Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: September 2019

Chapter 5 - Subtidal Rocky Shores of the North-West Atlantic Ocean

Summary

Subtidal rocky communities in the north-west Atlantic are largely limited to latitudes higher than 40°N due to the lack of substrata at lower latitudes. Communities are species poor relative to the north-east Atlantic, and food webs are generally simple, driven by physical processes including low temperatures, water motion and, for more northern regions, sea ice. Whereas kelp should thrive in shallower waters, grazing by the green sea urchin has led to extensive barren grounds. The dynamics vary, however, among regions of the north-west Atlantic, ranging from a kelp-dominated state in the Gulf of Maine to an urchin-dominated state in the Gulf of Saint Lawrence. Cycling between states has occurred in Atlantic Nova Scotia, where urchins are controlled by a disease process unique to this region. Control by predators may have occurred in the past but overfishing has now functionally removed this factor. Certain invertebrate fisheries have developed, and the American lobster appears to be thriving. Outside of the arena of kelp–urchin interactions, diverse assemblages of invertebrates can be found in habitats that range from shallow water bivalve beds to deep-sea coral reefs. Limitations in the temporal and spatial scope of our knowledge severely hamper our ability to generalise.

Related content

Powered by UNSILO
Abraham, E. R. (2007). Sea-urchin feeding fronts. Ecological Complexity, 4, 161–8.
Adey, W., Halfar, J., Humphreys, A. et al. (2015). Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios, 30, 281–93.
Adey, W. H. and Hayek, L.-A. C. (2011). Elucidating marine biogeography with macrophytes: Quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct subarctic region in the Northwestern Atlantic. Northeastern Naturalist, 18, 1128.
Anderson, S. C., Flemming, J. M., Watson, R. and Lotze, H. K. (2011). Rapid global expansion of invertebrate fisheries: Trends, drivers, and ecosystem effects. PLoS ONE, 6, e14735.
Annis, E. R. (2005). Temperature effects on the vertical distribution of lobster postlarvae (Homarus americanus). Limnology and Oceanography, 50, 1972–82.
Baker, K. D., Wareham, V. E., Snelgrove, P. V. R. et al. (2012). Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada. Marine Ecology Progress Series, 445, 235–49.
Balch, T. and Scheibling, R.E. (2000). Temporal and spatial variability in settlement and recruitment of echinoderms in kelp beds and barrens in Nova Scotia. Marine Ecology Progress Series, 205, 139–54.
Balch, T., Scheibling, R. E., Harris, L. G., Chester, C. C. and Robinson, S. M. C. (1998). Variation in Settlement of Strongylocentrotus droebachiensis in the Northwest Atlantic: Effects of Spatial Scale and Sampling Method. In Mooi, R. and Telford, M., eds. Echinoderms: San Francisco. Balkema, Rotterdam, pp. 555–60.
Barnes, D. K. (2016). Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Global Change Biology, 23, 2649–59.
Beck, M. W., Brumbaugh, R. D., Airoldi, L. et al. (2011). Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience, 61, 107–16.
Bégin, C., Johnson, L. E. and Himmelman, J. H. (2004). Macroalgal canopies: Distribution and diversity of associated invertebrates and effects on the recruitment and growth of mussels. Marine Ecology Progress Series, 271, 121–32.
Bergeron, P. and Bourget, E. (1986). Shore topography and spatial partitioning of crevice refuges by sessile epibenthos in an ice disturbed environment. Marine Ecology Progress Series, 28, 129–45.
Berkes, F., Hughes, T. P., Steneck, R. S. et al. (2006). Globalization, roving bandits, and marine resources. Science, 311, 1557–8.
Berman, J., Harris, L., Lambert, W., Buttrick, M. and Dufresne, M. (1992). Recent invasions of the Gulf of Maine: Three contrasting ecological histories. Conservation Biology, 6, 435–41.
Bernstein, B. B., Schroeter, S. C. and Mann, K. H. (1983). Sea urchin (Strongylocentrotus droebachiensis) aggregating behavior investigated by a subtidal multifactorial experiment. Canadian Journal of Fisheries and Aquatic Sciences, 40, 1975–86.
Blain, C. and Gagnon, P. (2014). Canopy-forming seaweeds in urchin-dominated systems in eastern Canada: structuring forces or simple prey for keystone grazers? PLoS ONE, 9, e98204.
Boudreau, S. A., Anderson, S. C. and Worm, B. (2015). Top-down and bottom-up forces interact at thermal range extremes on American lobster. Journal of Animal Ecology, 84, 840–50.
Boudreau, S. A. and Worm, B. (2010). Top-down control of lobster in the Gulf of Maine: Insights from local ecological knowledge and research surveys. Marine Ecology Progress Series, 403, 181–91.
Bourque, B. J. (1995). Diversity and Complexity in Prehistoric Maritime Societies: A Gulf of Maine Perspective. Plenum Press, New York.
Brady-Campbell, M. M., Campbell, D. B. and Harlin, M. M. (1984). Productivity of kelp (Laminaria spp.) near the southern limit in the Northwestern Atlantic Ocean. Marine Ecology Progress Series, 18, 7988.
Breen, P. A. and Mann, K. H. (1976a). Destructive grazing of kelp by sea urchins in eastern Canada. Journal of the Fisheries Resource Board of Canada, 33, 1278–83.
Breen, P. A. and Mann, K. H. (1976b). Changing lobster abundance and the destruction of kelp beds by sea urchins. Marine Biology, 34, 137–42.
Breen, E. and Metaxas, A. (2009). Effects of juvenile non-indigenous Carcinus maenas on the growth and condition of juvenile Cancer irroratus. Journal of Experimental Marine Biology and Ecology, 377, 1219.
Britton-Simmons, K., Foley, G. and Okamoto, D. (2009). Spatial subsidy in the subtidal zone: utilization of drift algae by a deep subtidal sea urchin. Aquatic Biology, 5, 233–43.
Buchwald, R. T., Feehan, C. J., Scheibling, R. E. and Simpson, A. G. B. (2015). Low temperature tolerance of a sea urchin pathogen: Implications for benthic community dynamics in a warming ocean. Journal of Experimental Marine Biology and Ecology, 469, 19.
Bullard, S. G., Lambert, G., Carman, M. R. et al. (2007). The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. Journal of Experimental Marine Biology and Ecology, 342, 99108.
Bundy, A., Heymans, J. J., Morissette, L. and Savenkoff, C. (2009). Seals, cod and forage fish: a comparative exploration of variations in the theme of stock collapse and ecosystem change in four Northwest Atlantic ecosystems. Progress in Oceanography, 81, 188206.
