Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T16:48:36.353Z Has data issue: true hasContentIssue false

9 - Dynamic Interference Management

Published online by Cambridge University Press:  09 February 2018

Venugopal V. Veeravalli
Affiliation:
University of Illinois, Urbana-Champaign
Aly El Gamal
Affiliation:
Purdue University, Indiana
Get access

Summary

An important requirement of next-generation (5G) wireless systems is the ability to autonomously adjust to varying environmental conditions. Our focus in this chapter is to analyze information-theoretic models of interference networks that capture the effect of deep fading conditions through introducing random link erasure events in blocks of communication time slots.More specifically, in order to consider the effect of long-term fluctuations (deep fading or shadowing), we assume that communication takes place over blocks of time slots, and independent link erasures occur with probability p in each block.

We can observe through the results presented in Chapters 5–8 that conclusions related to the optimal associations of mobile terminals to basestations and the achievable DoF differ dramatically based on the network topology. For example, under the maximum transmit set size constraint for the downlink, local cooperation cannot lead to a gain in the achieved asymptotic per-user DoF for the fully connected channel. However, local cooperation is optimal for locally connected channels and can lead to achieving scalable DoF gains, and the optimal assignment of messages to transmitters depends on the connectivity parameter L. In practice, the topology may change due to deep fading conditions (see, e.g., [6]) or even intentionally to exploit spectrum opportunities (see, e.g., [94]). In this chapter, we extend our DoF results to dynamic interference networks where a fixed assignment of messages is selected to achieve average DoF optimal performance in networks with changing topology.

In [95], the authors analyzed the average capacity for a point-to-point channel model where slow changes result in varying severity of noise. We apply a similar concept to interference networks by assuming that slowly changing deep fading conditions result in link erasures.We consider the linear interference network (L=1) that was introduced in Chapter 6, and look at two fading effects: long-term fluctuations that result in link erasures over a complete block of time slots, and short-term fluctuations that allow us to assume that any specific joint realization for the non-zero channel coefficients will take place with zero probability. We study the problem of achieving the optimal average degrees of freedom under a maximum transmit set size constraint (5.16). We note that the problem studied in Chapter 6 reduces to the case of no erasures.

Type
Chapter
Information
Interference Management in Wireless Networks
Fundamental Bounds and the Role of Cooperation
, pp. 165 - 182
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×