Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-09T20:11:27.432Z Has data issue: false hasContentIssue false

1 - Movement patterns in lizards: measurement, modality, and behavioral correlates

Published online by Cambridge University Press:  04 August 2010

Gad Perry
Affiliation:
Department of Range, Wildlife, and Fisheries Management Texas Tech University
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

From the least to the greatest in the zoological progression, the stomach sways the world.

(Fabre, 1913)

Introduction

To reproduce successfully, an organism must survive, attain suitable size, attract a mate, and produce viable offspring. All of these activities require that the individual obtain considerable amounts of energy. Foraging success can thus strongly impact reproductive success (Travers and Sih, 1991; Bernardo, 1994; Nilsson, 1994). Reproductive success is the fabric upon which natural selection works (Darwin, 1859). Evolutionary biologists and behavioral ecologists, starting with the pioneering work of MacArthur and Pianka (1966) and Emlen (1966), have therefore shown considerable interest in foraging behaviors and their correlates. The resulting literature is voluminous and often contentious: too much so for a single chapter, or even volume, to effectively summarize. In keeping with the theme of this book, I focus on the issue of bimodality in lizard foraging behavior, its phylogenetic background, and its putative correlates.

Before one can discuss patterns, however, methodological issues must be clarified. This chapter is therefore divided into two main sections. The first section focuses on some previously neglected methodological issues related to measurement of foraging behavior. Establishing these is crucial for ensuring data quality in the analyses that follow. The second section then concentrates on testing theoretical predictions of foraging theory, and on some conceptual consequences of what has been learned to date. Because the literature is so extensive, I frequently limit the use of references to representative examples throughout this chapter.

