Skip to main content
×
Home
  • Print publication year: 2015
  • Online publication date: December 2015

9 - Fluctuation–dissipation theorem and linear response theory

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Introduction to Many-Body Physics
  • Online ISBN: 9781139020916
  • Book DOI: https://doi.org/10.1017/CBO9781139020916
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
[1] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys., vol. 29, p. 255, 1966.
[2] R. Kubo, Statistical mechanical theory of irreversible processes. I: general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., vol. 12, p. 570, 1957.
[3] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Advanced Books Classics, Perseus Books, 1995.
[4] L. Van Hove, Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev., vol. 95, no. 1, p. 249, 1954.
[5] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett., vol. 40, p. 178, 1982.
[6] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., vol. 49, no. 1, p. 57, 1982.
[7] K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8 + δ, Nature, vol. 415, no. 6870, p. 412, 2002.
[8] B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys., vol. 9, no. 8, p. 474, 2013.
[9] J. J. Sakurai, Modern Quantum Mechanics, chapter 2.4, Addison-Wesley, 1993.
[10] http://en.wikipedia.org/wiki/WKB approximation.
[11] J. Korringa, Nuclear magnetic relaxation and resonant line shift in metals, Physica, vol. 16, p. 601, 1950.
[12] B. S. Shastry, t–J model and nuclear magnetic relaxation in high-Tc materials, Phys. Rev. Lett., vol. 63, p. 1288, 1989.
[13] F. Mila and T. M. Rice, Spin dynamics ofYBa2Cu3O6+x as revealed by NMR, Phys. Rev. B, vol. 40, p. 11382, 1989.
[14] E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum, Phys. Rev. B, vol. 22, p. 1612, 1980.