gatley, S. J., Dewey, S. L., MacGregor, R. R., Schlyer, D. J., Pappas, N., King, P., Wang, G. J., &. 1995b, “Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: a PET study”, J. Nucl. Med., vol. 36, no. 7, pp. 1289–1297.Google ScholarPubMed
Volkow, N. D., Fowler, J. S., Wolf, A. P., Schlyer, D., Shiue, C. Y., Alpert, R., Dewey, S. L., Logan, J., Bendriem, B., Christman, D., et al. 1990, “Effects of chronic cocaine abuse on postsynaptic dopamine receptors”, Am. J. Psychiatry, vol. 147, no. 6, pp. 719–724.Google ScholarPubMed
Volkow, N. D., Gatley, S. J., Fowler, J. S., Chen, R., Logan, J., Dewey, S. L., Ding, Y. S., Pappas, N., King, P., MacGregor, R. R., &. 1995c, “Long-lasting inhibition of in vivo cocaine binding to dopamine transporters by 3 beta-(4-iodophenyl)tropane-2-carboxylic acid methyl ester: RTI-55 or beta CIT”, Synapse, vol. 19, no. 3, pp. 206–211.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., Hitzemann, R., Smith, G., & Logan, J. 1998a, “Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals”, Am. J. Psychiatry, vol. 155, no. 3, pp. 344–349.Google ScholarPubMed
Volkow, N. D., Wang, G. J., Begleiter, H., Porjesz, B., Fowler, J. S., Telang, F., Wong, C., Ma, Y., Logan, J., Goldstein, R., Alexoff, D., & Thanos, P. K. 2006, “High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors”, Arch. Gen. Psychiatry, vol. 63, no. 9, pp. 999–1008.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fischman, M. W., Foltin, R. W., Fowler, J. S., Abumrad, N. N., Vitkun, S., Logan, J., Gatley, S. J., Pappas, N., Hitzemann, R., & Shea, C. E. 1997a, “Relationship between subjective effects of cocaine and dopamine transporter occupancy”, Nature, vol. 386, no. 6627, pp. 827–830.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y. S., Dewey, S. L., Hitzemann, R., Gifford, A. N., & Pappas, N. R. 1999b, “Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of ‘high’ ”, J. Pharmacol. Exp. Ther., vol. 288, no. 1, pp. 14–20.Google ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y. S., Hitzemann, R., & Pappas, N. 1998b, “Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate”, Am. J. Psychiatry, vol. 155, no. 10, pp. 1325–1331.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Franceschi, D., Maynard, L., Ding, Y. S., Gatley, S. J., Gifford, A., Zhu, W., & Swanson, J. M. 2002a, “Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications”, Synapse, vol. 43, no. 3, pp. 181–187.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Gifford, A., Hitzemann, R., Ding, Y. S., & Pappas, N. 1999c, “Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels”, Am. J. Psychiatry, vol. 156, no. 9, pp. 1440–1443.Google ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Hitzemann, R., Chen, A. D., Dewey, S. L., & Pappas, N. 1997b, “Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects”, Nature, vol. 386, no. 6627, pp. 830–833.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., MacGregor, R. R., Schlyer, D. J., Hitzemann, R., & Wolf, A. P. 1996b, “Measuring age-related changes in dopamine D2 receptors with 11C-raclopride and 18F-N-methylspiroperidol”, Psychiatry Res., vol. 67, no. 1, pp. 11–16.