Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T23:55:09.331Z Has data issue: false hasContentIssue false

11 - Inferences during text comprehension

what neuroscience can (or cannot) contribute

Published online by Cambridge University Press:  05 May 2015

Edward J. O'Brien
Affiliation:
University of New Hampshire
Anne E. Cook
Affiliation:
University of Utah
Robert F. Lorch, Jr
Affiliation:
University of Kentucky
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, J. E., & O'Brien, E. J. (1993). Updating a mental model: maintaining both local and global coherence. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1061–70.Google Scholar
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–60.CrossRefGoogle ScholarPubMed
Anderson, R. C., & Pichert, J. W. 1978. Recall of previously unrecallable information following a shift in perspective. Journal of Verbal Learning and Verbal Behavior, 17, 112.CrossRefGoogle Scholar
Baumgärtner, A., Weiller, C., & Büchel, C. (2002). Event-related fMRI reveals cortical sites involved in contextual sentence integration. NeuroImage, 16, 736–45.Google Scholar
Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In Beeman, M. and Chiarello, C. (eds.), Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience (pp. 255–84). Mahwah, NJ: Erlbaum.Google Scholar
Beeman, M., Bowden, E. M., & Gernsbacher, M. A. (2000). Right and left hemisphere cooperation for drawing predictive and coherence inferences during normal story comprehension. Brain and Language, 71, 310–36.CrossRefGoogle ScholarPubMed
Beeman, M., & Chiarello, C. (1998). Right hemisphere language comprehension: Perspectives from cognitive neuroscience. Mahwah, NJ: Erlbaum.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state: a functional MRI study. Journal of Cognitive Neuroscience, 11, 8093.CrossRefGoogle Scholar
Bornkessel-Schlesewsky, I., & Friederici, A. F. (2007). Neuroimaging studies of sentence and discourse comprehension. In Gaskell, M. G. (ed.), The Oxford Handbook of Psycholinguistics (pp. 407–24). Oxford University Press.Google Scholar
Boudewyn, M. A., Carter, C., & Swaab, T. Y. (2012). Cognitive control and discourse comprehension in schizophrenia. Schizophrenia Research and Treatment, 17.CrossRefGoogle ScholarPubMed
Brass, M., Derrfuss, J., Forstmann, B., & Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9(7), 314–6.CrossRefGoogle ScholarPubMed
Brennan, J., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., & Pylkkänen, L. (2012). Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language, 120, 163–73.CrossRefGoogle ScholarPubMed
Brodmann, K., (1909). Vergleichende Lokalisationslehre der Groβhirnrindein ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth, JA.Google Scholar
Brownell, H. H., Potter, H. H., Bihrle, A. M., & Gardner, H. (1986). Inference deficits in right brain-damaged patients. Brain and Language, 27, 310–21.CrossRefGoogle ScholarPubMed
Brownell, H. H., & Martino, G. (1998). Deficits in inference and social cognition: the effects of right hemisphere brain damage on discourse. In Beeman, M. & Chiarello, C. (eds.), Right Hemisphere Language Comprehension (pp. 309–28). Mahwah, NJ: Erlbaum.Google Scholar
Buchweitz, A., Mason, R. A., Tomitch, L., & Just, M. A. (2009). Brain activation for reading and listening comprehension: an fMRI study of modality effects and individual differences in language comprehension. Psychology & Neuroscience, 2, 111–23.CrossRefGoogle ScholarPubMed
Chow, H. M., Kaup, B., Raabe, M., & Greenlee, M. W. (2008). Evidence of fronto-temporal interactions for strategic inference processes during language comprehension. NeuroImage, 40, 940–54.CrossRefGoogle ScholarPubMed
Deacon, T. W. (1997). The Symbolic Species. New York: Norton.Google Scholar
Derrfuss, J., Brass, M., von Cramon, D. Y., Lohmann, G., & Amunts, K. (2009). Neural activations at the junction of the inferior frontal sulcus and the inferior precentral sulcus: interindividual variability, reliability, and association with sulcal morphology. Human Brain Mapping, 30(1), 299311.CrossRefGoogle ScholarPubMed
de Vega, M. (2010). The representation of changing emotions in reading comprehension. Cognition & Emotion, 1, 303–22.Google Scholar
de Vega, M., Leon, I., Hernandez, J. A., Valdes-Sosa, M., Padron, I., & Ferstl, E. C. (2014). Action sentences activate sensory-motor regions in the brain independently of their status of reality. Journal of Cognitive Neuroscience, 26, 1363–76.CrossRefGoogle ScholarPubMed
