from Part I - Structuralism, Extendability, and Nominalism
Published online by Cambridge University Press: 26 January 2021
As with many “isms,” “structuralism” is rooted in some intuitive views or theses which are capable of being explicated and developed in a variety of distinct and apparently conflicting ways. One such way, the modal-structuralist approach, was partially articulated in Hellman [1989] (hereinafter MWON). That account, however, was incomplete in certain important respects bearing on the overall structuralist enterprise. In particular, it was left open how to treat generally some of the most important structures or spaces in mathematics, for example, metric spaces, topological spaces, differentiable manifolds, and so forth. This may have left the impression that such structures would have to be conceived as embedded in models of set theory, whose modal-structural interpretation depends on a rather bold conjecture, for example, the logical possibility of full models of the second-order ZF axioms.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.