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemann, R., Ding, Y. S., Pappas, N., Shea, C., & Piscani, K. 1996c, “Decreases in dopamine receptors but not in dopamine transporters in alcoholics”, Alcohol Clin. Exp. Res., vol. 20, no. 9, pp. 1594–1598.CrossRefGoogle Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemannn, R., Gatley, S. J., MacGregor, R. R., & Wolf, A. P. 1996d, “Cocaine uptake is decreased in the brain of detoxified cocaine abusers”, Neuropsychopharmacology, vol. 14, no. 3, pp. 159–168.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., Wong, C., Gatley, S. J., Gifford, A. N., Ding, Y. S., & Pappas, N. 2002b, “ ‘Nonhedonic’ food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect”, Synapse, vol. 44, no. 3, pp. 175–180.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Telang, F., Maynard, L., Logan, J., Gatley, S. J., Pappas, N., Wong, C., Vaska, P., Zhu, W., & Swanson, J. M. 2004, “Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain”, Am. J. Psychiatry, vol. 161, no. 7, pp. 1173–1180.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Maynard, L., Fowler, J. S., Jayne, B., Telang, F., Logan, J., Ding, Y. S., Gatley, S. J., Hitzemann, R., Wong, C., & Pappas, N. 2002c, “Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study”, Psychiatry Res., vol. 116, no. 3, pp. 163–172.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Newcorn, J., Fowler, J. S., Telang, F., Solanto, M. V., Logan, J., Wong, C., Ma, Y., Swanson, J. M., Schulz, K., & Pradhan, K. 2007a, “Brain dopamine transporter levels in treatment and drug naive adults with ADHD”, Neuroimage, vol. 34, no. 3, pp. 1182–1190.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Newcorn, J., Telang, F., Solanto, M. V., Fowler, J. S., Logan, J., Ma, Y., Schulz, K., Pradhan, K., Wong, C., & Swanson, J. M. 2007b, “Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder”, Arch. Gen. Psychiatry, vol. 64, no. 8, pp. 932–940.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Jayne, M., Ma, Y., Pradhan, K., & Wong, C. 2007c, “Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement”, J. Neurosci., vol. 27, no. 46, pp. 12700–12706.CrossRefGoogle ScholarPubMed
Vollenweider, F. X., Vontobel, P., Hell, D., & Leenders, K. L. 1999, “5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride”, Neuropsychopharmacology, vol. 20, no. 5, pp. 424–433.CrossRefGoogle Scholar
Vollenweider, F. X., Vontobel, P., Oye, I., Hell, D., & Leenders, K. L. 2000, “Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans”, J. Psychiatr. Res., vol. 34, no. 1, pp. 35–43.CrossRefGoogle Scholar
Voltattorni, C. B., Minelli, A., & Dominici, P. 1983, “Interaction of aromatic amino acids in D and L forms with 3,4-dihydroxyphenylalanine decarboxylase from pig kidney”, Biochemistry, vol. 22, no. 9, pp. 2249–2254.CrossRefGoogle Scholar
Economo, C. 1931, Encephalitis Lethargica. Its sequelae and Treatment, Oxford University Press, London.Google Scholar
Euler, G., Ploeg, I., Fredholm, B. B., & Fuxe, K. 1991, “Neurotensin decreases the affinity of dopamine D2 agonist binding by a G protein-independent mechanism”, J. Neurochem., vol. 56, no. 1, pp. 178–183.CrossRefGoogle Scholar
Euler, G., Ploeg, I., Fredholm, B. B., & Fuxe, K. 1991, “Neurotensin decreases the affinity of dopamine D2 agonist binding by a G protein-independent mechanism”, J. Neurochem., vol. 56, no. 1, pp. 178–183.CrossRefGoogle Scholar
Vortherms, T. A., Nguyen, C. H., Bastepe, M., Juppner, H., & Watts, V. J. 2006, “D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is G alpha(s) independent”, Neuropharmacology, vol. 50, no. 5, pp. 576–584.CrossRefGoogle Scholar