Fedorenko, E., & Kanwisher, N. (2009). Neuroimaging of language: why hasn't a clearer picture emerged? Language and Linguistics Compass, 3/4, 839–65.CrossRefGoogle Scholar
Ferstl, E. C. (2006). Text comprehension in middle-aged adults: is there anything wrong? Aging, Neuropsychology and Cognition, 13(1), 6285.CrossRefGoogle ScholarPubMed
Ferstl, E. C. (2007). The functional neuroanatomy of text comprehension: what's the story so far? In Schmalhofer, F. & Perfetti, C. A. (eds.), Higher Level Language Processes in the Brain: Inference and Comprehension Processes (pp. 53102). Mahwah, NJ: Erlbaum.Google Scholar
Ferstl, E. C. (2010). The neuroanatomy of discourse comprehension: where are we now? In Bambini, V. (Hrsg.), Neuropragmatics, Special Issue of Italian Journal of Linguistics, 22, 6188.Google Scholar
Ferstl, E. C. (2012). Theory-of-Mind und kommunikation: zwei seiten der gleichen medaille? [Theory-of-Mind and communication: two sides of the same coin?]. In Förstl, H. (ed.), Theory of Mind: Neurobiologie und Psychologie sozialen Verhaltens (2nd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
Ferstl, E. C., Guthke, T., & von Cramon, D. Y. (1999). Change of perspective in discourse comprehension: encoding and retrieval processes after brain injury. Brain and Language, 70, 385420.CrossRefGoogle ScholarPubMed
Ferstl, E. C., Guthke, T., & von Cramon, D. Y. (2002). Text comprehension after brain injury: left prefrontal lesions affect inference processes. Neuropsychology, 16, 292308.CrossRefGoogle ScholarPubMed
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29, 581–93.CrossRefGoogle ScholarPubMed
Ferstl, E. C., Rinck, M., & von Cramon, D. Y. (2005). Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study. Journal of Cognitive Neuroscience, 17, 724–39.CrossRefGoogle ScholarPubMed
Ferstl, E. C., & von Cramon, D. Y. (2001a). The role of coherence and cohesion in text comprehension: an event-related fMRI study. Cognitive Brain Research, 11, 325–40.CrossRefGoogle ScholarPubMed
Ferstl, E. C., & von Cramon, D. Y. (2001b). Inference processes during text comprehension: is it the left hemisphere after all? Journal of Cognitive Neuroscience (Supplement), 128.Google Scholar
Ferstl, E. C., & von Cramon, D. Y. (2002). What does the fronto-median cortex contribute to language processing: coherence or theory of mind? NeuroImage, 17, 15991612.CrossRefGoogle ScholarPubMed
Ferstl, E. C., & Zacks, J. M. (in press). Discourse comprehension. In Small, S. L. & Hickok, G. (eds.), The Neurobiology of Language. Amsterdam: Elsevier.Google Scholar
Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S. J., & Frith, C. D. 1995. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition, 57, 109–28.CrossRefGoogle Scholar
Franzmeier, I., Müller-Feldmeth, D., Mader, I., Weiller, C., & Ferstl, E. C. (2014). Semantic processing in a sentence context relies on a bilateral network: evidence from an fMRI study. Manuscript in preparation.Google Scholar
Franzmeier, I., Hutton, B. H., & Ferstl, E. C. (2012). The role of the right temporal lobe in contextual sentence integration: A TMS study. Cognitive Neuroscience. 3, 17.CrossRefGoogle Scholar
Friese, U., Rutschmann, R., Raabe, M., & Schmalhofer, F. (2008). Neural indicators of inference processes in text comprehension: an event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20, 2110–24.CrossRefGoogle ScholarPubMed
Frith, U. (2003) Autism. Explaining the Enigma (2nd edn.). Oxford, UK: Blackwell.Google Scholar
Gernsbacher, M. A. (1990). Language as Structure Building. Mahwah, NJ: Erlbaum.Google Scholar
Glenberg, A. M, & Gallese, V. (2012). Action-based language: a theory of language acquisition, comprehension, and production. Cortex, 48(7), 905–22.CrossRefGoogle Scholar
Grady, C. L. (1999). Neuroimaging and activation of the frontal lobes. In Miller, B. L. & Cummings, J. L. (eds.), The Human Frontal Lobes: Functions and Disorders. New York: Guilford.Google Scholar
Haberlandt, K. (1994). Methods in reading research. In Gernsbacher, M. A. (ed.), Handbook of Psycholinguistics (pp. 125). San Diego: Academic Press.Google Scholar
Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4, 113.CrossRefGoogle ScholarPubMed