Byers, J. E. and Pringle, J. M. (2006). Going against the flow: retention, range limits and invasions in advective environments. Marine Ecology Progress Series, 313, 2741.
Caines, S. and Gagnon, P. (2012). Population dynamics of the invasive bryozoan Membranipora membranacea along a 450-km latitudinal range in the subarctic northwestern Atlantic. Marine Biology, 159, 1817–32.
Campbell, A. and Stasko, A. B. (1985). Movements of tagged American lobsters, Homarus americanus, off southwestern Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 42, 229–38.
Carlton, J. T. (1999). Molluscan invasions in marine and estuarine communities. Malacologia, 41, 439–54.
Carlton, J. T. and Cohen, A. N. (2003). Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and C. aestuarii. Journal of Biogeography, 30, 1809–20.
Carlton, J. T. and Scanlon, J. A. (1985). Progression and dispersal of an introduced alga: Codium fragile ssp. (Chlorophyta) on the Atlantic coast of North America. Botanica Marina, 28, 155–66.
Carman, M. R., Hoagland, K. E., Greenbeach, E. and Grunden, D. W. (2009). Tunicate faunas of two North Atlantic-New England islands: Martha’s Vineyard, Massachusetts, and Block Island, Rhode Island. Aquatic Invasions, 4, 6570.
Chan, F. T., MacIsaac, H. J. and Bailey, S. A. (2015). Relative importance of vessel hull fouling and ballast water as transport vectors of nonindigenous species to the Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences, 72, 1230–42.
Chapman, A. R. O. (1984). Reproduction, recruitment and mortality in two species of Laminaria in southwest Nova Scotia. Journal of Experimental Marine Biology and Ecology, 78, 99109.
Chapman, A. R. O. and Lindley, J. E. (1980). Seasonal growth of Laminaria solidungula in the Canadian high Arctic in relation to irradiance and dissolved nutrient concentrations. Marine Biology, 57, 15.
Chapman, J. W., Carlton, J. T., Bellinger, M. R. and Blakeslee, A. M. H. (2007). Premature refutation of a human-mediated marine species introduction: the case history of the marine snail Littorina littorea in the Northwestern Atlantic. Biological Invasions, 9, 9951008.
Cobb, J. S. and Castro, K. M. (2006). Shell Disease in Lobsters: A Synthesis. New England Lobster Research Initiative, Narragansett, RI, and Rhode Island Sea Grant, Narragansett.
Conlan, K. E., Lenihan, H. S., Kvitek, R. G. and Oliver, J. S. (1998). Ice scour disturbance to benthic communities in the Canadian high Arctic. Marine Ecology Progress Series, 166, 116.
Cook, R., Fariñas-Franco, J. M., Gell, F. R. et al. (2013). The substantial first impact of bottom fishing on rare biodiversity hotspots: A dilemma for evidence-based conservation. PLoS ONE, 8, e69904.
Davidson, A. D., Campbell, M. L. and Hewitt, C. L. (2015). Assessing the impacts of nonindigenous marine macroalgae: an update of current knowledge. Botanica Marina, 52, 5579.
Dawson, J. W. (1867). The food of the common sea-urchin. The American Naturalist, 1, 124–5.
Dijkstra, J., Harris, L. G. and Westerman, E. (2007). Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology, 342, 61–8.
Dijkstra, J. A. and Harris, L. G. (2009). Maintenance of diversity altered by a shift in dominant species: implications for species coexistence. Marine Ecology Progress Series, 387, 7180.
Doney, S. C., Ruckelshaus, M., Duffy, J. E. et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 1137.
Drolet, D., Himmelman, J. H. and Rochette, R. (2004). Use of refuges by the ophiuroid Ophiopholis aculeata: contrasting effects of substratum complexity on predation risk from two predators. Marine Ecology Progress Series, 284, 173–83.
Dumont, C. P., Himmelman, J. H. and Russell, M. P. (2004a). Sea urchin mass mortality associated with algal debris from ice scour. In Proceedings of the 11th International Echinoderm Conference, 177–82.
Dumont, C. P., Himmelman, J. H. and Russell, M. P. (2004b). Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in eastern Canada. Marine Ecology Progress Series, 276, 93101.
Dumont, C. P., Himmelman, J. H. and Russell, M. P. (2006). Daily movement of the sea urchin Strongylocentrotus droebachiensis in different subtidal habitats in eastern Canada. Marine Ecology Progress Series, 317, 8799.
Elner, R. W. and Vadas, R. L. Sr (1990). Inference in ecology: the sea urchin phenomenon in the northwestern Atlantic. The American Naturalist, 136, 108–25.
Epifanio, C. E. (2013). Invasion biology of the Asian shore crab Hemigrapsus sanguineus: a review. Journal of Experimental Marine Biology and Ecology, 441, 3349.
Estes, J. A. and Duggins, D. O. (1995). Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecological Monographs, 65, 75100.
Estes, J. A., Terborgh, J., Brashares, J. S. et al. (2011). Trophic downgrading of planet Earth. Science, 333, 301–6.
Fauchald, P. (2010). Predator-prey reversal: a possible mechanism for ecosystem hysteresis in the North Sea. Ecology, 91, 2191–7.
Feehan, C. J., Francis, F. T. Y. and Scheibling, R. E. (2014). Harbouring the enemy: kelp holdfasts protect juvenile sea urchins from predatory crabs. Marine Ecology Progress Series, 514, 149–61.
Feehan, C. J. and Scheibling, R. E. (2014a). Disease as a control of sea urchin populations in Nova Scotian kelp beds. Marine Ecology Progress Series, 500, 149–58.
Feehan, C. J. and Scheibling, R. E. (2014b). Effects of sea urchin disease on coastal marine ecosystems. Marine Biology, 161, 1467–85.
Feehan, C. J., Scheibling, R. E., Brown, M. S. and Thompson, K. R. (2016). Marine epizootics linked to storms: mechanisms of pathogen introduction and persistence inferred from coupled physical and biological time-series. Limnology and Oceanography, 61, 316–29.
Feehan, C. J., Scheibling, R. E. and Lauzon-Guay, J.-S. (2012a). Aggregative feeding behavior in sea urchins leads to destructive grazing in a Nova Scotian kelp bed. Marine Ecology Progress Series, 444, 6983.
