Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-19T16:09:08.767Z Has data issue: false hasContentIssue false

IV - Persuasion and Algorithms

Published online by Cambridge University Press:  10 June 2025

Sofia Rüdiger
Affiliation:
Universität Bayreuth, Germany
Daria Dayter
Affiliation:
Tampere University, Finland
Get access
Type
Chapter
Information
Manipulation, Influence and Deception
The Changing Landscape of Persuasive Language
, pp. 221 - 294
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Ahmed, W., Vidal-Alaball, J., Downing, J. & López Seguí, F. (2020). COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data. Journal of Medical Internet Research, 22(5), e19458. https://doi.org/10.2196/19458CrossRefGoogle ScholarPubMed
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211236. https://doi.org/10.1257/jep.31.2.211CrossRefGoogle Scholar
American Dialect Society. (2018). ‘Fake news’ is 2017 American Dialect Society word of the year. www.americandialect.org/fake-news-is-2017-american-dialect-society-word-of-the-yearGoogle Scholar
Anandhan, A., Shuib, L., Ismail, M. A. & Mujtaba, G. (2018). Social media recommender systems: Review and open research issues. IEEE Access, 6, 1560815628. https://doi.org/10.1109/ACCESS.2018.2810062CrossRefGoogle Scholar
Archer, D., Wilson, A. & Rayson, P. (2002). Introduction to the USAS category system. https://ucrel.lancs.ac.uk/usas/usas%20guide.pdfGoogle Scholar
Arnaudo, D. (2017). Computational propaganda in Brazil: Social bots during elections. Computational Propaganda Research Project: Working Paper No. 2017.8. https://ora.ox.ac.uk/objects/uuid:e88de32c-baaa-4835-bb76-e00473457f46Google Scholar
Ayre, L., & Craner, J. (2018). Algorithms: Avoiding the implementation of institutional biases. Public Library Quarterly, 37(3), 341347. https://doi.org/10.1080/01616846.2018.1512811CrossRefGoogle Scholar
Bellogín, A., Castells, P. & Cantador, I. (2017). Statistical biases in information retrieval metrics for recommender systems. Information Retrieval Journal, 20(6), 606634. https://doi.org/10.1007/s10791–017-9312-zCrossRefGoogle Scholar
Benkler, Y., Faris, R. & Roberts, H. (2018). Network propaganda: Manipulation, disinformation, and radicalization in American politics. Oxford University Press.CrossRefGoogle Scholar
Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209227. https://doi.org/10.1007/s10676–013-9321-6CrossRefGoogle Scholar
Brezina, V. (2018). Statistics in corpus linguistics: A practical guide. Cambridge University Press.CrossRefGoogle Scholar
Brummette, J., DiStaso, M., Vafeiadis, M. & Messner, M. (2018). Read all about it: The politicization of ‘fake news’ on Twitter. Journalism & Mass Communication Quarterly, 95(2), 497517. https://doi.org/10.1177/1077699018769906CrossRefGoogle Scholar
CDC. (2021). Rapid increase in ivermectin prescriptions and reports of severe illness associated with use of products containing ivermectin to prevent or treat COVID-19. https://emergency.cdc.gov/han/2021/han00449.aspGoogle Scholar
Central Digital and Data Office. (2021). UK government publishes pioneering standard for algorithmic transparency [Press release]. www.gov.uk/government/news/uk-government-publishes-pioneering-standard-for-algorithmic-transparencyGoogle Scholar
Chin, C. (2018). AI is the futurebut where are the women? www.wired.com/story/artificial-intelligence-researchers-gender-imbalance/Google Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2022). Introduction to algorithms. MIT Press.Google Scholar
Cunha, E., Magno, G., Caetano, J., Teixeira, D. & Almeida, V. (2018). Fake news as we feel it: Perception and conceptualization of the term ‘fake news’ in the media. In Staab, S., Koltsova, O. & Ignatov, D. (Eds.), Social informatics. SocInfo 2018. Lecture notes in computer science (Vol. 11185, pp. 151166). Springer. https://doi.org/10.1007/978-3-030-01129-1_10Google Scholar
De Beer, D., & Matthee, M. (2021). Approaches to identify fake news: A systematic literature review. In Antipova, T. (Ed.), Integrated science in digital age 2020 (pp. 1322). Springer. https://doi.org/10.1007/978-3-030-49264-9_2CrossRefGoogle Scholar
Echterhoff, G., Groll, S. & Hirst, W. (2007). Tainted truth: Overcorrection for misinformation influence on eyewitness memory. Social Cognition, 25(3), 367409. https://doi.org/10.1521/soco.2007.25.3.367CrossRefGoogle Scholar