Type
Chapter
Information
Lizard Ecology , pp. 13 - 48
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. A. (1993). An analysis of foraging in the lizard, Cnemidophorus tigris. In Biology of Whiptail Lizards (Genus Cnemidophorus), ed. Wright, J. W. and Vitt, L. J., pp. 83–116. Norman, OK: Oklahoma Museum of Natural History.Google Scholar
Andrews, R. M. (1979a). The lizard Corytophanes cristatus: an extreme “sit-and-wait” predator. Biotropica 11, 136–9.CrossRefGoogle Scholar
Andrews, R. M. (1979b). Evolution of life histories: a comparison of Anolis lizards from matched island and mainland habitats. Breviora 454, 1–51.Google Scholar
Avery, R. A., Mueller, C. F., Jones, S. M., Smith, J. A. and Bond, D. L. (1987). The movement patterns of lacertid lizards: a comparative study. J. Herpetol. 21, 324–9.CrossRefGoogle Scholar
Avital, E. (1981). Resource partitioning between two lizard species of the genus Acanthodactylus living in the same area of sands. M.Sc. thesis, Hebrew University of Jerusalem. (In Hebrew.)
Bell, W. J. (1991). Searching Behaviour. London: Chapman and Hall.Google Scholar
Bernardo, J. (1993). Determinants of maturation in animals. Trends Ecol. Evol. 8, 166–73.CrossRefGoogle ScholarPubMed
Bernardo, J. (1994). Experimental analysis of allocation in two divergent, natural salamander populations. Am. Nat. 143, 14–38.CrossRefGoogle Scholar
Biro, P. A. and Ridgway, M. S. (1995). Individual variation in foraging movement in a lake population of young-of-the-year brook charr (Salvelinus fontinalis). Behaviour 132, 57–74.CrossRefGoogle Scholar
Bonine, K. E. and Garland, T. Jr. (1999). Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. Lond. 248, 255–65.CrossRefGoogle Scholar
Borror, D. J., Triplehorn, C. A. and Johnson, N. F. (1989). An Introduction to the Study of Insects. Philadelphia, PA: Saunders.Google Scholar
Castanzo, R. A. and Bauer, A. M. (1993). Diet and activity of Mabuya acutilabris (Reptilia: Scincidae) in Namibia. Herpetol. J. 3, 130–5.Google Scholar
Cooper, W. E Jr. (1994). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 95–116. Princeton, NJ: Princeton University Press.Google Scholar
Cooper, W. E. Jr. (1995). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (1999). Foraging modes in lacertid lizards from southern Africa. Amph.-Rept. 20, 299–311.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the scincid genus Mabuya. Copeia 2000, 112–18.CrossRefGoogle Scholar
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P. and Fox, S. F. (2001). Foraging modes of some American lizards: relationships among measurement variables and discreteness of modes. Herpetologica 57, 65–76.Google Scholar
Cooper, W. E. Jr., Whiting, M. J. and Wyk, J. H. (1997). Foraging modes of cordyliform lizards. S. Afr. J. Zool. 32, 9–13.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J., Wyk, J. H. and Mouton, P. F. N. (1999). Movement- and attack-based indices of foraging mode and ambush foraging in some gekkonid and agamine lizards from southern Africa. Amph.-Rept. 20, 391–9.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species. London: John Murray.Google Scholar
Dmi'el, R., Perry, G. and Lazell, J. (1997). Evaporative water loss in nine insular populations of the Anolis cristatellus group in the British Virgin Islands. Biotropica 29, 111–16.CrossRefGoogle Scholar
Dubas, G. (1987). Biotic determinants of home range size of the scincid lizard Trachydosaurus rugosus (Gray). Ph.D. thesis, Flinders University.
Dubas, G. and Bull, C. M. (1991). Diet choice and food availability in the omnivorous lizard, Trachydosaurus rugosus. Wild. Res. 18, 147–55.CrossRefGoogle Scholar
Durtsche, R. D. (1992). Feeding time strategies of the fringe-toed lizard, Uma inornata, during breeding and non-breeding seasons. Oecologia 89, 85–9.CrossRefGoogle ScholarPubMed
du Toit, A., Mouton, P. L. N., Geertsema, H. and Flemming, A. F. (2002). Foraging mode of serpentiform, grass-living cordylid lizards: a case study of Cordylus anguina. Afr. Zool. 37, 141–9.CrossRefGoogle Scholar
Eifler, D. A. and Eifler, M. A. (1998). Foraging behavior and spacing patterns of the lizard Cnemidophorus uniparens. J. Herpetol. 32, 24–33.CrossRefGoogle Scholar