Feehan, C. J., Scheibling, R. E. and Lauzon-Guay, J.-S. (2012b). An outbreak of sea urchin disease associated with a recent hurricane: support for the “killer storm hypothesis” on a local scale. Journal of Experimental Marine Biology and Ecology, 413, 159–68.
Filbee-Dexter, K., Feehan, C. J. and Scheibling, R. E. (2016). Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Marine Ecology Progress Series, 543, 141–52.
Filbee-Dexter, K. and Scheibling, R. E. (2012). Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Marine Ecology Progress Series, 455, 5164.
Filbee-Dexter, K. and Scheibling, R. E. (2014a). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series, 495, 125.
Filbee-Dexter, K. and Scheibling, R. E. (2014b). Detrital kelp subsidy supports high reproductive condition of deep-living sea urchins in a sedimentary basin. Aquatic Biology, 23, 7186.
Filbee-Dexter, K. and Scheibling, R.E. (2016). Spatial patterns and predictors of drift algal subsidies in deep subtidal environments. Estuaries and Coasts, 39, 1724–34.
Filbee-Dexter, K. and Scheibling, R. E. (2017). The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins. Ecology, 98, 253–64.
Fisheries and Oceans Canada. (2009). Assessment of Jonah Crab in Lobster Fishing Area 41 (4X + 5Zc). Canadian Science Advisory Secretariat, Ottawa, Science Advisory Report, 2009/034.
Fisheries and Oceans Canada. (2015). Coral and Sponge Conservation Strategy for Eastern Canada 2015. Canadian Science Advisory Secretariat, Ottawa.
Fisheries and Oceans Canada. (2016). Update of the Fishery Indicators for Rock Crab (Cancer irroratus) in the Southern Gulf of St. Lawrence. Canadian Science Advisory Secretariat, Ottawa, Secretariat Science Response, 2016/053.
Flato, G. M. and Brown, R. D. (2007) Variability and climate sensitivity of landfast Arctic sea ice. Journal of Geophysical Research, 101 , 25,767-25,777.
Foster, M. S. (2001). Rhodoliths: between rocks and soft places. Journal of Phycology, 37, 659–67.
Francis, F. T., Filbee-Dexter, K. and Scheibling, R. E. (2014). Stalked tunicates Boltenia ovifera form biogenic habitat in the rocky subtidal zone of Nova Scotia. Marine Biology, 161, 1375–83.
Frank, K. T., Petrie, B., Choi, J. S. and Leggett, W.C. (2005). Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 1621–3.
Frey, D. L. and Gagnon, P. (2015). Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities. PLoS ONE, 10, e0118583.
Gagnon, P., Himmelman, J. H. and Johnson, L. E. (2003). Algal colonization in urchin barrens: defense by association during recruitment of the brown alga Agarum cribrosum. Journal of Experimental Marine Biology and Ecology, 290, 179–96.
Gagnon, P., Himmelman, J. H. and Johnson, L. E. (2004). Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Marine Biology, 144, 1191–203.
Gagnon, P., Johnson, L. E. and Himmelman, J. H. (2005). Kelp patch dynamics in the face of intense herbivory: stability of Agarum clathratum (Phaeophyta) stands and associated flora on urchin barrens. Journal of Phycology, 41, 498505.
Gagnon, P., Matheson, K. and Stapleton, M. (2012). Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Botanica Marina, 55, 8599.
Gagnon, P., St-Hilaire-Gravel, L. V., Himmelman, J. H. and Johnson, L. E. (2006). Organismal defenses versus environmentally mediated protection from herbivores: unraveling the puzzling case of Desmarestia viridis (Phaeophyta). Journal of Experimental Marine Biology and Ecology, 334, 1019.
Garbary, D. J., Miller, A. G., Williams, J. and Seymour, N. R. (2014). Drastic decline of an extensive eelgrass bed in Nova Scotia due to the activity of the invasive green crab (Carcinus maenas). Marine Biology, 161, 315.
Gaymer, C. F., Himmelman, J. H. and Johnson, L. E. (2001a). Distribution and feeding ecology of the seastars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St Lawrence, Canada. Journal of the Marine Biological Association UK, 81, 827–43.
Gaymer, C. F., Himmelman, J. H. and Johnson, L. E. (2001b). Use of prey resources by the seastars Leptasterias polaris and Asterias vulgaris: a comparison between field observations and laboratory experiments. Journal of Experimental Marine Biology and Ecology, 262, 1330.
Genner, M. J., Sims, D. W., Southward, A. J. et al. (2010). Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology, 16, 517–27.
Genovese, S. J. and Witman, J. D. (1999). Interactive effects of flow speed and particle concentration on growth rates of an active suspension feeder. Limnology and Oceanography, 44, 1120–31.
Gerard, V. A. (1997) The role of nitrogen nutrition in high-temperature tolerance of the kelp, Laminaria saccharina (Chromophyta). Journal of Phycology. 33, 800–10.
Gilkinson, K. and Edinger, E. (2009). The ecology of deep-sea corals of Newfoundland and Labrador waters: biogeography, life history, biogeochemistry and relation to fishes. Canadian Technical Report of Fisheries and Aquatic Sciences, no. 2830.
Glenn, R. P. and Pugh, T .L. (2006). Epizootic shell disease in American lobster (Homarus americanus) in Massachusetts coastal waters: interactions of temperature, maturity, and intermolt duration. Journal of Crustacean Biology, 26, 639–45.
Glude, J. B. (1955). The effects of temperature and predators on the abundance of the soft-shell clam, Mya arenaria, in New England. Transactions of the American Fisheries Society, 84, 1326.
Govindarajan, A. F., Bukša, F., Bockrath, K., Wares, J. P. and Pineda, J. (2015). Phylogeographic structure and northward range expansion in the barnacle Chthamalus fragilis. PeerJ, 3, 3926.
Grabowski, J. H., Clesceri, E. J., Baukus, A. J. et al. (2010). Use of herring bait to farm lobsters in the Gulf of Maine. PLoS ONE, 5, e10188.
Gutt, J. (2001). On the direct impact of ice on marine benthic communities: a review. Polar Biology, 24, 553–64.
Hammill, M. O., Stenson, G. B., Buren, A. D. and Koen-Alonso, M. (2014). Feeding by grey seals on endangered stocks of Atlantic cod and white hake. ICES Journal of Marine Science, 71, 1332–41.
Harding, A. P. C. and Scheibling, R. E. (2015). Feed or flee: effect of a predation-risk cue on sea urchin foraging activity. Journal of Experimental Marine Biology and Ecology, 466, 5969.