Faddoul, M., Chaslot, G. & Farid, H. (2020). A longitudinal analysis of YouTube’s promotion of conspiracy videos. arXiv preprint arXiv:2003.03318.Google Scholar
Fernández, M., Bellogín, A. & Cantador, I. (2021). Analysing the effect of recommendation algorithms on the amplification of misinformation. arXiv preprint arXiv:2103.14748.Google Scholar
Gerson, J., Plagnol, A. C. & Corr, P. J. (2017). Passive and active Facebook use measure (PAUM): Validation and relationship to the reinforcement sensitivity theory. Personality and Individual Differences, 117, 8190. https://doi.org/10.1016/j.paid.2017.05.034CrossRefGoogle Scholar
Global Disinformation Index (GDI). (2019). Disinformation is an online harm. https://www.disinformationindex.org/blog/2019-6-26-disinformation-is-an-online-harm/Google Scholar
Guess, A., Nagler, J. & Tucker, J. (2019). Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Science Advances, 5(1), eaau4586. https://doi.org/10.1126/sciadv.aau4586CrossRefGoogle ScholarPubMed
Hardaker, C. (2012). Trolling in computer-mediated communication: Impoliteness, deception and manipulation online [PhD thesis]. Lancaster University.Google Scholar
Hardie, A. (2014). Log ratio: An informal introduction. ESRC Centre for Corpus Approaches to Social Science (CASS). https://cass.lancs.ac.uk/log-ratio-an-informal-introduction/Google Scholar
Howard, P. N., Bolsover, G., Kollanyi, B., Bradshaw, S. & Neudert, L.-M. (2017). Junk news and bots during the US election: What were Michigan voters sharing over Twitter. CompProp, OII, Data Memo, 1. https://demtech.oii.ox.ac.uk/research/posts/junk-news-and-bots-during-the-u-s-election-what-were-michigan-voters-sharing-over-twitter/Google Scholar
Illing, S. (2020). ‘Flood the zone with shit’: How misinformation overwhelmed our democracy. www.vox.com/policy-and-politics/2020/1/16/20991816/impeachment-trial-trump-bannon-misinformationGoogle Scholar
Jolley, D., & Paterson, J. L. (2020). Pylons ablaze: Examining the role of 5G COVID‐19 conspiracy beliefs and support for violence. British Journal of Social Psychology, 59(3), 628640. https://doi.org/10.1111/bjso.12394CrossRefGoogle ScholarPubMed
Jones-Jang, S. M., Kim, D. H. & Kenski, K. (2020). Perceptions of mis- or disinformation exposure predict political cynicism: Evidence from a two-wave survey during the 2018 US midterm elections. New Media & Society, 23(10), 31053125. https://doi.org/10.1177/1461444820943878CrossRefGoogle Scholar
Joulain-Jay, A. (2021). Tweet Collector (Version 4.01).Google Scholar
Kolkman, D. (2020). ‘F**k the algorithm’?: What the world can learn from the UK’s A-level grading fiasco. https://blogs.lse.ac.uk/impactofsocialsciences/2020/08/26/fk-the-algorithm-what-the-world-can-learn-from-the-uks-a-level-grading-fiasco/Google Scholar
Kozyreva, A., Lorenz-Spreen, P., Hertwig, R., Lewandowsky, S. & Herzog, S. M. (2021). Public attitudes towards algorithmic personalization and use of personal data online: Evidence from Germany, Great Britain, and the United States. Humanities and Social Sciences Communications, 8(1), 117. https://doi.org/10.1057/s41599–021-00787-wCrossRefGoogle Scholar
Leerssen, P. (2020). The soap box as a black box: Regulating transparency in social media recommender systems. European Journal of Law and Technology, 11(2). http://dx.doi.org/10.2139/ssrn.3544009Google Scholar
Li, J., & Su, M.-H. (2020). Real talk about fake news: Identity language and disconnected networks of the US public’s ‘fake news’ discourse on Twitter. Social Media + Society, 6(2), 2056305120916841. https://doi.org/10.1177/2056305120916841CrossRefGoogle Scholar
Lorusso, A. M. (2023). Fake news as discursive genre: Between hermetic semiosis and gossip. Social Epistemology, 37(2), 219231. https://doi.org/10.1080/02691728.2021.2001604CrossRefGoogle Scholar
Maci, S. (2019). Discourse strategies of fake news in the anti-vax campaign. Lingue Culture Mediazioni, 6(1), 1543. https://doi.org/10.7358/lcm-2019-001-maciGoogle Scholar
Mahesh, B. (2020). Machine learning algorithms: A review. International Journal of Science and Research (IJSR), 9, 381386. www.ijsr.net/archive/v9i1/ART20203995.pdfCrossRefGoogle Scholar