Eifler, D. A. and Eifler, M. A. (1999). Foraging behavior and spacing patterns of the lizard Oligosoma grande. J. Herpetol. 33, 632–9.CrossRefGoogle Scholar
Ellinger, N., Schlatte, G., Jerome, N. and Hödl, W. (2001). Habitat use and activity patterns of the neotropical arboreal lizard Tropidurus (= Uracentron) azureus werneri (Tropiduridae). J. Herpetol. 35, 395–402.CrossRefGoogle Scholar
Emlen, J. M. (1966). The role of time and energy in food preference. Am. Nat. 100, 611–17.CrossRefGoogle Scholar
Fabre, J. H. (1913). The Life of the Fly. London: Hodder and Stoughton.Google Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.CrossRefGoogle Scholar
Fitch, H. S. (1970). Reproductive cycles in lizards and snakes. Univ. Kansas Mus. Nat. Hist. Misc. Pub. 52, 1–247.Google Scholar
Fitzpatrick, J. W. (1981). Search strategies of tyrant flycatchers. Anim. Behav. 29, 810–21.CrossRefGoogle Scholar
Fuiman, L. A. and Cowan, J. H. (2003). Behavior and recruitment success in fish larvae: repeatability and covariation of survival skills. Ecology 84, 53–67.CrossRefGoogle Scholar
Garland, T. Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–92.CrossRefGoogle Scholar
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.CrossRefGoogle Scholar
Gasnier, T. R., Magnusson, W. E. and Lima, A. P. (1994). Foraging activity and diet of four sympatric lizard species in a tropical rainforest. J. Herpetol. 28, 187–92.CrossRefGoogle Scholar
Gerritsen, J. and Strickler, J. R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Board Can. 34, 73–82.CrossRefGoogle Scholar
Grafen, A. (1989). The phylogenetic regression. Phil. Trans. R. Soc. Lond. B326, 19–157.Google Scholar
Greeff, J. M. and Whiting, M. J. (2000). Foraging-mode plasticity in the Augrabies flat lizard Platysaurus broadleyi. Herpetologica 56, 402–7.Google Scholar
Hirth, H. F. (1963). The ecology of two lizards on a tropical beach. Ecol. Monogr. 33, 83–112.CrossRefGoogle Scholar
Honda, M., Ota, H., Köhler, G.et al. (2003). Phylogeny of the lizard subfamily Lygosominae (Reptilia: Scincidae), with special reference to the origin of the New World taxa. Gen. Genet. Syst. 78, 71–80.CrossRefGoogle Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R. and Vitt, L. J. (2001). How often do lizards run on empty? Ecology 82, 1–7.Google Scholar
Husak, J. F. and Ackland, E. N. (2003). Foraging mode of the reticulate collared lizard, Crotaphytus reticulatus. Southw. Nat. 48, 282–6.2.0.CO;2>CrossRefGoogle Scholar
Irschick, D. J. (2000). Comparative and behavioral analyses of preferred speed: Anolis lizards as a model system. Physiol. Biochem. Zool. 73, 428–37.CrossRefGoogle ScholarPubMed
Kareiva, P. (1989). Renewing the dialogue between theory and experiments in population ecology. In Perspectives in Ecological Theory, ed. Roughgarden, J., May, R. M. and Levin, S. A., pp. 68–88. Princeton, N.J.: Princeton University Press.CrossRefGoogle Scholar
Krebs, J. R. and Kacelnik, A. (1991). Decision-making. In Behavioural Ecology, 3rd edn, ed. Krebs, J. R. and Davies, N. B., pp. 105–36. London: Blackwell Scientific.Google Scholar
Lawton, J. (1991). Ecology as she is done, and could be done. Oikos 61, 289–90.CrossRefGoogle Scholar
Levins, R. (1966). The strategy of model building in population biology. Am. Sci. 54, 421–31.Google Scholar
Lewis, A. R. (1989). Diet selection and depression of prey abundance by an intensively foraging lizard. J. Herpetol. 23, 164–70.CrossRefGoogle Scholar
Lewis, A. R. and Saliva, J. (1987). Effects of sex and size on home range, dominance, and activity budgets in the Puerto Rican teiid Ameiva exsul (Lacertilia: Teiidae). Herpetologica 43, 374–83.Google Scholar
Lister, B. C. (1981). Seasonal niche relationships of rain forest anoles. Ecology 62, 1548–60.CrossRefGoogle Scholar
Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K. and Rodríguez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–18.CrossRefGoogle ScholarPubMed
MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat. 100, 603–9.CrossRefGoogle Scholar