Harley, C. D. G., Hughes, A. R., Hultgren, K. M. et al. (2006). The impacts of climate change in coastal marine systems. Ecology Letters, 9, 228–41.
Harris, L. G. and Tyrrell, M. C. (2001). Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biological Invasions, 3, 921.
Harrold, C. and Reed, D. C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology, 66, 1160–9.
Hart, M. W. and Scheibling, R. E. (1988). Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Marine Biology, 99, 167–76.
Hawkins, S. J., Moore, P. J., Burrows, M. T. et al. (2008). Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research, 37, 123–33.
Hawkins, S. J., Sugden, H. E., Mieszkowska, N. et al. (2009). Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Marine Ecology Progress Series, 396, 245–59.
Himmelman, J. H. (1984). Urchin feeding and macroalgal distribution in Newfoundland, eastern Canada. Le Naturaliste canadien, 111, 337–48.
Himmelman, J. H. (1986). Population biology of green sea urchins on rocky barrens. Marine Ecology Progress Series, 33, 295306.
Himmelman, J. H. (1991). Diving observations of subtidal communities in the northern Gulf of St. Lawrence. Canadian Special Publications of Fisheries and Aquatic Science, 113, 319–32.
Himmelman, J. H., Cardinal, A. and Bourget, E. (1983a). Community development following removal of urchins, Strongylocentrotus droebachiensis, from the rocky subtidal zone of the St. Lawrence Estuary, eastern Canada. Oecologia, 59, 2739.
Himmelman, J. H., Guderley, H., Vignault, G., Droliin, D. G. and Wells, P. G. (1984). Response of the sea urchin, Strongylocentrotus droebachiensis, to reduced salinities: importance of size, acclimation, and interpopulation differences. Canadian Journal of Zoology, 62, 1015–21.
Himmelman, J. H. and Lavergne, Y. (1985). Organization of rocky subtidal communities in the St. Lawrence Estuary. Le Naturaliste Canadien, 112, 143–54.
Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A. and Bourget, E. (1983b). Sea urchins in the Saint Lawrence Estuary: their abundance, size-structure, and suitability for commercial exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 40, 474–86.
Himmelman, J. H. and Nédélec, H. (1990). Urchin foraging and algal survival strategies in intensely grazed communities in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1011–26.
Himmelman, J. H. and Steele, D. H. (1971). Food and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Marine Biology, 9, 315–22.
Hoegh-Guldberg, O. and Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523–8.
Humm, H. J. (1969). Distribution of marine algae along the Atlantic coast of North America. Phycologia, 7, 4353.
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology, 36, 453–72.
Jackson, J. B. C., Kirby, M. X., Berger, W. H. et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–37.
Jellett, J. F. and Scheibling, R. E. (1988). Effect of temperature and prey availability on growth of Paramoeba invadens in monoxenic culture. Applied and Environmental Microbiology, 54, 1848–54.
Jenkins, S. R., Coleman, R. A., Della Santina, P. et al. (2005). Regional scale differences in the determinism of grazing effects in the rocky intertidal. Marine Ecology Progress Series, 287, 7786.
Jenkins, S. R., Moore, P., Burrows, M. T. et al. (2008). Comparative ecology of north Atlantic shores: do differences in players matter for process? Ecology, 89, S3S23.
Jennings, L. B. and Hunt, H. L. (2010). Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Marine Biology, 157, 307–16.
Jennings, L. B. and Hunt, H. L. (2014). Spatial patterns in early post-settlement processes of the green sea urchin Strongylocentrotus droebachiensis. Marine Ecology Progress Series, 502, 219–28.
Jensen, G. C., McDonald, P. S. and Armstrong, D. A. (2002). East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Marine Ecology Progress Series, 225, 251–62.
Johnson, L. E. (2007). Ice Scour. In Denny, M. W. and Gaines, S. D., eds. Encyclopedia of Tidepools and Rocky Shores. University of California Press, Berkeley, pp. 289–91.
Johnson, L. E., Brawley, S. H. and Adey, W. H. (2012). Secondary spread of invasive species: historic patterns and underlying mechanisms of the continuing invasion of the European rockweed Fucus serratus in eastern North America. Biological Invasions, 14, 7997.
Jones, P. L. and Shulman, M. J. (2008). Subtidal-intertidal trophic links: American lobsters [Homarus americanus (Milne-Edwards)] forage in the intertidal zone on nocturnal high tides. Journal of Experimental Marine Biology and Ecology, 361, 98103.
Keats, D. W., South, G. R. and Steele, D. H. (1985). Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Marine Ecology Progress Series, 25, 151–8.
Kelly, J. R., Krumhansl, K. A. and Scheibling, R. E. (2012). Drift algal subsidies to sea urchins in low-productivity habitats. Marine Ecology Progress Series, 452, 145–57.
Kelly, J. R., Scheibling, R. E. and Balch, T. (2011). Invasion-mediated shifts in the macrobenthic assemblage of a rocky subtidal ecosystem. Marine Ecology Progress Series, 437, 6978.
Kenchington, E. (2014). A general overview of benthic ecological or biological significant areas (EBSAs) in maritimes region. Canadian Technical Report of Fisheries and Aquatic Sciences, 3072, iv, 45.
Kenneth, F., Petrie, B., Fisher, J. A. D. and Leggett, W. C. (2011). Transient dynamics of an altered large marine ecosystem. Nature, 477, 86–9.
Konar, B. and Estes, J. A. (2003). The stability of boundary regions between kelp beds and deforested areas. Ecology, 84, 174–85.
Krause-Jensen, D., Marba, N., Olesen, B. et al. (2012). Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology, 18, 2981–94.
Krumhansl, K. A., Lee, J. M. and Scheibling, R. E. (2011). Grazing damage and encrustation by an invasive bryozoan reduce the ability of kelps to withstand breakage by waves. Journal of Experimental Marine Biology and Ecology, 407, 1218.
Krumhansl, K. A., Okamoto, D. K., Rassweiler, A. et al. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Science, 113, 13785–90.
Krumhansl, K. A. and Scheibling, R. E. (2011). Detrital production in Nova Scotian kelp beds: patterns and processes. Marine Ecology Progress Series, 421, 6782.
Krumhansl, K. A. and Scheibling, R. E. (2012). Production and fate of kelp detritus. Marine Ecology Progress Series, 467, 281302.
Lambert, D. M. and Harris, L. G. (2000). Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebrate Biology, 119, 403–9.