McEnery, T., & Hardie, A. (2011). Corpus linguistics: Method, theory and practice. Cambridge University Press.CrossRefGoogle Scholar
McRae, D., del Mar Quiroga, M., Russo-Batterham, D. & Doyle, K. (2022). A pro-government disinformation campaign on Indonesian Papua. Harvard Kennedy School Misinformation Review, 3(5). https://doi.org/10.37016/mr-2020-108Google Scholar
Moura, R., Sousa-Silva, R. & Lopes Cardoso, H. (2021). Automated fake news detection using computational forensic linguistics. Springer International.CrossRefGoogle Scholar
Mourão, R. R., & Robertson, C. T. (2019). Fake news as discursive integration: An analysis of sites that publish false, misleading, hyperpartisan and sensational information. Journalism Studies, 20(14), 20772095. https://doi.org/10.1080/1461670X.2019.1566871CrossRefGoogle Scholar
Ognyanova, K., Lazer, D., Robertson, R. E. & Wilson, C. (2020). Misinformation in action: Fake news exposure is linked to lower trust in media, higher trust in government when your side is in power. Harvard Kennedy School Misinformation Review, 1(4). https://doi.org/10.37016/mr-2020-024Google Scholar
Oversight Board. (2021). Oversight Board transparency reports – Q4 2020, Q1 & Q2 2021. https://oversightboard.com/attachment/987339525145573/Google Scholar
Pennycook, G., & Rand, D. G. (2021). The psychology of fake news. Trends in Cognitive Sciences, 25(5), 388402. https://doi.org/10.1016/j.tics.2021.02.007CrossRefGoogle ScholarPubMed
Pew Research Center. (2022). Social media fact sheet. www.pewresearch.org/internet/fact-sheet/social-media/Google Scholar
Rayson, P. (2008). From key words to key semantic domains. International Journal of Corpus Linguistics, 13(4), 519549. https://doi.org/10.1075/ijcl.13.4.06rayCrossRefGoogle Scholar
Rayson, P., Archer, D., Piao, S. & McEnery, A. M. (2004). The UCREL semantic analysis system.Google Scholar
Scott, M. (1997). PC analysis of key words: And key key words. System, 25(2), 233245. https://doi.org/10.1016/S0346–251X(97)00011-0CrossRefGoogle Scholar
Seargeant, P. (2022). Complementary concepts of disinformation: Conspiracy theories and ‘fake news’. In Demata, M., Zorzi, V. & Zottola, A. (Eds.), Conspiracy theory discourses (pp. 193214). John Benjamins. https://doi.org/10.1075/dapsac.98.09seaCrossRefGoogle Scholar
Semino, E. (2021). Not soldiers but fire-fighters – Metaphors and Covid-19. Health Communication, 36(1), 5058. https://doi.org/10.1080/10410236.2020.1844989CrossRefGoogle ScholarPubMed
Shokeen, J., & Rana, C. (2020). Social recommender systems: Techniques, domains, metrics, datasets and future scope. Journal of Intelligent Information Systems, 54(3), 633667. https://doi.org/10.1007/s10844–019-00578-5CrossRefGoogle Scholar
Sousa-Silva, R. (2022). Fighting the fake: A forensic linguistic analysis to fake news detection. International Journal for the Semiotics of Law, 35, 24092433. https://doi.org/10.1007/s11196–022-09901-wCrossRefGoogle Scholar
Tandoc, E. C., Duffy, A., Jones-Jang, S. M. & Pin, W. G. W. (2021). Poisoning the information well? The impact of fake news on news media credibility. Journal of Language and Politics, 20(5), 783802. https://doi.org/10.1075/jlp.21029.tanCrossRefGoogle Scholar
Tsikerdekis, M., & Zeadally, S. (2014). Online deception in social media. Communications of the ACM, 57(9), 7280. https://doi.org/10.1145/2629612CrossRefGoogle Scholar
Vaccari, C., & Chadwick, A. (2020). Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Social Media + Society, 6(1), 2056305120903408. https://doi.org/10.1177/2056305120903408CrossRefGoogle Scholar
Van Duyn, E., & Collier, J. (2019). Priming and fake news: The effects of elite discourse on evaluations of news media. Mass Communication and Society, 22(1), 2948. https://doi.org/10.1080/15205436.2018.1511807CrossRefGoogle Scholar
Walker, A. (2022). Senior coroner Andrew Walker issues his report to prevent future deaths – Molly Rose Foundation. https://mollyrosefoundation.org/senior-coroner-andrew-walker-issues-his-report-to-prevent-future-deaths/Google Scholar
Wardle, C., & Singerman, E. (2021). Too little, too late: Social media companies’ failure to tackle vaccine misinformation poses a real threat. BMJ, 372, n.26. https://doi.org/10.1136/bmj.n26Google ScholarPubMed
Whittaker, J., Looney, S., Reed, A. & Votta, F. (2021). Recommender systems and the amplification of extremist content. Internet Policy Review, 10(2), 129. https://doi.org/10.14763/2021.2.1565CrossRefGoogle Scholar