Voruganti, L., Slomka, P., Zabel, P., Costa, G., So, A., Mattar, A., & Awad, A. G. 2001a, “Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D(2) binding ratios on SPECT imaging”, Neuropsychopharmacology, vol. 25, no. 5, pp. 642–650.CrossRefGoogle ScholarPubMed
Voruganti, L. N., Slomka, P., Zabel, P., Mattar, A., & Awad, A. G. 2001b, “Cannabis induced dopamine release: an in-vivo SPECT study”, Psychiatry Res., vol. 107, no. 3, pp. 173–177.CrossRefGoogle Scholar
Vrana, K. E. & Roskoski, R., Jr. 1983, “Tyrosine hydroxylase inactivation following cAMP-dependent phosphorylation activation”, J. Neurochem., vol. 40, no. 6, pp. 1692–1700.CrossRefGoogle ScholarPubMed
Vrecko, K., Storga, D., Birkmayer, J. G., Moller, R., Tafeit, E., Horejsi, R., & Reibnegger, G. 1997, “NADH stimulates endogenous dopamine biosynthesis by enhancing the recycling of tetrahydrobiopterin in rat phaeochromocytoma cells”, Biochim. Biophys. Acta, vol. 1361, no. 1, pp. 59–65.CrossRefGoogle ScholarPubMed
Wachtel, S. R. & Abercrombie, E. D. 1994, “L-3,4-dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors”, J. Neurochem., vol. 63, no. 1, pp. 108–117.CrossRefGoogle ScholarPubMed
Wagner, H. N., Jr., Burns, H. D., Dannals, R. F., Wong, D. F., Langstrom, B., Duelfer, T., Frost, J. J., Ravert, H. T., Links, J. M., Rosenbloom, S. B., Lukas, S. E., Kramer, A. V., & Kuhar, M. J. 1983, “Imaging dopamine receptors in the human brain by positron tomography”, Science, vol. 221, no. 4617, pp. 1264–1266.CrossRefGoogle ScholarPubMed
Walker, Z., Costa, D. C., Walker, R. W., Lee, L., Livingston, G., Jaros, E., Perry, R., McKeith, I., & Katona, C. L. 2004, “Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison”, Neurology, vol. 62, no. 9, pp. 1568–1572.CrossRefGoogle ScholarPubMed
Wallace, D. R., Owens, J., & Booze, R. M. 1998, “[3H](+)-7-OH-DPAT and [3H]pramipexole binding in the striatum and nucleus accumbens of Sprague-Dawley and Fischer-344 rats”, Life Sci., vol. 63, no. 19, pp. L275-L280.CrossRefGoogle Scholar
Walters, J. R. & Roth, R. H. 1974, “Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow”, J. Pharmacol. Exp. Ther., vol. 191, no. 1, pp. 82–91.Google ScholarPubMed
Wand, G. S., Oswald, L. M., McCaul, M. E., Wong, D. F., Johnson, E., Zhou, Y., Kuwabara, H., & Kumar, A. 2007, “Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress”, Neuropsychopharmacology, vol. 32, no. 11, pp. 2310–2320.CrossRefGoogle ScholarPubMed
Wang, G. J., Chang, L., Volkow, N. D., Telang, F., Logan, J., Ernst, T., & Fowler, J. S. 2004, “Decreased brain dopaminergic transporters in HIV-associated dementia patients”, Brain, vol. 127 (Pt 11), pp. 2452–2458.CrossRefGoogle ScholarPubMed
Wang, G. J., Volkow, N. D., Fowler, J. S., Franceschi, D., Logan, J., Pappas, N. R., Wong, C. T., & Netusil, N. 2000, “PET studies of the effects of aerobic exercise on human striatal dopamine release”, J. Nucl. Med., vol. 41, no. 8, pp. 1352–1356.Google ScholarPubMed
Wang, G. J., Volkow, N. D., Fowler, J. S., Logan, J., Abumrad, N. N., Hitzemann, R. J., Pappas, N. S., & Pascani, K. 1997, “Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal”, Neuropsychopharmacology, vol. 16, no. 2, pp. 174–182.CrossRefGoogle ScholarPubMed
Wang, G. J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., Netusil, N., & Fowler, J. S. 2001, “Brain dopamine and obesity”, Lancet, vol. 357, no. 9253, pp. 354–357.CrossRefGoogle ScholarPubMed