Lambert, W. J., Levin, P. S. and Berman, J. (1992). Changes in the structure of a New England (USA) kelp bed: the effects of an introduced species? Marine Ecology Progress Series, 88, 303–7.
Lang, C. and Mann, K. H. (1976). Changes in sea urchin populations after the destruction of kelp beds. Marine Biology, 36, 321–6.
Laur, D. R., Ebeling, A. W. and Reed, D. C. (1986). Experimental evaluations of substrate types as barriers to sea urchin (Strongylocentrotus spp.) movement. Marine Biology, 93, 209–15.
Lauzon-Guay, J.-S. and Scheibling, R. E. (2007). Seasonal variation in movement, aggregation and destructive grazing of the green sea urchin (Strongylocentrotus droebachiensis) in relation to wave action and sea temperature. Marine Biology, 151, 2109–18.
Lauzon-Guay, J.-S., Scheibling, R. E. and Barbeau, M. A. (2006). Movement patterns in the green sea urchin, Strongylocentrotus droebachiensis. Journal of the Marine Biological Association of the UK, 86, 167–74.
Lauzon-Guay, J. S., Scheibling, R. E. and Barbeau, M. A. (2009). Modelling phase shifts in a rocky subtidal ecosystem. Marine Ecology Progress Series, 375, 2539.
Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanography and Marine Biology: An Annual Review, 13, 213–86.
LeGault, K. N. and Hunt, H. L. (2016). Cannibalism among green sea urchins Strongylocentrotus droebachiensis in the laboratory and field. Marine Ecology Progress Series, 542, 112.
Leichter, J. J. and Witman, J. D. (1997). Water flow over subtidal rock walls: relation to distributions and growth rates of sessile suspension feeders in the Gulf of Maine: water flow and growth rates. Journal of Experimental Marine Biology and Ecology, 209, 293307.
Levin, P. S., Coyer, J. A., Petrik, R. and Good, T. P. (2002). Community-wide effects of nonindigenous species on temperate rocky reefs. Ecology, 83, 3182–93.
Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. and Santos, A. M. (2007). Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biology, 13, 2592–604.
Ling, S. D., Scheibling, R. E., Rassweiler, A. et al. (2015). Global regime shift dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20130269.
Lotze, H. and Milewski, I. (2004). Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecological Applications, 14, 1428–47.
Lyons, D. A. and Scheibling, R. E. (2009). Range expansion by invasive marine algae: rates and patterns of spread at a regional scale. Diversity and Distributions, 15, 762–75.
Ma, K. C. K., Deibel, D., Law, K. K. M. et al. (2017). Richness and zoogeography of ascidians (Tunicata: Ascidiacea) in eastern Canada. Canadian Journal of Zoology, 95, 51–9.
MacFarlane, C. (1952). A survey of certain seaweeds of commercial importance in southwest Nova Scotia. Canadian Journal of Botany, 30, 7897.
MacGregor, K. A. (2019). Individual- and population-level responses to the environment: Environmental modification of movement behaviour in the green sea urchin, Strongylocentrotus droebachiensis. PhD, Laval University.
Mamelona, J. and Pelletier, M. (2005). Green urchin as a significant source of fecal particulate organic matter within nearshore benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 314, 163–74.
Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. Science, 182, 975–81.
Mann, K. H. (1982). Kelp, sea urchins and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970–1980. Netherlands Journal of Sea Research, 16, 414–23.
Mann, K. H. and Breen, P. A. (1972). The relation between lobster abundance, sea urchins, and kelp beds. Journal of the Fisheries Research Board of Canada, 29, 603–5.
Mathieson, A. C. (2016) Rapid assessment survey of fouling and introduced seaweeds from southern Maine to Rhode Island. Rhodora, 118 , 113–47.
Mathieson, A. C., Dawes, C. J., Pederson, J., Gladych, R. A. and Carlton, J. T. (2008). The Asian red seaweed Grateloupia turuturu (Rhodophyta) invades the Gulf of Maine. Biological Invasions, 10, 985–8.
Mathieson, A. C., Penniman, C. A. and Harris, L. G. (1991). Northwest Atlantic Rocky Shore Ecology. In Mathieson, A. C. and Neinhuis, P. H., eds. Intertidal and Littoral Systems: Ecosystems of the World 24. Elsevier, Amsterdam, pp. 109–91.
McCain, J. S. P., Cull, D. J., Schneider, D. C. and Lotze, H. K. (2016). Long-term shift in coastal fish communities before and after the collapse of Atlantic cod (Gadus morhua). ICES Journal of Marine Science, 73, 1415–26.
McCook, L. J. and Chapman, A. R. O. (1997). Patterns and variations in natural succession following massive ice-scour of a rocky intertidal seashore. Journal of Experimental Marine Biology and Ecology, 214, 121–47.
McDermott, J. (1998). The western Pacific brachyuran (Hemigrapsus sanguineus: Grapsidae), in its new habitat along the Atlantic coast of the United States: geographic distribution and ecology. ICES Journal of Marine Science, 55, 289–98.
McKindsey, C. W., Lecuona, M., Huot, M. and Weise, A. M. (2009). Biodeposit production and benthic loading by farmed mussels and associated tunicate epifauna in Prince Edward Island. Aquaculture, 295, 4451.
Merzouk, A. and Johnson, L. E. (2011). Kelp distribution in the northwest Atlantic Ocean under a changing climate. Journal of Experimental Marine Biology and Ecology, 400, 90–8.
Mieszkowska, N., Genner, M. J., Hawkins, S. J. and Sims, D. W. (2009). Effects of climate change and commercial fishing on Atlantic cod Gadus morhua. Advances in Marine Biology, 56, 213–73.
Miller, B. (1994). Why are there so many American lobsters? Lobster Newsletter, 7, 1415.
Miller, R. J. (1985a). Seaweeds, sea urchins, and lobsters: a reappraisal. Canadian Journal of Fisheries and Aquatic Sciences, 42, 2061–72.
Miller, R. J. (1985b). Succession in sea urchin and seaweed abundance in Nova Scotia, Canada. Marine Biology, 84, 275–86.
Miller, R. J. and Etter, R. J. (2008). Shading facilitates sessile invertebrate dominance in the rocky subtidal Gulf of Maine. Ecology, 89, 452–62.
Miller, R. J. and Etter, R. J. (2011). Rock walls: small-scale diversity hotspots in the subtidal Gulf of Maine. Marine Ecology Progress Series, 425, 153–65.
Mills, K. E., Pershing, A. and Brown, C. (2013). Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography, 26, 191–5.