Williams, O. (2021). ‘It’s the poorest in society who are being surveilled’: The rise of citizen-scoring algorithms. www.newstatesman.com/science-tech/2021/07/it-s-poorest-society-who-are-being-surveilled-quiet-rise-citizenGoogle Scholar
Woolley, S. C., & Howard, P. N. (2016). Political communication, computational propaganda, and autonomous agents: Introduction. International Journal of Communication, 10, 48824890.Google Scholar
YouGov, A. K. (2022). Two-thirds of British people worry about the spread of fake news. https://pressgazette.co.uk/british-fake-news/Google Scholar

References

Aare, K., Lippus, P., Włodarczak, M., & Heldner, M. (2018). Creak in the respiratory cycle. Proceedings of the 19th Interspeech Conference, Baixas, France (pp. 14081412). ISCA.Google Scholar
Aare, K., Włodarczak, M., & Heldner, M. (2014). Backchannels and breathing. Proceedings from FONETIK 2014 (pp. 4752). Department of Linguistics, Stockholm University.Google Scholar
Amari, Y., Okada, S., Matsumoto, M., Sadamitsu, K., & Nakamoto, A. (2021). Multimodal analysis of client persuasion in consulting interactions: Toward understanding successful consulting. In Meiselwitz, G. (Ed.), Social computing and social media: Applications in marketing, learning, and health (pp. 2940). Springer.Google Scholar
Antonakis, J., Bastardoz, N., Jacquart, P., & Shamir, B. (2016). Charisma: An ill-defined and ill-measured gift. Annual Review of Organizational Psychology and Organizational Behavior, 3(1), 293319.CrossRefGoogle Scholar
Atkinson, M. (2004). Lend me your ears: All you need to know about speeches and presentations. Random House.Google Scholar
Aung, T., & Puts, D. (2020). Voice pitch: A window into the communication of social power. Current Opinion in Psychology, 33, 154161.CrossRefGoogle Scholar
Barbosa, P. A., Madureira, S., Fontes, M. A., & Menegon, P. (2020). Speech breathing and expressivity: An experimental study in reading and singing styles. Proceedings of the 14th International Conference on Computational Processing of the Portuguese Language, Évora, Portugal (pp. 393398). Springer.CrossRefGoogle Scholar
Barbosa, P., & Niebuhr, O. (2020). Persuasive speech is a matter of acoustics and chest breathing only. In Elmentaler, M. & Niebuhr, O. (Eds.), An den Rändern der Sprache (pp. 551578). Peter Lang.Google Scholar
Barbosa, P., Niebuhr, O., & Neitsch, J. (2019). Revisiting rhetorical claims of breathing for persuasive speech. Proceedings of the First International Seminar on the Foundations of Speech: Pausing, Breathing and Voice, Sønderborg, Denmark (pp. 103–105). https://my.eventbuizz.com/assets/editorImages/1575286883-SEFOS_2019__proceedings_programme.pdfGoogle Scholar
Barker, A. (2011). Improve your communication skills. Replika Press.Google Scholar
Bernardi, N. F., Snow, S., Peretz, I., Orozco Perez, H. D., Sabet-Kassouf, N., & Lehmann, A. (2017). Cardiorespiratory optimization during improvised singing and toning. Scientific Reports, 7, 8113.CrossRefGoogle ScholarPubMed
Biadsy, F., Rosenberg, A., & Carlson, R. (2008). A cross-cultural comparison of American, Palestinian, and Swedish perception of charismatic speech. Proceedings of the 4th International Conference of Speech Prosody, Campinas, Brazil (pp. 579582). ISCA Archives.Google Scholar
Binazzi, B., Lanini, B., Bianchi, R., Romagnoli, I., Nerini, M., Gigliotti, F., Duranti, R., Milic-Emili, J., & Scano, G. (2006). Breathing pattern and kinematics in normal subjects during speech, singing and loud whispering. Acta Physiologica, 186, 233246.Google ScholarPubMed
Cabane, O. F. (2012). The charisma myth: How anyone can master the art and science of personal magnetism. Penguin.Google Scholar
Carnegie, D., & Esenwein, J. B. (2011). The art of public speaking. Waking Lion.Google Scholar
Chen, L., Feng, G., Joe, J., Leong, C. W., Kitchen, C., & Lee, C. M. (2014). Towards automated assessment of public speaking skills using multimodal cues. Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey (pp. 200203). Association for Computing Machinery.Google Scholar
Cravotta, A., Busà, M. G., & Prieto, P. (2019). Effects of encouraging the use of gestures on speech. Journal of Speech, Language, and Hearing Research, 62, 32043219.CrossRefGoogle ScholarPubMed
