Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-17T12:40:45.478Z Has data issue: false hasContentIssue false

Chapter 13 - Medication-Resistant Epilepsy Syndromes in Children

Published online by Cambridge University Press:  20 August 2020

John M. Stern
Affiliation:
Geffen School of Medicine at UCLA, Los Angeles, CA
Raman Sankar
Affiliation:
Geffen School of Medicine at UCLA, Los Angeles, CA
Michael Sperling
Affiliation:
Jefferson Hospital for Neurosciences, Philadelphia, PA
Get access

Summary

Medically refractory epilepsies account for 20–30% of the patients evaluated in an epilepsy centre. With more than 50% of paediatric epilepsies persisting into adulthood, it is very important for the epileptologist to have an updated understanding of the current advances in the field of medically refractory paediatric epileptic syndromes.

Refractory epilepsies are common in children. Medical intractability becomes quickly apparent after seizure onset in children with developmental epileptic encephalopathies [1].

Type
Chapter
Information
Medication-Resistant Epilepsy
Diagnosis and Treatment
, pp. 118 - 157
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, AT, Vickrey, BG, Testa, FM, et al. How long does it take for epilepsy to become intractable?: a prospective investigation. Ann Neurol 2006;60(1):7379CrossRefGoogle ScholarPubMed
Ohtahara, S, Yamatogi, Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 2006;70(Suppl 1):S58S67Google Scholar
Pavone, P, Spalice, A, Polizzi, A, Parisi, P, Ruggieri, M. Ohtahara syndrome with emphasis on recent genetic discovery. Brain Dev 2012;34(6):459468CrossRefGoogle ScholarPubMed
Nieh, SE, Sherr, EH. Epileptic encephalopathies: new genes and new pathways. Neurotherapeutics 2014;11(4):796806Google Scholar
Van Karnebeek, CD, Tiebout, SA, Niermeijer, J, et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol 2016;59:612CrossRefGoogle ScholarPubMed
Chien, YH, Lin, MI, Weng, WC, Du, JC, Lee, WT. Dextromethorphan in the treatment of early myoclonic encephalopathy evolving into migrating partial seizures in infancy. J Formos Med Assoc 2012;111(5):290294CrossRefGoogle ScholarPubMed
Djukic, A, Lado, FA, Shinnar, S, Moshe, SL. Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other? Epilepsy Res 2006;70(Suppl 1):S68S76CrossRefGoogle ScholarPubMed
Allen, NM, Mannion, M, Conroy, J, et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia 2014;55(9):e99105Google Scholar
Maljevic, S, Lerche, H. Potassium channel genes and benign familial neonatal epilepsy. Prog Brain Res 2014;213:1753CrossRefGoogle ScholarPubMed
Orhan, G, Bock, M, Schepers, D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 2014;75(3):382394CrossRefGoogle ScholarPubMed
Millichap, JJ, Park, KL, Tsuchida, T, et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2016;2(5):e96CrossRefGoogle ScholarPubMed
Numis, AL, Angriman, M, Sullivan, JE, et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology 2014;82(4):368370Google Scholar
Pisano, T, Numis, AL, Heavin, SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia 2015;56(5):685691CrossRefGoogle ScholarPubMed
Pan, Z, Kao, T, Horvath, Z, et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 2006;26(10):25992613Google Scholar
Cowan, LD, Hudson, LS. The epidemiology and natural history of infantile spasms. J Child Neurol 1991;6(4):355364CrossRefGoogle ScholarPubMed
Riikonen, R, Donner, M. Incidence and aetiology of infantile spasms from 1960 to 1976: a population study in Finland. Dev Med Child Neurol 1979;21(3):333343CrossRefGoogle ScholarPubMed
Sidenvall, R, Eeg-Olofsson, O. Epidemiology of infantile spasms in Sweden. Epilepsia 1995;36(6):572574CrossRefGoogle ScholarPubMed
Gaily, E, Lommi, M, Lapatto, R, Lehesjoki, AE. Incidence and outcome of epilepsy syndromes with onset in the first year of life: a retrospective population-based study. Epilepsia 2016;57(10):15941601Google Scholar