Moody, K. E. and Steneck, R. S. (1993). Mechanisms of predation among large decapod crustaceans of the Gulf of Maine coast: functional vs. phylogenetic patterns. Journal of Experimental Marine Biology and Ecology, 168, 111–24.
Morse, B. L. and Hunt, H. L. (2013). Effect of unidirectional water currents on displacement behaviour of the green sea urchin Strongylocentrotus droebachiensis. Journal of the Marine Biological Association of the UK, 93, 1923–8.
Nadon, M.-O. and Himmelman, J. H. (2006). Stable isotopes in subtidal food webs: have enriched carbon ratios in benthic consumers been misinterpreted? Limnology and Oceanography, 51, 2828–36.
Narvaez, C. A. (2019). Green urchin demography in a subartic ecosystem: patterns and processes. PhD, Laval University.
Neckles, H. A. (2015). Loss of eelgrass in Casco Bay, Maine, linked to green crab disturbance. Northeastern Naturalist, 22, 478500.
Newton, C., Bracken, M. E. S., McConville, M., Rodrigue, K. and Thornber, C. S. (2013). Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the western north Atlantic Ocean. PLoS ONE, 8, e62261.
Novak, M. (2004). Diurnal activity in a group of Gulf of Maine decapods. Crustaceana, 77, 603–20.
Nye, J. A., Link, J. S., Hare, J. A. and Overholtz, W. J. (2009). Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series, 393, 111–29.
O’Brien, J. M., Krumhansl, K. A. and Scheibling, R. E. (2013). Invasive bryozoan alters interaction between a native grazer and its algal food. Journal of the Marine Biological Association of the UK, 93, 1393–400.
O’Brien, J. M., Scheibling, R. E. and Krumhansl, K. A. (2015). Positive feedback between large-scale disturbance and density-dependent grazing decreases resilience of a kelp bed ecosystem. Marine Ecology Progress Series, 522, 113.
Occhipinti-Ambrogi, A. (2007). Global change and marine communities: alien species and climate change. Marine Pollution Bulletin, 55, 342–52.
Palardy, J. E. and Witman, J. D. (2014). Flow, recruitment limitation, and the maintenance of diversity in marine benthic communities. Ecology, 95, 286–97.
Palma, A. T. and Steneck, R. S. (2001). Does variable coloration in juvenile marine crabs reduce risk of visual predation? Ecology, 82, 2961–7.
Palma, A. T., Steneck, R. S. and Wilson, C. J. (1999). Settlement-driven, multiscale demographic patterns of large benthic decapods in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology, 241, 107–36.
Palma, A. T., Wahle, R. A. and Steneck, R. S. (1998). Different early post-settlement strategies between American lobsters Homarus americanus and rock crabs Cancer irroratus in the Gulf of Maine. Marine Ecology Progress Series, 162, 215–25.
Pauly, D. (1998). Fishing down marine food webs. Science, 279, 860–3.
Peterson, G. H. (1977). Biological Effects of Sea-Ice and Icebergs in Greenland. In Dunbar, M. L., ed. Polar Oceans. Arctic Institute of North America, Calgary, pp. 319–20.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. and Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341, 1239–42.
Quinn, B. K. (2017). Threshold temperatures for performance and survival of American lobster larvae: a review of current knowledge and implications to modeling impacts of climate change. Fisheries Research, 186, 383–96.
Quinn, B. K., Rochette, R., Ouellet, P. and Sainte-Marie, B. (2013). Effect of temperature on development rate of larvae from cold-water American lobster (Homarus americanus). Journal of Crustacean Biology, 33, 527–36.
Ramsey, A., Davidson, J., Landry, T. and Arsenault, G. (2008). Process of invasiveness among exotic tunicates in Prince Edward Island, Canada. Biological Invasions, 10, 1311–16.
Reed, J. K. (2004). Deep-Water Coral Reefs of Florida, Georgia and South Carolina: A Summary of the Distribution, Habitat, and Associated Fauna. South Atlantic Fishery Management Council, Fort Pierce, FL.
Reed, J. K. and Ross, S. W. (2005). Deep-water reefs off the southeastern US: recent discoveries and research. Journal of Marine Education, 21, 33–7.
Richards, A. R. (1992). Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). Journal of Experimental Marine Biology and Ecology, 156, 187–97.
Robichaud, D. A. and Frail, C. (2006). Development of Jonah crab, Cancer borealis, and rock crab, Cancer irroratus, fisheries in the Bay of Fundy (LFAs 35-38) and off southwest Nova Scotia (LFA 34): from exploratory to commercial status (1995–2004). Canadian Manuscript Report Fisheries and Aquatic Science, 2775.
Roman, J. (2006). Diluting the founder effect: Cryptic invasions expand a marine invader’s range. Proceedings of the Royal Society B, 273, 2453–9.
Rondeau, A., Hanson, J. M. and Comeau, M. (2014). Rock Crab, Cancer irroratus, Fishery and Stock Status in the Southern Gulf of St. Lawrence: LFA 23, 24, 25, 26A and 26B. Canadian Science Advisory Secretariat, Ottawa, Research Document 2014/032, vi, 52.
Ruiz, G. M., Fofonoff, P. W., Carlton, J. T., Wonham, M. J. and Hines, A. H. (2000). Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics, 31, 481531.
Sainte-Marie, B. and Chabot, D. (2002). Ontogenetic shifts in natural diet during benthic stages of American lobster (Homarus americanus), off the Magdalen Islands. Fisheries Bulletin, 100, 106–16.
Sauchyn, L. K., Lauzon-Guay, J. S. and Scheibling, R. E. (2011). Sea urchin fecal production and accumulation in a rocky subtidal ecosystem. Aquatic Biology, 13, 215–23.
Sauchyn, L. K. and Scheibling, R. E. (2009a). Degradation of sea urchin feces in a rocky subtidal ecosystem: implications for nutrient cycling and energy flow. Aquatic Biology, 6, 99108.
Sauchyn, L. K. and Scheibling, R. E. (2009b). Fecal production by sea urchins in native and invaded algal beds. Marine Ecology Progress Series, 396, 3548.
Saunders, M. I. and Metaxas, A. (2009). Effects of temperature, size, and food on the growth of Membranipora membranacea in laboratory and field studies. Marine Biology, 156, 2267–76.
Saunders, M. I., Metaxas, A. and Filgueira, R. (2010). Implications of warming temperatures for population outbreaks of a nonindigenous species (Membranipora membranacea, Bryozoa) in rocky subtidal ecosystems. Limnology and Oceanography, 55, 1627–42.