D’Errico, F., Signorello, R., Demolin, D., & Poggi, I. (2013). The perception of charisma from voice: A cross-cultural study. Proceedings of the IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, (pp. 552557). IEEE.Google Scholar
Elmers, M., Werner, R., Muhlack, B. Möbius, B., & Trouvain, J. (2021). Take a breath: Respiratory sounds improve recollection in synthetic speech. Proceedings of 22nd Interspeech Conference, Brno, Czech Republic (pp. 31963200). ISCA.Google Scholar
Eriksson, A., Barbosa, P. A., & Åkesson, J. (2013). The acoustics of word stress in Swedish: A function of stress level, speaking style and word accent. Proceedings of the 14th Interspeech Conference, Singapore (pp. 778782). ISCA.Google Scholar
Flory, Y., & Nolan, F. (2015). The influence of body posture on the acoustic speech signal. Proceedings of the 15th International Congress of Phonetic Sciences, Glasgow, Scotland (pp. 15). International Phonetic Association.Google Scholar
Frese, M., Beimel, S., & Schoenborn, S. (2003). Action training for charismatic leadership: Two evaluations of studies of a commercial training module on inspirational communication of a vision. Personnel Psychology, 56(3), 671698.CrossRefGoogle Scholar
Fuchs, S., & Rochet-Capellan, A. (2021). The respiratory foundations of spoken language. Annual Review of Linguistics, 7(1), 1330.CrossRefGoogle Scholar
Gilbert, C. (1998). Hyperventilation and the body. Journal of Bodywork and Movement Therapies, 2(3), 184191.CrossRefGoogle Scholar
Gupta, J. K., Lin, C. H., & Chen, Q. (2010). Characterizing exhaled airflow from breathing and talking. Indoor Air, 20(1), 3139.CrossRefGoogle ScholarPubMed
Gutnyk, A., Niebuhr, O., & Gu, W. (2021). Speaker charisma analyzed through the cultural lens. Proceedings of the 12th IEEE International Symposium on Chinese Spoken Language Processing (ISCSLP), Shanghai, China (pp. 15). IEEE.Google Scholar
Heldner, M. (2003). On the reliability of overall intensity and spectral emphasis as acoustic correlates of focal accents in Swedish. Journal of Phonetics, 31(1), 3962.CrossRefGoogle Scholar
Heldner, M., Włodarczak, M., Branderud, P., & Stark, J. (2019). The RespTrack system. Proceedings of the 1st International Seminar on the Foundations of Speech: Breathing, Pausing, and the Voice, Sønderborg, Denmark (pp. 16–18). https://my.eventbuizz.com/assets/editorImages/1575286883-SEFOS_2019__proceedings_programme.pdfGoogle Scholar
Hixon, T. J. (1987). Respiratory function in speech and song. College-Hill.Google Scholar
Hoit, J. D., Jenks, C. L., Watson, P. J., & Cleveland, T. F. (1996). Respiratory function during speaking and singing in professional country singers. Journal of Voice, 10, 3949.CrossRefGoogle ScholarPubMed
Howe, M. M., & Dwyer, K. K. (2007). The influence of diaphragmatic breathing to reduce situational anxiety for basic course students. Basic Communication Course Annual, 19(1), 9.Google Scholar
Huberand, J., & Stathopoulos, E. T. (2015). Speech breathing across the life span and in disease. In Reford, M. (Ed.), The handbook of speech production (pp. 1333). Wiley.Google Scholar
Jokisch, O., Iaroshenko, V., Maruschke, M., & Ding, H. (2018). Influence of age, gender and sample duration on the charisma assessment of German speakers. Proceedings of the 29th Conference on Electronic Speech Signal Processing (ESSV2018), Ulm, Germany (pp. 224231). TUDpress.Google Scholar
Kaneko, H., & Horie, J. (2012). Breathing movements of the chest and abdominal wall in healthy subjects. Respiratory Care, 57, 14421451.CrossRefGoogle ScholarPubMed
Kimani, E., Shamekhi, A., & Bickmore, T. (2021). Just breathe: Towards real-time intervention for public speaking anxiety. Smart Health, 19, 100146.CrossRefGoogle Scholar
Kohtz, L. S., & Niebuhr, O. (2017). How long is too long? How pause features after requests affect the perceived willingness of affirmative answers. Proceedings of the 18th Interspeech Conference, Stockholm, Sweden (pp. 37923796). ISCA.Google Scholar
Ladd, D. R. (2001). Intonational universals and intonational typology. In Haspelmath, M., König, E., Oesterreicher, W., & Raible, W. (Eds.), Language typology and language universals: An international handbook (pp. 13801390). Mouton de Gruyter.Google Scholar
