Skip to main content
  • Print publication year: 2015
  • Online publication date: December 2015

9 - Fluctuation–dissipation theorem and linear response theory

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Introduction to Many-Body Physics
  • Online ISBN: 9781139020916
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1] R., Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys., vol. 29, p. 255, 1966.
[2] R., Kubo, Statistical mechanical theory of irreversible processes. I: general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., vol. 12, p. 570, 1957.
[3] D., Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Advanced Books Classics, Perseus Books, 1995.
[4] L. Van, Hove, Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev., vol. 95, no. 1, p. 249, 1954.
[5] G., Binnig, H., Rohrer, C., Gerber, and E., Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett., vol. 40, p. 178, 1982.
[6] G., Binnig, H., Rohrer, C., Gerber, and E., Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., vol. 49, no. 1, p. 57, 1982.
[7] K. M., Lang, V., Madhavan, J. E., Hoffman, E. W., Hudson, H., Eisaki, S., Uchida, and J. C., Davis, Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8 + δ, Nature, vol. 415, no. 6870, p. 412, 2002.
[8] B. B., Zhou, S., Misra, E. H. da Silva, Neto, P., Aynajian, R. E., Baumbach, J. D., Thompson, E. D., Bauer, and A., Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys., vol. 9, no. 8, p. 474, 2013.
[9] J. J., Sakurai, Modern Quantum Mechanics, chapter 2.4, Addison-Wesley, 1993.
[10] approximation.
[11] J., Korringa, Nuclear magnetic relaxation and resonant line shift in metals, Physica, vol. 16, p. 601, 1950.
[12] B. S., Shastry, t–J model and nuclear magnetic relaxation in high-Tc materials, Phys. Rev. Lett., vol. 63, p. 1288, 1989.
[13] F., Mila and T. M., Rice, Spin dynamics ofYBa2Cu3O6+x as revealed by NMR, Phys. Rev. B, vol. 40, p. 11382, 1989.
[14] E., Shiles, T., Sasaki, M., Inokuti, and D. Y., Smith, Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum, Phys. Rev. B, vol. 22, p. 1612, 1980.