Savenkoff, C., Castonguay, M., Chabot, D. et al. (2007a). Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift? Estuarine, Coastal and Shelf Science, 73, 711–24.
Savenkoff, C., Swain, D. P., Hanson, J. M. et al. (2007b). Effects of fishing and predation in a heavily exploited ecosystem: Comparing periods before and after the collapse of groundfish in the southern Gulf of St. Lawrence (Canada). Ecological Modelling, 204, 115–28.
Scheibling, R. E. (1984). Echinoids, epizootics and ecological stability in the rocky subtidal off Nova Scotia, Canada. Helgolander Meeresuntersuchungen, 37, 233–42.
Scheibling, R. E. (1986). Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia, 68, 186–98.
Scheibling, R. E. (1996). The role of predation in regulating sea urchin populations in eastern Canada. Oceanologica Acta, 19, 421–30.
Scheibling, R. E., Feehan, C. and Lauzon-Guay, J.-S. (2010). Disease outbreaks associated with recent hurricanes cause mass mortality of sea urchins in Nova Scotia. Marine Ecology Progress Series, 408, 109–16.
Scheibling, R. E., Feehan, C. J. and Lauzon-Guay, J.-S. (2013). Climate Change, Disease and the Dynamics of a Kelp-Bed Ecosystem in Nova Scotia. In Fernandez-Palacios, J., de Nascimento, L., Hernandez, J. C. et al., eds. Climate Change Perspectives from the Atlantic: Past, Present and Future. Servicio de Publicaciones, Universidad de La Laguna, Santa Cruz de Tenerife.
Scheibling, R. E. and Gagnon, P. (2006). Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Marine Ecology Progress Series, 325, 114.
Scheibling, R. E. and Gagnon, P. (2009). Temperature-mediated outbreak dynamics of the invasive bryozoan Membranipora membranacea in Nova Scotian kelp beds. Marine Ecology Progress Series, 390, 113.
Scheibling, R. E. and Hamm, J. (1991). Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Marine Biology, 110, 105–16.
Scheibling, R. E. and Hennigar, A. (1997). Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: evidence for a link with large-scale meteorologic and oceanographic events. Marine Ecology Progress Series, 152, 155–65.
Scheibling, R. E., Hennigar, A. W. and Balch, T. (1999). Destructive grazing, epiphytism, and disease: the dynamics of sea urchin-kelp interactions in Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 56, 2300–14.
Scheibling, R. E., Kelly, N. E. and Raymond, B. G. (2009a). Herbivory and community composition on a subtidal cobble bed. Marine Ecology Progress Series, 382, 113–28.
Scheibling, R. E., Kelly, N. E. and Raymond, B. G. (2009b). Physical disturbance and community organization on a subtidal cobble bed. Journal of Experimental Marine Biology and Ecology, 368, 94100.
Scheibling, R. E. and Lauzon-Guay, J.-S. (2010). Killer storms: North Atlantic hurricanes and disease outbreaks in sea urchins. Limnology and Oceanography, 55, 2331–8.
Scheibling, R. E. and Raymond, B. G. (1990). Community dynamics on a subtidal cobble bed following mass mortalities of sea urchins. Marine Ecology Progress Series, 63, 127–45.
Scheibling, R. E. and Stephenson, R. L. (1984). Mass mortality of Strongylocentrotus droebachiensis (Echinodermata: Echinoidea) off Nova Scotia, Canada. Marine Biology, 78, 153–64.
Schuster, M. and Konar, B. (2014). Foliose algal assemblages and deforested barren areas: phlorotannin content, sea urchin grazing and holdfast community structure in the Aleutian dragon kelp, Eualaria fistulosa. Marine Biology, 161, 2319–32.
Scrosati, R. A. (2013). Patchy mussel dominance on ice-scoured rocky shores in Atlantic Canada. Oceanarium, 43, 251–2.
Sebens, K. P. (1985). The ecology of the rocky subtidal zone: the subtidal rock surfaces in New England support a diversity of encrusting species that compete for space and that recolonize patches cleared through predation. American Scientist, 73, 548–57.
Seebens, H., Gastner, M. T. and Blasius, B. (2013). The risk of marine bioinvasion caused by global shipping. Ecology Letters, 16, 782–90.
Sephton, D., Vercaemer, B., Nicolas, J. M. and Keays, J. (2011). Monitoring for invasive tunicates in Nova Scotia, Canada (2006–2009). Aquatic Invasions, 6, 391403.
Shelton, A. O., Witman, D., Woodby, D. A. and Hebert, K. (2006). Evaluating age determination and spatial patterns of growth in red sea urchins in southeast Alaska. Transactions of the American Fisheries Society, 135, 1670–80.
Shields, J. D. (2013). Complex etiologies of emerging diseases in lobsters (Homarus americanus) from Long Island Sound. Canadian Journal of Fisheries and Aquatic Sciences, 70, 1576–87.
Simonson, E. J., Scheibling, R. E. and Metaxas, A. (2015). Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Marine Ecology Progress Series, 537, 89104.
Sindermann, C. (1990). Principal Diseases of Marine Fish and Shellfish, 2nd edn. Academic Press, San Diego, CA.
Smale, D. A., Brown, K. M., Barnes, D. K. A., Fraser, K. P. P. and Clarke, A. (2008). Ice scour disturbance in Antarctic waters. Science, 321, 371.
Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. and Hawkins, S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecology and Evolution, 3, 4016–38.
Smolowitz, R., Quinn, R. A., Cawthorn, R. J., Summerfield, R. L. and Chistoserdov, A. Y. (2014). Pathology of two forms of shell disease of the American lobster Homarus americanus Milne Edwards in Atlantic Canada. Journal of Fish Diseases, 37, 577–81.
Squire, V. A. (2007). Of ocean waves and sea-ice revisited. Cold Regions Science and Technology, 49, 110–13.
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. and Liu, A. K. (1995). Of ocean waves and sea-ice revisited. Annual Review of Fluid Mechanics, 27, 115–68.
St-Pierre, A. P. and Gagnon, P. (2015a). Wave action and starvation modulate intra-annual variation in displacement, microhabitat selection, and ability to contact prey in the common sea star, Asterias rubens Linnaeus. Journal of Experimental Marine Biology and Ecology, 467, 95107.
St-Pierre, A. P. and Gagnon, P. (2015b). Effects of temperature, body size, and starvation on feeding in a major echinoderm predator. Marine Biology, 162, 1125–35.