Ladd, D. R. (2008). Intonational phonology. Cambridge University Press.CrossRefGoogle Scholar
MacLarnon, A. M., & Hewitt, G. P. (1999). The evolution of human speech: The role of enhanced breathing control. American Journal of Physical Anthropology, 109(3), 341363.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
MacLarnon, A., & Hewitt, G. (2004). Increased breathing control: Another factor in the evolution of human languageEvolutionary Anthropology: Issues, News, and Reviews13(5), 181197.CrossRefGoogle Scholar
Mettouchi, A. (2018). Audible breath intakes in monologues. Journal of Speech Sciences, 7, 93106.CrossRefGoogle Scholar
Monson, B. B., Lotto, A. J., & Story, B. H. (2014). Detection of high-frequency energy level changes in speech and singing. The Journal of the Acoustical Society of America, 135(1), 400406.CrossRefGoogle ScholarPubMed
Niebuhr, O. (2021). Advancing higher education practice by analyzing and training students’ vocal charisma: Evidence from a Danish field study. Proceedings of the 7th International Conference on Higher Education Advances, Valencia, Spain (pp. 743751). Editorial Universitat Politècnica de València.Google Scholar
Niebuhr, O., Reetz, H., Barnes, J., & Alan, C. L. (2020). Fundamental aspects in the perception of f0. In Gussenhoven, C. & Chen, A. (Eds.), The Oxford handbook of language prosody (pp. 3348). Oxford University Press.Google Scholar
Niebuhr, O., & Silber-Varod, V. (2021). How versatility performance influences perception of charismatic speech: A study on two Israeli politicians. Interaction Studies, 22, 303342.CrossRefGoogle Scholar
Niebuhr, O., & Skarnitzl, R. (2019 ). Measuring a speaker’s acoustic correlates of pitch – but which? A contrastive analysis based on perceived speaker charisma. Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia (pp. 17741778). Australasian Speech Science and Technology Association Inc.Google Scholar
Niebuhr, O., & Skarnitzl, R. (2021). Those who shout the loudest – do they sound more charismatic? Proceedings of the 1st International Conference on Tone and Intonation (TAI), Sønderborg, Denmark (pp. 15). ISCA Archive.Google Scholar
Niebuhr, O., Skarnitzl, R., & Tylečková, L. (2018). The acoustic fingerprint of a charismatic voice: Initial evidence from correlations between long-term spectral features and listener ratings. Proceedings of the 9th International Conference of Speech Prosody, Poznań, Poland (pp. 359363). ISCA Archive.Google Scholar
Oh, H. (2012). A cross-language study of breathing rhythm related to different linguistic structures in Chinese and Korean. The Journal of the Acoustical Society of America, 131, 3516.CrossRefGoogle Scholar
Planchenault, G., & Poljak, L. (2021). The pragmatics of accents. John Benjamins.CrossRefGoogle Scholar
Pouw, W., de Jonge‐Hoekstra, L., Harrison, S. J., Paxton, A., & Dixon, J. A. (2021). Gesture–speech physics in fluent speech and rhythmic upper limb movements. Annals of the New York Academy of Sciences, 1491, 89105.CrossRefGoogle ScholarPubMed
Rochet-Capellan, A., & Fuchs, S. (2013). The interplay of linguistic structure and breathing in German spontaneous speech. Proceedings of the 14th Interspeech Conference, Singapore, Singapore (pp. 12281231). ISCA.Google Scholar
Rochet-Capellan, A., & Fuchs, S. (2014). Take a breath and take the turn: How breathing meets turns in spontaneous dialogue. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130399.CrossRefGoogle Scholar
Rosenberg, A., & Hirschberg, J. (2009). Charisma perception from text and speech. Speech Communication, 51, 640655.CrossRefGoogle Scholar
Salomoni, S. E., van den Hoorn, W., & Hodges, P. W. (2016). Breathing and singing: Objective characterization of breathing patterns in classical singers. PLoS ONE, 11, e0155084.CrossRefGoogle ScholarPubMed
Selck, K., Albert, T., & Niebuhr, O. (2022). “And miles to go before…” – Are speech intensity levels adjusted to VR communication distances? Proceedings of the 13th Nordic Prosody Conference, Sønderborg, Denmark (pp. 4446). Sciendo.Google Scholar
Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S. R., Ghosh, P. K., & Ganapathy, S. (2020). Coswara: A database of breathing, cough, and voice sounds for COVID-19 diagnosis. Proceedings of the 21st Interspeech Conference, Shanghai, China (pp. 48114815). ISCA.Google Scholar