Jacobsen, T., Schubotz, R. I., Höfel, L., & von Cramon, D. Y. (2006). Brain correlates of aesthetic judgment of beauty. NeuroImage, 29, 276–85.CrossRefGoogle ScholarPubMed
Jin, H., Liu, H.-L., Mo, L., Fang, S.-Y., Zhang, J. X.,& Lin, C.-D. 2009. Involvement of the left inferior frontal gyrus in predictive inference making. International Journal of Psychophysiology, 71, 142–8.CrossRefGoogle ScholarPubMed
Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Science, 9, 512–8.CrossRefGoogle ScholarPubMed
Kintsch, W. (1988). The use of knowledge in discourse processing: a construction-integration model. Psychological Review, 95, 163–82.CrossRefGoogle Scholar
Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: challenges to syntax. Brain Research, 1146, 2349.CrossRefGoogle ScholarPubMed
Kuperberg, G. R., & Caplan, D. (2003). Language dysfunction in schizophrenia. In Schiffer, R. B., Rao, S. M., & Fogel, B. S. (eds.), Neuropsychiatry (2nd ed., pp. 444–66). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N., & Holcomb, P. J. (2006). Making sense of discourse: an fMRI study of causal inferencing across sentences. NeuroImage, 33, 343–61.CrossRefGoogle ScholarPubMed
Lehman-Blake, M. T., & Tompkins, C. A. (2001). Predictive inferencing in adults with right hemisphere brain damage. Journal of Speech, Language, and Hearing Research, 44, 639–54.CrossRefGoogle ScholarPubMed
Malle, B. F. (2002). The relation between language and theory of mind in development and evolution. In Givon, T. & Malle, B. F. (eds.), The Evolution of Language out of Pre-language (pp. 265–84). Amsterdam: Benjamins.Google Scholar
Mar, R. A. (2004). The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia, 42, 1414–34.CrossRefGoogle ScholarPubMed
Mar, R. A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, 62, 103–34.CrossRefGoogle ScholarPubMed
Mason, R. A., & Just, M. A. (2004). How the brain processes causal inferences in text: a theoretical account of generation and integration component processes utilizing both cerebral hemispheres. Psychological Science, 15, 17.CrossRefGoogle Scholar
Mason, R. A., & Just, M. A. (2006). Neuroimaging contributions to the understanding of discourse processes. In Traxler, M. & Gernsbacher, M. A. (eds.), Handbook of Psycholinguistics (pp. 765–99). Amsterdam: Elsevier.Google Scholar
Mason, R. A., Williams, D. L., Kana, R. K., Minshew, N., & Just, M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia, 46, 269–80.CrossRefGoogle ScholarPubMed
Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Salamon, G., Dehaene, S., Cohen, L., & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5, 467–79.CrossRefGoogle ScholarPubMed
McDonald, S. (1993). Viewing the brain sideways? Frontal versus right hemisphere explanation of nonaphasic language disorders. Aphasiology, 7, 535–49.CrossRefGoogle Scholar
O'Brien, E. J., & Albrecht, J. E. (1992). Comprehension strategies in the development of a mental model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 777–84.Google ScholarPubMed
O'Brien, E. J., Lorch, R. F., & Myers, J. (1998). Memory-based text processing. Mahwah, NJ: Erlbaum.Google ScholarPubMed
Perfetti, C. A., Yang, C-L., & Schmalhofer, F. (2008). Comprehension skill and word-to-text processes. Applied Cognitive Psychology, 22 (3), 303–18.CrossRefGoogle Scholar
Prigatano, G. P., Roueche, J. R., & Fordyce, D. J. (1986). Nonaphasic language disturbances after brain injury. In Prigatano, G. P., Fordyce, D. J., Zeiner, H. K., Roueche, J. R., Pepping, M., & Wood, B. C. (eds.), Neuropsychological Rehabilitation after Brain Injury. Baltimore: Johns Hopkins University Press.Google Scholar
Pulvermuüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576–82.CrossRefGoogle Scholar
Pylkkänen, L., Brennan, J., & Bemis, D. K. (2011). Grounding the cognitive neuroscience of semantics in linguistic theory. Language & Cognitive Processes, 26 (9), 1317–37.CrossRefGoogle Scholar
Rinck, M., Hähnel, A., & Becker, G. (2001). Using temporal information to construct, update, and retrieve situation models of narratives. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 6780.Google ScholarPubMed
Romero Lauro, L. J., Mattavelli, G., Papagno, C., & Tettamanti, M. (2013). She runs, the road runs, my mind runs, bad blood runs between us: literal and figurative motion verbs: an fMRI study. Neuroimage. 83, 361–71.CrossRefGoogle ScholarPubMed