Watanabe, H. 1985, “Simple method for evaluation of stimulatory effect of drugs on presynaptic dopamine receptors in mice”, J. Pharmacol. Methods, vol. 14, no. 1, pp. 41–47.CrossRefGoogle ScholarPubMed
Wee, S., Carroll, F. I., & Woolverton, W. L. 2006, “A reduced rate of in vivo dopamine transporter binding is associated with lower relative reinforcing efficacy of stimulants”, Neuropsychopharmacology, vol. 31, no. 2, pp. 351–362.CrossRefGoogle ScholarPubMed
Wenkstern, D., Pfaus, J. G., & Fibiger, H. C. 1993, “Dopamine transmission increases in the nucleus accumbens of male rats during their first exposure to sexually receptive female rats”, Brain Res., vol. 618, no. 1, pp. 41–46.CrossRefGoogle ScholarPubMed
Wessel, T. C. & Joh, T. H. 1992, “Parallel upregulation of catecholamine-synthesizing enzymes in rat brain and adrenal gland: effects of reserpine and correlation with immediate early gene expression”, Brain Res. Mol. Brain Res., vol. 15, no. 3–4, pp. 349–360.CrossRefGoogle ScholarPubMed
Wester, P., Bergstrom, U., Eriksson, A., Gezelius, C., Hardy, J., & Winblad, B. 1990, “Ventricular cerebrospinal fluid monoamine transmitter and metabolite concentrations reflect human brain neurochemistry in autopsy cases”, J. Neurochem., vol. 54, no. 4, pp. 1148–1156.CrossRefGoogle ScholarPubMed
Westerink, B. H., Bosker, F. J., & Wirix, E. 1984, “Formation and metabolism of dopamine in nine areas of the rat brain: modifications by haloperidol”, J. Neurochem., vol. 42, no. 5, pp. 1321–1327.CrossRefGoogle ScholarPubMed
Westerink, B. H. & Vries, J. B. 1991, “Effect of precursor loading on the synthesis rate and release of dopamine and serotonin in the striatum: a microdialysis study in conscious rats”, J. Neurochem., vol. 56, no. 1, pp. 228–233.CrossRefGoogle ScholarPubMed
Westerink, B. H., Vries, J. B., & Duran, R. 1990, “Use of microdialysis for monitoring tyrosine hydroxylase activity in the brain of conscious rats”, J. Neurochem., vol. 54, no. 2, pp. 381–387.CrossRefGoogle ScholarPubMed
Westerink, B. H. & Kikkert, R. J. 1986, “Effect of various centrally acting drugs on the efflux of dopamine metabolites from the rat brain”, J. Neurochem., vol. 46, no. 4, pp. 1145–1152.CrossRefGoogle ScholarPubMed
Westerink, B. H. & Korf, J. 1976, “Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain”, Eur. J. Pharmacol., vol. 37, no. 2, pp. 249–255.CrossRefGoogle ScholarPubMed
Westerink, B. H. & Spaan, S. J. 1982a, “Simultaneous determination of the formation rate of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in various rat brain areas”, Brain Res., vol. 252, no. 2, pp. 239–245.CrossRefGoogle Scholar
Westerink, B. H. & Spaan, S. J. 1982b, “Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection: implications for the sequence in the cerebral metabolism of dopamine”, J. Neurochem., vol. 38, no. 2, pp. 342–347.CrossRefGoogle ScholarPubMed
Westerink, B. H. & Wirix, E. 1983, “On the significance of tyrosine for the synthesis and catabolism of dopamine in rat brain: evaluation by HPLC with electrochemical detection”, J. Neurochem., vol. 40, no. 3, pp. 758–764.CrossRefGoogle ScholarPubMed
Whittemore, R. M., Pearce, L. B., & Roth, J. A. 1985, “Purification and kinetic characterization of a dopamine-sulfating form of phenol sulfotransferase from human brain”, Biochemistry, vol. 24, no. 10, pp. 2477–2482.CrossRefGoogle ScholarPubMed