Sharp, J. T., Goldberg, N. B., Druz, W. S., & Danon, J. (1975). Relative contributions of rib cage and abdomen to breathing in normal subjects. Journal of Applied Physiology, 39, 608618.CrossRefGoogle ScholarPubMed
Signorello, R., Demolin, D., Bernardoni, N. H., Gerratt, B. R., Zhang, Z., & Kreiman, J. (2020). Vocal fundamental frequency and sound pressure level in charismatic speech: A cross-gender and-language study. Journal of Voice, 34, 808-e1.CrossRefGoogle ScholarPubMed
Strangert, E., & Gustafson, J. (2008). What makes a good speaker? Subject ratings, acoustic measurements and perceptual evaluations. Proceedings of the 9th Interspeech Conference, Brisbane, Australia (pp. 16881691). ISCA.Google Scholar
Thorpe, W., Cala, S. J., Chapman, J., & Davis, P. J. (2001). Patterns of breath support in projection of the singing voice. Journal of Voice, 15, 86104.CrossRefGoogle ScholarPubMed
Traunmüller, H., & Eriksson, A. (2000). Acoustic effects of variation in vocal effort by men, women, and children. Journal of the Acoustical Society of America, 107, 34383451.CrossRefGoogle Scholar
Winter, B., & Grawunder, S. (2012). The phonetic profile of Korean formal and informal speech registers. Journal of Phonetics, 40, 808815.CrossRefGoogle Scholar
Włodarczak, M., & Heldner, M. (2016). Respiratory turn-taking cues. Proceedings of the 17th Interspeech Conference, San Francisco, USA (pp. 12751279). ISCA.Google Scholar
Wörtwein, T., Chollet, M., Schauerte, B., Morency, L. P., Stiefelhagen, R., & Scherer, S. (2015). Multimodal public speaking performance assessment. Proceedings of the 17th International Conference on Multimodal Interaction, Seattle, USA (pp. 4350). Association for Computing Machinery.Google Scholar
Xu, J. H., Ikeda, Y., & Komiyama, S. (1991). Bio-feedback and the yawning breath pattern in voice therapy: A clinical trial. Auris Nasus Larynx, 18, 6777.CrossRefGoogle ScholarPubMed

References

Andrist, S., Spannan, E., & Mutlu, B. (2013). Rhetorical robots: Making robots more effective speakers using linguistic cues of expertise. 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 341348). IEEE.CrossRefGoogle Scholar
Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017). The robotic social attributes scale (RoSAS) development and validation. Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 254262). IEEE.CrossRefGoogle Scholar
Cialdini, R. B. (1987). Influence (Vol. 3). Harcourt.Google Scholar
Cialdini, R. B. (2016). Persuasion: A revolutionary way to influence and persuade. Simon & Schuster.Google Scholar
Fischer, K., Langedijk, R. M., Nissen, L. D., Ramirez, E. R., & Palinko, O. (2020). Gaze-speech coordination influences the persuasiveness of human-robot dialog in the wild. International Conference on Social Robotics (pp. 157169). Springer.CrossRefGoogle Scholar
Fischer, K., Niebuhr, O., & Alm, M. (2021). Robots for foreign language learning: Speaking style influences student performance. Frontiers in Robotics and AI, 8, 110.CrossRefGoogle ScholarPubMed
Fischer, K., Niebuhr, O., Jensen, L. C., & Bodenhagen, L. (2019). Speech melody matters: How robots profit from using charismatic speech. ACM Transactions on Human-Robot Interaction (THRI), 9(1), 121.Google Scholar
Fogg, B. J. (2002). Persuasive technology: Using computers to change what we think and do. Ubiquity (December), Article 5. https://doi.org/10.1145/764008.763957.CrossRefGoogle Scholar
Goldstein, N. J., Cialdini, R. B., & Griskevicius, V. (2008). A room with a viewpoint: Using social norms to motivate environmental conservation in hotels. Journal of Consumer Research, 35(3), 472482.CrossRefGoogle Scholar
Görer, B., Salah, A. A., & Akın, H. L. (2017). An autonomous robotic exercise tutor for elderly people. Autonomous Robots, 41(3), 657678.CrossRefGoogle Scholar
Ham, J. (2021). Influencing robot influence: Personalization of persuasive robots. Interaction Studies, 22(3), 464487.CrossRefGoogle Scholar
Ham, J., Bokhorst, R., Cuijpers, R., van der Pol, D., & Cabibihan, J.-J. (2011). Making robots persuasive: The influence of combining persuasive strategies (gazing and gestures) by a storytelling robot on its persuasive power. International Conference on Social Robotics (pp. 7183). Springer.CrossRefGoogle Scholar