Siebörger, F. T. (1999). Profile von Textverstehen und Diskursproduktion nach Hirnschädigung. Unpublished Master Thesis, University of Osnabrück, Germany.Google Scholar
Siebörger, F. T. (2006). Funktionelle Neuroanatomie des Textverstehens: Kohärenzbildung bei Witzen und anderen ungewöhnlichen Texten. Leipzig: MPI-Series in Human Cognitive and Brain Sciences (Vol. LXXXIII).Google Scholar
Siebörger, F. T., Ferstl, E. C.,& von Cramon, D. Y. (2007). Making sense of nonsense: an fMRI study of task induced inference processes during discourse comprehension. Brain Research, 1166, 7791.CrossRefGoogle ScholarPubMed
Singer, M., Graesser, A. C., & Trabasso, T. (1994). Minimal or global inference during reading. Journal of Memory& Language, 33, 421–41.Google Scholar
Smaers, J. B., Steele, V. R., Case, C. R., Cowper, A., Amunts, K., & Zilles, K. (2011). Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain, Behavior and Evolution, 77, 6778.CrossRefGoogle ScholarPubMed
Steele, V. R., Bernat, E. M., van den Broek, P., Collins, P. F., Patrick, C. J., & Marsolek, C. J. (2013). Separable processes before, during, and after the N400 elicited by previously inferred and new information: evidence from time-frequency decompositions. Brain Research, 1492, 92107.CrossRefGoogle ScholarPubMed
Tompkins, C. A., Fassbinder, W., Lehman-Blake, M., Baumgärtner, A., & Jayaram, N. (2004). Inference generation during text comprehension by adults with right hemisphere brain damage: activation failure versus multiple activation. Journal of Speech, Language, and Hearing Research, 47, 1380–95.CrossRefGoogle ScholarPubMed
Tooby, J., & Cosmides, L. (1995). The psychological foundations of culture. In Barkow, J. H., Cosmides, L., and Tooby, J. (eds.), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (pp. 19136). New York: Oxford University Press.Google Scholar
Trabasso, T., van den Broek, P., & Suh, S. (1989). Logical necessity and transitivity of causal relations in stories. Discourse Processes, 12, 125.CrossRefGoogle Scholar
Uylings, H. B. M., Malofeeva, L. I., Bogolepova, I. N., Amunts, K., & Zilles, K. (1999). Broca's language area from a neuroanatomical and developmental perspective. In Brown, C. M. & Hagoort, P. (eds.), The Neurocognition of Language (pp. 319–36). Oxford University Press.Google Scholar
van Berkum, J. J. A. (2004). Sentence comprehension in a wider discourse: can we use ERPs to keep track of things? In Carreiras, M. & Clifton, C. Jr. (eds.), The Online Study of Sentence Comprehension: Eye Tracking, ERPs and Beyond (pp. 229–70). New York: Psychology Press.Google Scholar
van Dijk, T. A., & Kintsch, W. (1983). Strategies of Discourse Comprehension. New York: Academic Press.Google Scholar
van Lancker Sidtis, D. (2006). Does functional neuroimaging solve the questions of neurolinguistics? Brain and Language, 98, 276–90.Google Scholar
van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain Mapping, 30, 829–58.CrossRefGoogle ScholarPubMed
Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Research, 1084, 104–14.CrossRefGoogle ScholarPubMed
Virtue, S., Parrish, T., & Jung-Beeman, M. (2008). Inferences during story comprehension: cortical recruitment affected by predictability of events and working memory capacity. Journal of Cognitive Neuroscience, 20, 2274–84.CrossRefGoogle ScholarPubMed
Yang, C. L., Perfetti, C. A., & Schmalhofer, F. (2007). Event-related potential indicators of text integration across sentence boundaries. Journal of Experimental Psychology: LMC, 33 (1), 5589.Google ScholarPubMed
Zaidel, E. (1978). Lexical organization in the right hemisphere. In Buser, P. & Rougeul-Buser, A. (eds.), Cerebral Correlates of Conscious Experience (pp. 177–97). Amsterdam: Elsevier.Google Scholar
Zwaan, R. A. (2004). The immersed experiencer: toward an embodied theory of language comprehension. In Ross, B. H. (ed.), The Psychology of Learning and Motivation, Vol. XLIV (pp. 3562). Amsterdam: Elsevier.Google Scholar
Zwaan, R. A., Langston, M. C., & Graesser, A. C. (1995). The construction of situation models in narrative comprehension: an event-indexing model. Psychological Science, 6, 292–97.CrossRefGoogle Scholar
Zysset, S., Huber, O., Ferstl, E. C., & von Cramon, D. Y. (2002). The anterior fronto-median cortex and evaluative judgment: an fMRI study. NeuroImage, 15, 983–91.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×