Whittemore, R. M. & Roth, J. A. 1985, “Effect of phosphatase inhibition of in vitro dopamine sulfation and 3'-phosphoadenosine-5'-phosphosulfate catabolism in human brain”, Biochem. Pharmacol., vol. 34, no. 21, pp. 3853–3856.CrossRefGoogle ScholarPubMed
Whone, A. L., Bailey, D. L., Remy, P., Pavese, N., & Brooks, D. J. 2004, “A technique for standardized central analysis of 6-(18)F-fluoro-L-DOPA PET data from a multicenter study”, J. Nucl. Med., vol. 45, no. 7, pp. 1135–1145.Google ScholarPubMed
Whone, A. L., Watts, R. L., Stoessl, A. J., Davis, M., Reske, S., Nahmias, C., Lang, A. E., Rascol, O., Ribeiro, M. J., Remy, P., Poewe, W. H., Hauser, R. A., & Brooks, D. J. 2003, “Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study”, Ann. Neurol., vol. 54, no. 1, pp. 93–101.CrossRefGoogle ScholarPubMed
Wiedemann, D. J., Garris, P. A., Near, J. A., & Wightman, R. M. 1992, “Effect of chronic haloperidol treatment on stimulated synaptic overflow of dopamine in the rat striatum”, J. Pharmacol. Exp. Ther., vol. 261, no. 2, pp. 574–579.Google ScholarPubMed
Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D. J., Near, J. A., Diliberto, E. J., Jr., & Viveros, O. H. 1991, “Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells”, Proc. Natl. Acad. Sci. USA, vol. 88, no. 23, pp. 10754–10758.CrossRefGoogle ScholarPubMed
Wilcox, K. M., Lindsey, K. P., Votaw, J. R., Goodman, M. M., Martarello, L., Carroll, F. I., & Howell, L. L. 2002, “Self-administration of cocaine and the cocaine analog RTI-113: relationship to dopamine transporter occupancy determined by PET neuroimaging in rhesus monkeys”, Synapse, vol. 43, no. 1, pp. 78–85.CrossRefGoogle ScholarPubMed
Wilcox, R. E., Mudie, E., Mayfield, D., Young, R. K., & Spirduso, W. W. 1988, “Movement initiation characteristics in young adult rats in relation to the high- and low-affinity agonist states of the striatal D2 dopamine receptor”, Brain Res., vol. 443, no. 1–2, pp. 190–198.CrossRefGoogle ScholarPubMed
Willeit, M., Ginovart, N., Graff, A., Rusjan, P., Vitcu, I., Houle, S., Seeman, P., Wilson, A. A., & Kapur, S. 2008, “First human evidence of d-amphetamine induced displacement of a D(2/3) agonist radioligand: a [(11)C]-(+)-PHNO positron emission tomography Study”, Neuropsychopharmacology, vol. 33, no. 2, pp. 279–289.CrossRefGoogle Scholar
Willeit, M., Ginovart, N., Kapur, S., Houle, S., Hussey, D., Seeman, P., & Wilson, A. A. 2006, “High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO”, Biol. Psychiatry, vol. 59, no. 5, pp. 389–394.CrossRefGoogle ScholarPubMed
Wilson, J. M., Sanyal, S., & Tol, H. H. 1998, “Dopamine D2 and D4 receptor ligands: relation to antipsychotic action”, Eur. J. Pharmacol., vol. 351, no. 3, pp. 273–286.CrossRefGoogle ScholarPubMed
Winkler, H. & Westhead, E. 1980, “The molecular organization of adrenal chromaffin granules”, Neuroscience, vol. 5, no. 11, pp. 1803–1823.CrossRefGoogle ScholarPubMed
Winogrodzka, A., Bergmans, P., Booij, J., Royen, E. A., Stoof, J. C., & Wolters, E. C. 2003, “[(123)I]beta-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson's disease”, J. Neurol. Neurosurg. Psychiatry, vol. 74, no. 3, pp. 294–298.CrossRefGoogle ScholarPubMed
Wirtshafter, D. 2000, “A comparison of the patterns of striatal Fos-like immunoreactivity induced by various dopamine agonists in rats”, Neurosci. Lett., vol. 289, no. 2, pp. 99–102.CrossRefGoogle ScholarPubMed