Jelınek, M., & Fischer, K. (2021). The role of a social robot in behavior change coaching. Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (pp. 434438). Association for Computing Machinery.CrossRefGoogle Scholar
Kaptein, M. (2015). Persuasion profiling: How the internet knows what makes you tick. Business Contact.Google Scholar
Korn, O., & Zallio, M. (2022). Perspectives on social health robots: How experts’ views improved from 2017 to 2021. Proceedings of the 15th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA ‘22) (pp. 125128). Association for Computing Machinery. https://doi.org/10.1145/3529190.3531223CrossRefGoogle Scholar
Krüger, N., Fischer, K., Manoonpong, P., Palinko, O., Bodenhagen, L., Baumann, T., Kjærum, J., Rano, I., Naik, L., Juel, W. K., Haarslev, F., Ignasov, J., Marchetti, E., Langedijk, R. M., Kollakidou, A., Camillus Jeppesen, K., Heidtmann, C., & Dalgaard, L. (2021). The SMOOTH-Robot: A modular, interactive service robot. Frontiers in Robotics and AI, 8, 645639. https://doi.org/10.3389/frobt.2021.645639CrossRefGoogle ScholarPubMed
Lee, H. R., Cheon, E., Lim, C., & Fischer, K. (2022). Configuring humans: What roles humans play in HRI research. Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction (pp. 478492). IEEE Press.Google Scholar
Lee, S. A., & Liang, Y. (2016). The role of reciprocity in verbally persuasive robots. Cyberpsychology, Behavior, and Social Networking, 19(8), 524527.CrossRefGoogle ScholarPubMed
Lee, S. A., & Liang, Y. (2019). Robotic foot-in-the-door: Using sequential-request persuasive strategies in human-robot interaction. Computers in Human Behavior, 90, 351356.CrossRefGoogle Scholar
Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56(1), 81103.CrossRefGoogle Scholar
Riek, L. D. (2012). Wizard of Oz studies in HRI: A systematic review and new reporting guidelines. Journal of Human-Robot Interaction, 1(1), 119136.CrossRefGoogle Scholar
Salomons, N., Van Der Linden, M., Strohkorb Sebo, S., & Scassellati, B. (2018). Humans conform to robots: Disambiguating trust, truth, and conformity. Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 187195). Association for Computing Machinery.CrossRefGoogle Scholar
Sandoval, E. B., Brandstetter, J., Obaid, M., & Bartneck, C. (2016). Reciprocity in human-robot interaction: A quantitative approach through the prisoner’s dilemma and the ultimatum game. International Journal of Social Robotics, 8(2), 303317.CrossRefGoogle Scholar
Schweitzer, M., & Hoerbst, A. (2016). Robotic assistance in medication management: Development and evaluation of a prototype. Nursing Informatics, 5(1), 422425.Google Scholar
Thaler, R. H. (2018). Nudge, not sludge. Science, 361(6401), 431431.CrossRefGoogle Scholar
Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happiness. Penguin.Google Scholar
Torrey, C., Fussell, S. R., & Kiesler, , S. (2013). How a robot should give advice. Eighth ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 275282). IEEE.Google Scholar
Van Mulken, M., & Hornikx, J. (2011). The influence of scientese on ad credibility and ad liking. Information Design Journal, 19(2), 92102.CrossRefGoogle Scholar
Winkle, K., Lemaignan, S., Caleb-Solly, P., Leonards, U., Turton, A., & Bremner, P. (2019). Effective persuasion strategies for socially assistive robots. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 277285). IEEE.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Persuasion and Algorithms
  • Edited by Sofia Rüdiger, Universität Bayreuth, Germany, Daria Dayter, Tampere University, Finland
  • Book: Manipulation, Influence and Deception
  • Online publication: 10 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009105194.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Persuasion and Algorithms
  • Edited by Sofia Rüdiger, Universität Bayreuth, Germany, Daria Dayter, Tampere University, Finland
  • Book: Manipulation, Influence and Deception
  • Online publication: 10 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009105194.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Persuasion and Algorithms
  • Edited by Sofia Rüdiger, Universität Bayreuth, Germany, Daria Dayter, Tampere University, Finland
  • Book: Manipulation, Influence and Deception
  • Online publication: 10 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009105194.014
Available formats
×