Cone, TE, Jr. On a peculiar form of infantile convulsions (hypsarrhythmia) as described in his own infant son by Dr W.J. West in 1841. Pediatrics 1970;46(4):603Google Scholar
Gibbs, EL, Fleming, MM, Gibbs, FA. Diagnosis and prognosis of hypsarhythmia and infantile spasms. Pediatrics 1954;13(1):6673Google Scholar
Cerullo, A, Marini, C, Carcangiu, R, Baruzzi, A, Tinuper, P. Clinical and video-polygraphic features of epileptic spasms in adults with cortical migration disorder. Epileptic Disord 1999;1(1):2733Google ScholarPubMed
Watanabe, K, Negoro, T, Okumura, A. Symptomatology of infantile spasms. Brain Dev 2001;23(7):453466CrossRefGoogle ScholarPubMed
Lortie, A, Plouin, P, Chiron, C, Delalande, O, Dulac, O. Characteristics of epilepsy in focal cortical dysplasia in infancy. Epilepsy Res 2002;51(1–2):133145Google Scholar
Donat, JF, Wright, FS. Simultaneous infantile spasms and partial seizures. J Child Neurol 1991;6(3):246250Google Scholar
Donat, JF, Wright, FS. Unusual variants of infantile spasms. J Child Neurol 1991;6(4):313318Google Scholar
Hrachovy, RA, Frost, JD, Jr, Kellaway, P. Hypsarrhythmia: variations on the theme. Epilepsia 1984;25(3):317325Google Scholar
Caraballo, RH, Ruggieri, V, Gonzalez, G, et al. Infantile spams without hypsarrhythmia: a study of 16 cases. Seizure 2011;20(3):197202CrossRefGoogle Scholar
Hussain, SA, Kwong, G, Millichap, JJ, et al. Hypsarrhythmia assessment exhibits poor interrater reliability: a threat to clinical trial validity. Epilepsia 2015;56(1):7781Google Scholar
Fusco, L, Vigevano, F. Ictal clinical electroencephalographic findings of spasms in West syndrome. Epilepsia 1993;34(4):671678CrossRefGoogle ScholarPubMed
Wilmshurst, JM, Gaillard, WD, Vinayan, KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia 2015;56(8):11851197CrossRefGoogle ScholarPubMed
Wirrell, EC, Shellhaas, RA, Joshi, C, et al. How should children with West syndrome be efficiently and accurately investigated?: results from the National Infantile Spasms Consortium. Epilepsia 2015;56(4):617625Google Scholar
Mercimek-Mahmutoglu, S, Patel, J, Cordeiro, D, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia 2015;56(5):707716Google Scholar
Helbig, KL, Farwell Hagman, KD, Shinde, DN, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 2016;18(9):898905Google Scholar
Mackay, MT, Weiss, SK, Adams-Webber, T, et al. Practice parameter: medical treatment of infantile spasms: report of the American Academy of Neurology and the Child Neurology Society. Neurology 2004;62(10):16681681CrossRefGoogle ScholarPubMed
Knupp, KG, Coryell, J, Nickels, KC, et al. Response to treatment in a prospective national infantile spasms cohort. Ann Neurol 2016;79(3):475484CrossRefGoogle Scholar
Riikonen, RS. Favourable prognostic factors with infantile spasms. Eur J Paediatr Neurol 2010;14(1):1318Google Scholar
Camfield, P, Camfield, C. Long-term prognosis for symptomatic (secondarily) generalized epilepsies: a population-based study. Epilepsia 2007;48(6):11281132Google Scholar
Riikonen, R. Long-term outcome of West syndrome: a study of adults with a history of infantile spasms. Epilepsia 1996;37(4):367372Google Scholar
Riikonen, R. Long-term outcome of patients with West syndrome. Brain Dev 2001;23(7):683687CrossRefGoogle ScholarPubMed
Coppola, G, Plouin, P, Chiron, C, Robain, O, Dulac, O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia 1995;36(10):10171024Google Scholar
McTague, A, Appleton, R, Avula, S, et al. Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain 2013;136(Pt 5):15781591Google Scholar
Coppola, G. Malignant migrating partial seizures in infancy: an epilepsy syndrome of unknown etiology. Epilepsia 2009;50(Suppl 5):4951Google Scholar
Freilich, ER, Jones, JM, Gaillard, WD, et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch Neurol 2011;68(5):665671Google Scholar
