Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T16:16:47.269Z Has data issue: false hasContentIssue false

4 - Static Aeroelasticity

Published online by Cambridge University Press:  05 June 2012

Dewey H. Hodges
Affiliation:
Georgia Institute of Technology
G. Alvin Pierce
Affiliation:
Georgia Institute of Technology
Get access

Summary

I discovered that with increasing load, the angle of incidence at the wing tips increased perceptibly. It suddenly dawned on me that this increasing angle of incidence was the cause of the wing's collapse, as logically the load resulting from the air pressure in a steep dive would increase faster at the wing tips than at the middle. The resulting torsion caused the wings to collapse under the strain of combat maneuvers.

–A. H. G. Fokker in The Flying Dutchman, Henry Holt and Company, 1931

The field of static aeroelasticity is the study of flight-vehicle phenomena associated with the interaction of aerodynamic loading induced by steady flow and the resulting elastic deformation of the lifting-surface structure. These phenomena are characterized as being insensitive to the rates and accelerations of the structural deflections. There are two classes of design problems that are encountered in this area. The first and most common to all flight vehicles is the effects of elastic deformation on the airloads, as well as effects of airloads on the elastic deformation, associated with normal operating conditions. These effects can have a profound influence on performance, handling qualities, flight stability, structural-load distribution, and control effectiveness. The second class of problems involves the potential for static instability of the lifting-surface structure to result in a catastrophic failure. This instability is often termed “divergence” and it can impose a limit on the flight envelope.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Static Aeroelasticity
  • Dewey H. Hodges, Georgia Institute of Technology, G. Alvin Pierce, Georgia Institute of Technology
  • Book: Introduction to Structural Dynamics and Aeroelasticity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997112.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Static Aeroelasticity
  • Dewey H. Hodges, Georgia Institute of Technology, G. Alvin Pierce, Georgia Institute of Technology
  • Book: Introduction to Structural Dynamics and Aeroelasticity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997112.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Static Aeroelasticity
  • Dewey H. Hodges, Georgia Institute of Technology, G. Alvin Pierce, Georgia Institute of Technology
  • Book: Introduction to Structural Dynamics and Aeroelasticity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997112.006
Available formats
×