Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T16:24:59.463Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  20 November 2009

Uichiro Mizutani
Affiliation:
Nagoya University, Japan
Get access

Summary

What is the electron theory of metals?

Each element exists as either a solid, or a liquid, or a gas at ambient temperature and pressure. Alloys or compounds can be formed by assembling a mixture of different elements on a common lattice. Typically this is done by melting followed by solidification. Any material is, therefore, composed of a combination of the elements listed in the periodic table, Table 1.1. Among them, we are most interested in solids, which are often divided into metals, semiconductors and insulators. Roughly speaking, a metal represents a material which can conduct electricity well, whereas an insulator is a material which cannot convey a measurable electric current. At this stage, a semiconductor may be simply classified as a material possessing an intermediate character in electrical conduction. Most elements in the periodic table exist as metals and exhibit electrical and magnetic properties unique to each of them. Moreover, we are well aware that the properties of alloys differ from those of their constituent elemental metals. Similarly, semiconductors and insulators consisting of a combination of several elements can also be formed. Therefore, we may say that unique functional materials may well be synthesized in metals, semiconductors and insulators if different elements are ingeniously combined.

A molar quantity of a solid contains as many as 10 atoms. A solid is formed as a result of bonding among such a huge number of atoms. The entities responsible for the bonding are the electrons. The physical and chemical properties of a given solid are decided by how the constituent atoms are bonded through the interaction of their electrons among themselves and with the potentials of the ions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Uichiro Mizutani, Nagoya University, Japan
  • Book: Introduction to the Electron Theory of Metals
  • Online publication: 20 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612626.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Uichiro Mizutani, Nagoya University, Japan
  • Book: Introduction to the Electron Theory of Metals
  • Online publication: 20 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612626.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Uichiro Mizutani, Nagoya University, Japan
  • Book: Introduction to the Electron Theory of Metals
  • Online publication: 20 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612626.002
Available formats
×