Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T02:56:48.269Z Has data issue: false hasContentIssue false

2 - Bonding styles and the free-electron model

Published online by Cambridge University Press:  20 November 2009

Uichiro Mizutani
Affiliation:
Nagoya University, Japan
Get access

Summary

Prologue

The electron theory of metals pursues the development of ideas that lead to an understanding of various properties manifested by different kinds of materials on the basis of the electronic bondings among constituent atoms. Here the concept of the energy band plays a key role and is introduced in Section 2.2. Condensed matter is often classified in terms of bonding mechanisms; metallic bonding, covalent bonding, ionic bonding and van der Waals bonding. After their brief introduction in Section 2.3, we focus on metallic bonding and discuss the Sommerfeld free-electron model in Sections 2.4–2.6. The construction of the Fermi sphere is discussed in Section 2.7.

Concept of an energy band

Let us first briefly consider the electron configurations in a free atom. The central-field approximation is useful to describe the motion of each electron in a many-electron atom, since the repulsive interaction between the electrons can be included on an average as a part of the central field. Because of the spherical symmetry of the field, the motion of each electron can be conveniently described in polar coordinates r, θ and ϕ centered at the nucleus. All three variables r, θ and ϕ are needed to describe electron motion in three-dimensional space. In quantum mechanics, the three degrees of freedom lead to three different quantum numbers, by which the stationary state or the quantum state of an electron is specified; the principal quantum number n, which takes a positive integer, the azimuthal or orbital angular momentum quantum number ℓ, which takes integral values from zero to n–1, and the magnetic quantum number m, which can vary in integral steps from −ℓ to ℓ, including zero.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×