Poduri, A, Chopra, SS, Neilan, EG, et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia 2012;53(8):e146e150Google Scholar
Milh, M, Falace, A, Villeneuve, N, et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat 2013;34(6):869872Google Scholar
Poduri, A, Heinzen, EL, Chitsazzadeh, V, et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol 2013;74(6):873882CrossRefGoogle ScholarPubMed
Dhamija, R, Wirrell, E, Falcao, G, Kirmani, S, Wong-Kisiel, LC. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr Neurol 2013;49(6):486488CrossRefGoogle Scholar
Barcia, G, Fleming, MR, Deligniere, A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012;44(11):12551259Google Scholar
Ohba, C, Kato, M, Takahashi, S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014;55(7):9941000CrossRefGoogle ScholarPubMed
Coppola, G, Veggiotti, P, Del Giudice, EM, et al. Mutational scanning of potassium, sodium and chloride ion channels in malignant migrating partial seizures in infancy. Brain Dev 2006;28(2):7679CrossRefGoogle ScholarPubMed
Lim, BC, Hwang, H, Kim, H, et al. Epilepsy phenotype associated with a chromosome 2q24.3 deletion involving SCN1A: migrating partial seizures of infancy or atypical Dravet syndrome? Epilepsy Res 2015;109:3439Google Scholar
Iyer, RS, Thanikasalam, , Krishnan, M. Migrating partial seizures in infancy and 47XYY syndrome: cause or coincidence? Epilepsy Behav Case Rep 2014;2:4345CrossRefGoogle ScholarPubMed
De Filippo, MR, Rizzo, F, Marchese, G, et al. Lack of pathogenic mutations in six patients with MMPSI. Epilepsy Res 2014;108(2):340344Google Scholar
Merdariu, D, Delanoe, C, Mahfoufi, N, Bellavoine, V, Auvin, S. Malignant migrating partial seizures of infancy controlled by stiripentol and clonazepam. Brain Dev 2013;35(2):177180CrossRefGoogle ScholarPubMed
Djuric, M, Kravljanac, R, Kovacevic, G, Martic, J. The efficacy of bromides, stiripentol and levetiracetam in two patients with malignant migrating partial seizures in infancy. Epileptic Disord 2011;13(1):2226Google Scholar
Vendrame, M, Poduri, A, Loddenkemper, T, et al. Treatment of malignant migrating partial epilepsy of infancy with rufinamide: report of five cases. Epileptic Disord 2011;13(1):1821Google Scholar
Caraballo, R, Noli, D, Cachia, P. Epilepsy of infancy with migrating focal seizures: three patients treated with the ketogenic diet. Epileptic Disord 2015;17(2):194197Google Scholar
Caraballo, RH, Valenzuela, GR, Armeno, M, et al. The ketogenic diet in two paediatric patients with refractory myoclonic status epilepticus. Epileptic Disord 2015;17(4):491495Google Scholar
Cilio, MR, Bianchi, R, Balestri, M, et al. Intravenous levetiracetam terminates refractory status epilepticus in two patients with migrating partial seizures in infancy. Epilepsy Res 2009;86(1):6671CrossRefGoogle ScholarPubMed
Irahara, K, Saito, Y, Sugai, K, et al. Effects of acetazolamide on epileptic apnea in migrating partial seizures in infancy. Epilepsy Res 2011;96(1–2):185189Google Scholar
Unver, O, Incecik, F, Dundar, H, et al. Potassium bromide for treatment of malignant migrating partial seizures in infancy. Pediatr Neurol 2013;49(5):355357CrossRefGoogle ScholarPubMed
Saade, D, Joshi, C. Pure cannabidiol in the treatment of malignant migrating partial seizures in infancy: a case report. Pediatr Neurol 2015;52(5):544547Google Scholar
Bearden, D, Strong, A, Ehnot, J, et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol 2014;76(3):457461CrossRefGoogle ScholarPubMed
Mikati, MA, Jiang, YH, Carboni, M, et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol 2015;78(6):995999Google Scholar
Bearden, D, DiGiovine, M, Dlugos, D, Goldberg, E. Reply. Ann Neurol 2016;79(3):503504CrossRefGoogle ScholarPubMed
Engel, J, Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001;42(6):796803Google Scholar