Steneck, R. S. (2006a). Is the American lobster, Homarus americanus, overfished? A review of overfishing with an ecologically based perspective. Bulletin of Marine Science, 78, 607–32.
Steneck, R. S. (2006b). Possible demographic consequences of intraspecific shelter competition among American lobsters. Journal of Crustacean Biology, 26, 628–38.
Steneck, R. S. and Dethier, M. N. (1994). A functional group approach to the structure of algal-dominated communites. Oikos, 69, 476–98.
Steneck, R. S., Leland, A., Mcnaught, D. C. and Vavrinec, J. (2013). Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine kelp forest ecosystem. Bulletin of Marine Science, 89, 3155.
Steneck, R. S., Vavrinec, J. and Leland, A. V. (2004). Accelerating trophic-level dysfunction in kelp forest ecosystems of the western north Atlantic. Ecosystems, 7, 323–32.
Steneck, R. S. and Wahle, R. A. (2013). American lobster dynamics in a brave new ocean. Canadian Journal of Fisheries and Aquatic Sciences, 70, 1612–24.
Sumi, C. B. T. and Scheibling, R. E. (2005). Role of grazing by sea urchins Strongylocentrotus droebachiensis in regulating the invasive alga Codium fragile ssp. tomentosoides in Nova Scotia. Marine Ecology Progress Series, 292, 203–12.
Suskiewicz, T. S. and Johnson, L. E. (2017). Consumption rates of a key marine herbivore: a review of the extrinsic and intrinsic control of feeding in the green sea urchin. Marine Biology, 164, 131–43.
Swenton, R., Borden, D., Busby, J. et al. (2014). Jonah Crab Fishery: A Briefing for the Atlantic States Marine Fisheries Commission. Atlantic States Marine Fisheries Commission, Arlington, VA.
Teagle, H., Hawkins, S. J., Moore, P. J. and Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 8198.
Tittensor, D. P., Mora, C., Jetz, W. et al. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098–103.
Uribe, R. A., Ortiz, M., Macaya, E. C. and Pacheco, A. S. (2015). Successional patterns of hard-bottom macrobenthic communities at kelp bed (Lessonia trabeculata) and barren ground sublittoral systems. Journal of Experimental Marine Biology and Ecology, 472, 180–8.
Vadas, R. L. Sr. and Elner, R. W. (1992). Plant–Animal Interactions in the North-West Atlantic. In John, D. M., Hawkins, S. J. and Price, J. H., eds. Plant–Animal Interactions in the Marine Benthos; Systematics Association Special Volume No. 46. The Systematics Association Special Volume No. 46, Clarendon Press, Oxford, pp. 3360.
Vadas, R. L., Elner, R. W., Garwood, P. E. and Babb, I. G. (1986). Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis. Marine Biology, 90, 433–48.
Vadas, R. L. and Steneck, R. S. (1995). Overfishing and Inferences in Kelp–Sea Urchin Interactions. In Skjoldal, H. R., Hopkins, C., Erikstad, K. E. and Leinaas, H. P., eds. Ecology of Fjords and Coastal Waters. Elsevier Science B.V., Amsterdam, pp. 509–24.
Vanderklift, M. A. and Wernberg, T. (2008). Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia, 157, 327–35.
Wahl, M. (2009). Marine Hard Bottom Communities: Patterns, Dynamics, Diversity, and Change. Springer, New York.
Wahle, R. A., Bergeron, C., Tremblay, J. et al. (2013). The geography and bathymetry of American lobster benthic recruitment as measured by diver-based suction sampling and passive collectors. Marine Biology Research, 9, 4258.
Wahle, R. A., Gibson, M. and Fogarty, M. (2009). Distinguishing disease impacts from larval supply effects in a lobster fishery collapse. Marine Ecology Progress Series, 376, 185–92.
Wahle, R. A., Incze, L. S. and Fogarty, M. J. (2004). First projections of American lobster fishery recuitment using a settlement index and variable growth. Bulletin of Marine Science, 74, 101–14.
Wahle, R. A., Dellinger, L., Olszewski, S. and Jekielek, P. (2015). American lobster nurseries of southern New England receding in the face of climate change. ICES Journal of Marine Science, 72 (Suppl. 1), i69i78.
Wahle, R. A. and Steneck, R. S. (1992). Habitat restrictions in early benthic life: experiments on habitat selection and in situ predation with the American lobster. Journal of Experimental Marine Biology and Ecology, 157, 91114.
Walther, G. R., Roques, A., Hulme, P. E. et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686–93.
Watanabe, S., Scheibling, R. E. and Metaxas, A. (2009). Contrasting patterns of spread in interacting invasive species: Membranipora membranacea and Codium fragile off Nova Scotia. Biological Invasions, 12, 2329–42.
Welch, W. R. (1968). Changes in abundance of the green crab, Carcinus maenas (L.), in relation to recent temperature changes. Fishery Bulletin, 67, 337–45.
Wells, R. J. D., Steneck, R. S. and Palma, A. T. (2010). Three-dimensional resource partitioning between American lobster (Homarus americanus) and rock crab (Cancer irroratus) in a subtidal kelp forest. Journal of Experimental Marine Biology and Ecology, 384, 16.
Wharton, W. G. and Mann, K. H. (1981). Relationship between destructive grazing by the sea urchin, Strongylocentrotus droebachiensis, and the abundance of American lobster, Homarus americanus, on the Atlantic coast of Nova Scotis. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1339–49.
Witman, J. D. (1987). Coexistence: Storms, grazing, mutualism, and the zonation of kelps and mussels. Ecological Monographs, 57, 167–87.
Witman, J. D. and Sebens, K.P. (1992). Regional variation in fish predation intensity: a historical perspective in the Gulf of Maine. Oecologia, 90, 305–15.
Worm, B. and Myers, R. A. (2003). Meta-Analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology, 84, 162–73.
Wyeth, R. C., Woodward, O. M. and Willows, A. O. D. (2006). Orientation and navigation relative to water flow, prey, conspecifics, and predators by the nudibranch mollusc Tritonia diomedea. Biological Bulletin, 210, 97108.
Zenkevitch, L. (1963). The Sea of Okhotsk. In Biology of the Seas of the U.S.S.R. Translated by Botcharsyava, S.. George Allen and Unwin Ltd, London, pp. 783817.
Zhao, J.-P., Li, T., Barber, D. et al. (2010). Attenuation of lateral propagating light in sea ice measured with an artificial lamp in winter Arctic. Cold Regions Science and Technology, 61, 612.