Wong, D. F., Gjedde, A., & Wagner, H. N., Jr. 1986, “Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands”, J. Cereb. Blood Flow Metab., vol. 6, no. 2, pp. 137–146.CrossRefGoogle Scholar
Wong, D. F., Harris, J. C., Naidu, S., Yokoi, F., Marenco, S., Dannals, R. F., Ravert, H. T., Yaster, M., Evans, A., Rousset, O., Bryan, R. N., Gjedde, A., Kuhar, M. J., & Breese, G. R. 1996, “Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo”, Proc. Natl. Acad. Sci. USA, vol. 93, no. 11, pp. 5539–5543.CrossRefGoogle ScholarPubMed
Wong, D. F., Kuwabara, H., Schretlen, D. J., Bonson, K. R., Zhou, Y., Nandi, A., Brasic, J. R., Kimes, A. S., Maris, M. A., Kumar, A., Contoreggi, C., Links, J., Ernst, M., Rousset, O., Zukin, S., Grace, A. A., Lee, J. S., Rohde, C., Jasinski, D. R., Gjedde, A., & London, E. D. 2006, “Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving”, Neuropsychopharmacology, vol. 31, no. 12, pp. 2716–2727.CrossRefGoogle ScholarPubMed
Wong, D. F., Pearlson, G. D., Tune, L. E., Young, L. T., Meltzer, C. C., Dannals, R. F., Ravert, H. T., Reith, J., Kuhar, M. J., & Gjedde, A. 1997a, “Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness”, J. Cereb. Blood Flow Metab., vol. 17, no. 3, pp. 331–342.CrossRefGoogle ScholarPubMed
Wong, D. F., Singer, H. S., Brandt, J., Shaya, E., Chen, C., Brown, J., Kimball, A. W., Gjedde, A., Dannals, R. F., Ravert, H. T., Wilson, P. D., & Wagner, H. N., Jr. 1997b, “D2-like dopamine receptor density in Tourette syndrome measured by PET”, J. Nucl. Med., vol. 38, no. 8, pp. 1243–1247.Google ScholarPubMed
Wong, D. F., Wagner, H. N., Jr., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Broussolle, E. P., Ravert, H. T., Wilson, A. A., Toung, J. K., Malat, J., Williams, J. A., O'Tuama, L. A., Snyder, S. H., Kuhar, M. J., & Gjedde, A. 1986, “Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics”, Science, vol. 234, no. 4783, pp. 1558–1563.CrossRefGoogle ScholarPubMed
Wood, P. B., Schweinhardt, P., Jaeger, E., Dagher, A., Hakyemez, H., Rabiner, E. A., Bushnell, M. C., & Chizh, B. A. 2007, “Fibromyalgia patients show an abnormal dopamine response to pain”, Eur. J. Neurosci., vol. 25, no. 12, pp. 3576–3582.CrossRefGoogle ScholarPubMed
Woods, S. K. & Meyer, J. S. 1991, “Exogenous tyrosine potentiates the methylphenidate-induced increase in extracellular dopamine in the nucleus accumbens: a microdialysis study”, Brain Res., vol. 560, no. 1–2, pp. 97–105.CrossRefGoogle ScholarPubMed
Yamamoto, B. K. & Novotney, S. 1998, “Regulation of extracellular dopamine by the norepinephrine transporter”, J. Neurochem., vol. 71, no. 1, pp. 274–280.CrossRefGoogle ScholarPubMed
Yamamoto, K. K., Gonzalez, G. A., Biggs, W. H., III, & Montminy, M. R. 1988, “Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB”, Nature, vol. 334, no. 6182, pp. 494–498.CrossRefGoogle ScholarPubMed
Yang, H. Y. & Neff, N. H. 1973, “Beta-phenylethylamine: a specific substrate for type B monoamine oxidase of brain”, J. Pharmacol. Exp. Ther., vol. 187, no. 2, pp. 365–371.Google ScholarPubMed
Yao, J., Erickson, J. D., & Hersh, L. B. 2004, “Protein kinase A affects trafficking of the vesicular monoamine transporters in PC12 cells”, Traffic., vol. 5, no. 12, pp. 1006–1016.CrossRefGoogle ScholarPubMed