Mac Nally, R. C. (1994). On characterizing foraging versatility, illustrated by using birds. Oikos 69, 95–106.CrossRefGoogle Scholar
Magnusson, W. E. and da Silva, E. V. (1993). Relative effects of size, season and species on the diets of some Amazonian savanna lizards. J. Herpetol. 27, 380–5.CrossRefGoogle Scholar
Magnusson, W. E., Paiva, L. J., da Rocha, R. M.et al. (1985). The correlates of foraging mode in a community of Brazilian lizards. Herpetologica 41, 324–32.Google Scholar
Mausfeld, P., Vences, M., Schmitz, A. and Veith, M. (2000). First data on molecular phylogeography of scincid lizards of the genus Mabuya. Molec. Phylog. Evol. 17, 11–14.CrossRefGoogle ScholarPubMed
McLaughlin, R. L. (1989). Search modes of birds and lizards: evidence for alternative movement patterns. Am. Nat. 133, 654–70.CrossRefGoogle Scholar
Mori, A. and Randriamahazo, H. J. A. R. (2002). Foraging mode of a Madagascan iguanian lizard, Oplurus cuvieri cuvieri. Afr. J. Ecol. 40, 61–4.CrossRefGoogle Scholar
Mouton, P. F. N., Geertsema, H. and Visagie, L. (2000). Foraging mode of a group-living lizard, Cordylus cataphractus (Cordylidae). Afr. Zool. 35, 1–7.Google Scholar
Muth, A. (1992). Development of baseline data and procedures for monitoring populations of the flat-tailed horned lizard, Phrynosoma mcallii. Final report for California Dept. of Fish and Game contract 86/87 C-2056 and 87/88 C-2056.
Nilsson, J.-A. (1994). Energetic bottle-necks during breeding and the reproductive cost of being too early. J. Anim. Ecol. 63, 200–8.CrossRefGoogle Scholar
Orr, Y., Shachak, M. and Steinberger, Y. (1979). Ecology of the small spotted lizard (Eremias guttulata guttulata) in the Negev desert (Israel). J. Arid Env. 2, 151–61.Google Scholar
Orzack, S. H. and Sober, E. (1994). How (not) to test an optimality model. Trends Ecol. Evol. 9, 265–7.CrossRefGoogle ScholarPubMed
Paulissen, M. A. (1987). Optimal foraging and intraspecific diet differences in the lizard Cnemidophorus sexlineatus. Oecologia 71, 439–46.CrossRefGoogle ScholarPubMed
Pease, C. M. and Bull, J. J. (1992). Is science logical?BioScience 42, 293–8.CrossRefGoogle Scholar
Pereira, H. M., Bergman, A. and Roughgarden, J. (2003). Socially stable territories: the negotiation of space by interacting foragers. Am. Nat. 161, 143–52.CrossRefGoogle ScholarPubMed
Perry, G. (1995). The evolutionary ecology of lizard foraging: a comparative study. Ph.D. dissertation, University of Texas at Austin.
Perry, G. (1996). The evolution of sexual dimorphism in the lizard Anolis polylepis (Iguania): evidence from intraspecific variation in foraging behavior and diet. Can. J. Zool. 74, 1238–45.CrossRefGoogle Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Perry, G. and Brandeis, M. (1992). Variation in stomach contents of the gecko Ptyodactylus hasselquistii guttatus in relation to sex, age, season and locality. Amph.-Rept. 13, 275–82.CrossRefGoogle Scholar
Perry, G. and Buden, D. W. (1999). Notes on the ecology, behavior and color variation of the green tree skink, Lamprolepis smaragdina (Lacertilia: Scincidae), in Micronesia. Micronesica 31, 263–73.Google Scholar
Perry, G. and Garland, T. Jr. (2002). Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83, 1870–85.CrossRefGoogle Scholar
Perry, G. and Pianka, E. R. (1997). Foraging behaviour: past, present and future. Trends. Ecol. Evol. 12, 360–4.CrossRefGoogle ScholarPubMed
Perry, G., Dmi'el, R. and Lazell, J. (1999). Evaporative water loss in insular populations of the Anolis cristatellus group (Reptilia: Sauria) in the British Virgin Islands II: the effects of drought. Biotropica 31, 337–43.CrossRefGoogle Scholar
Perry, G., Dmi'el, R. and Lazell, J. (2000). Evaporative water loss in insular populations of Anolis cristatellus (Reptilia: Sauria) in the British Virgin Islands III: a common garden experiment. Biotropica 32, 722–8.CrossRefGoogle Scholar
Perry, G., Lampl, I., Lerner, A.et al. (1990). Foraging mode in lacertid lizards: variation and correlates. Amph.-Rept. 11, 373–84.CrossRefGoogle Scholar
Perry, G., LeVering, K., Girard, I. and Garland, T. Jr. (2004). Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47.CrossRefGoogle Scholar
Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pianka, E. R. (1970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology 51, 703–20.CrossRefGoogle Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pianka, E. R. (1993). The many dimensions of a lizard's ecological niche. In Lacertids of the Mediterranean Region, ed. Valakos, E. D., Böhme, W., Pérez-Mellado, V. and Maragou, P., pp. 121–54. Athens: Hellenic Zoological Society.Google Scholar
Pianka, E. R., Huey, R. B. and Lawlor, L. R. (1979). Niche segregation in desert lizards. In Analysis of Ecological Systems, ed. Horn, D. J., Stairs, R. and Mitchell, R. D., pp. 67–115. Columbus, OH: Ohio State University.Google Scholar
Rand, A. S., Dugan, B. A., Monteza, H. and Vianda, D. (1990). The diet of a generalized folivore: Iguana iguana in Panama. J. Herpetol. 24, 211–14.CrossRefGoogle Scholar
Reagan, D. P. (1986). Foraging behavior of Anolis stratulus in a Puerto Rican rain forest. Biotropica 18, 157–60.CrossRefGoogle Scholar
Reeder, T. W. (2003). A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): A Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Molec. Phylog. Evol. 27, 384–97.CrossRefGoogle ScholarPubMed
Reeder, T. W., Cole, C. J. and Dessauer, H. C. (2002). Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): A test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Nov. 3365, 1–61.2.0.CO;2>CrossRefGoogle Scholar
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capabilities. In Behavior and Neurology of Lizards, ed. Greenberg, N. and Maclean, P. D., pp. 183–202. Rockville, MD: NIMH.Google Scholar
Schwenk, K. (1995). Of tongues and noses: chemoreception in lizard and snakes. Trends. Ecol. Evol. 10, 7–12.CrossRefGoogle ScholarPubMed
Shaffer, D. T. Jr. and Whitford, W. G. (1981) Behavioral responses of a predator, the round-tailed horned lizard, Phrynosoma modestum and its prey, honey pot ants, Myrmecocystus spp. Am. Midl. Nat. 105, 209–16.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C. and Ziemba, R. E. (2004). Behavioral syndromes: an integrative overview. Quart. Rev. Biol. 79, 241–77.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry, 3rd edn. New York: Freeman.Google Scholar
Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton, NJ: Princeton University Press.Google Scholar
Sugarman, R. A. and Hacker, R. A. (1980). Observer effects on collared lizards. J. Herpetol. 14, 188–90.CrossRefGoogle Scholar
Taylor, J. A. (1986). Food and foraging behavior of the lizard, Ctenotus taeniolatus. Australian J. Ecol. 11, 49–54.CrossRefGoogle Scholar
Travers, S. E. and Sih, A. (1991). The influence of starvation and predators on the mating behavior of a semiaquatic insect. Ecology 72, 2123–36.CrossRefGoogle Scholar
Turner, F. B. and Medica, P. A. (1982). The distribution and abundance of the flat-tailed horned lizard (Phrynosoma mcallii). Copeia 1982, 815–23.CrossRefGoogle Scholar
Vitt, L. J., Zani, P. A., Caldwell, J. C. and Durtsche, R. D. (1993). Ecology of the whiptail lizard Cnemidophorus deppii on a tropical beach. Can. J. Zool. 71, 2391–400.CrossRefGoogle Scholar
Weiner, J. (1995). On the practice of ecology. J. Ecol. 83, 153–8.CrossRefGoogle Scholar
Weinstein, R. B. and Full, R. J. (1999). Intermittent locomotion increases endurance in a gecko. Physiol. Biochem. Zool. 72, 732–9.CrossRefGoogle Scholar
Werner, Y. L. and Chou, L. M. (2002). Observations on the ecology of the arrhythmic equatorial gecko Cnemaspis kendallii in Singapore (Sauria: Gekkoninae). Raffles Bull. Zool. 50, 185–96.Google Scholar
Werner, Y. L., Okada, S., Ota, H., Perry, G. and Tokunaga, S. (1997). Varied and fluctuating foraging modes in nocturnal lizards of the family Gekkonidae. Asia. Herpetol. Res. 7, 153–65.Google Scholar
Wiens, J. J., Reeder, T. W. and Oca, A. N. M. (1999). Molecular phylogenetics and evolution of sexual dichromatism among populations of the Yarrow's spiny lizard (Sceloporus jarrovii). Evolution 53, 1884–97.Google Scholar
Wymann, M. N. and Whiting, M. J. (2002). Foraging ecology of rainbow skinks (Mabuya margaritifer) in southern Africa. Copeia 2002, 943–57.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×