Yassin, M. S., Cheng, H., Ekblom, J., & Oreland, L. 1998, “Inhibitors of catecholamine metabolizing enzymes cause changes in S-adenosylmethionine and S-adenosylhomocysteine in the rat brain”, Neurochem. Int., vol. 32, no. 1, pp. 53–59.CrossRefGoogle ScholarPubMed
Yatham, L. N., Liddle, P. F., Lam, R. W., Shiah, I. S., Lane, C., Stoessl, A. J., Sossi, V., & Ruth, T. J. 2002a, “PET study of the effects of valproate on dopamine D(2) receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania”, Am. J. Psychiatry, vol. 159, no. 10, pp. 1718–1723.CrossRefGoogle ScholarPubMed
Yatham, L. N., Liddle, P. F., Shiah, I. S., Lam, R. W., Ngan, E., Scarrow, G., Imperial, M., Stoessl, J., Sossi, V., & Ruth, T. J. 2002b, “PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium”, Am. J. Psychiatry, vol. 159, no. 5, pp. 768–774.CrossRefGoogle ScholarPubMed
Yavich, L., Forsberg, M. M., Karayiorgou, M., Gogos, J. A., & Mannisto, P. T. 2007, “Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum”, J. Neurosci., vol. 27, no. 38, pp. 10196–10209.CrossRefGoogle ScholarPubMed
Yee, R. E., Huang, S. C., Stout, D. B., Irwin, I., Shoghi-Jadid, K., Togaski, D. M., DeLanney, L. E., Langston, J. W., Satyamurthy, N., Farahani, K. F., Phelps, M. E., & Barrio, J. R. 2000, “Nigrostriatal reduction of aromatic L-amino acid decarboxylase activity in MPTP-treated squirrel monkeys: in vivo and in vitro investigations”, J. Neurochem., vol. 74, no. 3, pp. 1147–1157.CrossRefGoogle ScholarPubMed
Yee, R. E., Irwin, I., Milonas, C., Stout, D. B., Huang, S. C., Shoghi-Jadid, K., Satyamurthy, N., DeLanney, L. E., Togasaki, D. M., Farahani, K. F., Delfani, K., Janson, A. M., Phelps, M. E., Langston, J. W., & Barrio, J. R. 2001, “Novel observations with FDOPA-PET imaging after early nigrostriatal damage”, Mov. Disord., vol. 16, no. 5, pp. 838–848.CrossRefGoogle ScholarPubMed
Yen, T. C., Tzen, K. Y., Chen, M. C., Chou, Y. H., Chen, R. S., Chen, C. J., Wey, S. P., Ting, G., & Lu, C. S. 2002, “Dopamine transporter concentration is reduced in asymptomatic Machado-Joseph disease gene carriers”, J. Nucl. Med., vol. 43, no. 2, pp. 153–159.Google ScholarPubMed
Yoder, K. K., Constantinescu, C. C., Kareken, D. A., Normandin, M. D., Cheng, T. E., O'Connor, S. J., & Morris, E. D. 2007, “Heterogeneous effects of alcohol on dopamine release in the striatum: a PET study”, Alcohol Clin. Exp. Res., vol. 31, no. 6, pp. 965–973.CrossRefGoogle ScholarPubMed
Yoder, K. K., Kareken, D. A., Seyoum, R. A., O'Connor, S. J., Wang, C., Zheng, Q. H., Mock, B., & Morris, E. D. 2005, “Dopamine D(2) receptor availability is associated with subjective responses to alcohol”, Alcohol Clin. Exp. Res., vol. 29, no. 6, pp. 965–970.CrossRefGoogle ScholarPubMed
Yokoi, F., Grunder, G., Biziere, K., Stephane, M., Dogan, A. S., Dannals, R. F., Ravert, H., Suri, A., Bramer, S., & Wong, D. F. 2002, “Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride”, Neuropsychopharmacology, vol. 27, no. 2, pp. 248–259.CrossRefGoogle Scholar
Young, A. M., Joseph, M. H., & Gray, J. A. 1993, “Latent inhibition of conditioned dopamine release in rat nucleus accumbens”, Neuroscience, vol. 54, no. 1, pp. 5–9.CrossRefGoogle ScholarPubMed
Young, E. A., Neff, N. H., & Hadjiconstantinou, M. 1993, “Evidence for cyclic AMP-mediated increase of aromatic L-amino acid decarboxylase activity in the striatum and midbrain”, J. Neurochem., vol. 60, no. 6, pp. 2331–2333.CrossRefGoogle ScholarPubMed
Young, L. T., Wong, D. F., Goldman, S., Minkin, E., Chen, C., Matsumura, K., Scheffel, U., & Wagner, H. N., Jr. 1991, “Effects of endogenous dopamine on kinetics of [3H]N-methylspiperone and [3H]raclopride binding in the rat brain”, Synapse, vol. 9, no. 3, pp. 188–194.CrossRefGoogle Scholar
Yu, P. H., Rozdilsky, B., & Boulton, A. A. 1985, “Sulfate conjugation of monoamines in human brain: purification and some properties of an arylamine sulfotransferase from cerebral cortex”, J. Neurochem., vol. 45, no. 3, pp. 836–843.CrossRefGoogle ScholarPubMed
Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., & Dagher, A. 2004, “Dopamine transmission in the human striatum during monetary reward tasks”, J. Neurosci., vol. 24, no. 17, pp. 4105–4112.CrossRefGoogle ScholarPubMed
Zallakian, M., Knoth, J., Metropoulos, G. E., & Njus, D. 1982, “Multiple effects of reserpine on chromaffin-granule in membranes”, Biochemistry, vol. 21, no. 5, pp. 1051–1055.CrossRefGoogle ScholarPubMed
Zawarynski, P., Tallerico, T., Seeman, P., Lee, S. P., O'Dowd, B. F., & George, S. R. 1998, “Dopamine D2 receptor dimers in human and rat brain”, FEBS Lett., vol. 441, no. 3, pp. 383–386.CrossRefGoogle ScholarPubMed
Zerby, S. E. & Ewing, A. G. 1996, “Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells”, Brain Res., vol. 712, no. 1, pp. 1–10.CrossRefGoogle ScholarPubMed
Zhang, M. R., Haradahira, T., Maeda, J., Okauchi, T., Kawabe, K., Noguchi, J., Kida, T., Suzuki, K., & Suhara, T. 2002, “Syntheses and pharmacological evaluation of two potent antagonists for dopamine D4 receptors: [11C]YM-50001 and N-[2-[4-(4-Chlorophenyl)-piperizin-1-yl]ethyl]-3-[11C]methoxybenzamide”, Nucl. Med. Biol., vol. 29, no. 2, pp. 233–241.CrossRefGoogle Scholar
Zhou, Q. Y., Quaife, C. J., & Palmiter, R. D. 1995, “Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development”, Nature, vol. 374, no. 6523, pp. 640–643.CrossRefGoogle ScholarPubMed
Zhu, M. Y., Juorio, A. V., Paterson, I. A., & Boulton, A. A. 1993, “Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors”, Eur. J. Pharmacol., vol. 238, no. 2–3, pp. 157–164.CrossRefGoogle ScholarPubMed
Zhu, S. J., Kavanaugh, M. P., Sonders, M. S., Amara, S. G., & Zahniser, N. R. 1997, “Activation of protein kinase C inhibits uptake, currents and binding associated with the human dopamine transporter expressed in Xenopus oocytes”, J. Pharmacol. Exp. Ther., vol. 282, no. 3, pp. 1358–1365.Google ScholarPubMed
Zijlstra, S., Worp, H., Wiegman, T., Visser, G. M., Korf, J., & Vaalburg, W. 1993, “Synthesis and in vivo distribution in the rat of a dopamine agonist: N-([11C]methyl)norapomorphine”, Nucl. Med. Biol., vol. 20, no. 1, pp. 7–12.CrossRefGoogle ScholarPubMed
Zivkovic, B., Guidotti, A., & Costa, E. 1974, “Effects of neuroleptics on striatal tyrosine hydroxylase: Changes in affinity for the pteridine cofactor”, Mol. Pharmacol, vol. 10, pp. 727–735.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Paul Cumming
  • Book: Imaging Dopamine
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575853.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Paul Cumming
  • Book: Imaging Dopamine
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575853.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Paul Cumming
  • Book: Imaging Dopamine
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575853.020
Available formats
×