Fujiwara, T, Sugawara, T, Mazaki-Miyazaki, E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic–clonic seizures. Brain 2003;126(Pt 3):531546CrossRefGoogle ScholarPubMed
Berkovic, SF, Harkin, L, McMahon, JM, et al. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurol 2006;5(6):488492CrossRefGoogle ScholarPubMed
Jansen, FE, Sadleir, LG, Harkin, LA, et al. Severe myoclonic epilepsy of infancy (Dravet syndrome): recognition and diagnosis in adults. Neurology 2006;67(12):22242226CrossRefGoogle ScholarPubMed
Wolff, M, Casse-Perrot, C, Dravet, C. Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia 2006;47(Suppl 2):4548CrossRefGoogle ScholarPubMed
Scheffer, IE, Turner, SJ, Dibbens, LM, et al. Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain 2008;131(Pt 4):918927Google Scholar
Devinsky, O, Nabbout, R, Miller, I, et al. Long-term cannabidiol treatment in patients with Dravet syndrome: an open-label extension trial. Epilepsia 2019;60(2):294302Google Scholar
Bialer, M, Johannessen, SI, Koepp, MJ, et al. Progress report on new antiepileptic drugs: a summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia 2018;59(10):18111841CrossRefGoogle Scholar
Genton, P, Velizarova, R, Dravet, C. Dravet syndrome: the long-term outcome. Epilepsia 2011;52(Suppl 2):4449Google Scholar
Akiyama, M, Kobayashi, K, Yoshinaga, H, Ohtsuka, Y. A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia 2010;51(6):10431052Google Scholar
Camfield, PR. Definition and natural history of Lennox-Gastaut syndrome. Epilepsia 2011;52(Suppl 5):39Google Scholar
Proposal for revised classification of epilepsies and epileptic syndromes: Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30(4):389399Google Scholar
Scheffer, IE, Berkovic, S, Capovilla, G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58(4):512521CrossRefGoogle ScholarPubMed
Cherian, A, Jabeen, SA, Kandadai, RM, et al. Epilepsy with myoclonic absences in siblings. Brain Dev 2014;36(10):892898Google Scholar
Bureau, M, Tassinari, CA. Epilepsy with myoclonic absences. Brain Dev 2005;27(3):178184CrossRefGoogle ScholarPubMed
Kalviainen, R. Progressive myoclonus epilepsies. Semin Neurol 2015;35(3):293299Google ScholarPubMed
Vaca, GF, Lenz, T, Knight, EM, Tuxhorn, I. Gaucher disease: successful treatment of myoclonic status epilepticus with levetiracetam. Epileptic Disord 2012;14(2):155158Google Scholar
Gastaut, H, Tassinari, CA. Triggering mechanisms in epilepsy: the electroclinical point of view. Epilepsia 1966;7(2):85138CrossRefGoogle ScholarPubMed
Arzimanoglou, A, Resnick, T. All children who experience epileptic falls do not necessarily have Lennox-Gastaut syndrome … but many do. Epileptic Disord 2011;13(Suppl 1):S3S13Google Scholar
Arzimanoglou, A, Resnick, T. Diagnosing and treating epileptic drop attacks, atypical absences and episodes of nonconvulsive status epilepticus. Epileptic Disord 2011;13(Suppl 1):S1-S2Google ScholarPubMed
Wyllie, E, Lachhwani, DK, Gupta, A, et al. Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings. Neurology 2007;69(4):389397CrossRefGoogle ScholarPubMed
Gupta, A, Chirla, A, Wyllie, E, et al. Pediatric epilepsy surgery in focal lesions and generalized electroencephalogram abnormalities. Pediatr Neurol 2007;37(1):815CrossRefGoogle ScholarPubMed
Carvill, GL, Heavin, SB, Yendle, SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013;45(7):825830Google Scholar
Allen, AS, Berkovic, SF, Cossette, P, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501(7466):217221Google Scholar
Dravet, C, Natale, O, Magaudda, A, et al. [Status epilepticus in the Lennox-Gastaut syndrome]. Rev Electroencephalogr Neurophysiol Clin 1986;15(4):361368Google Scholar
Sinclair, DB. Prednisone therapy in pediatric epilepsy. Pediatr Neurol 2003;28(3):194198Google Scholar
Yamatogi, Y, Ohtsuka, Y, Ishida, T, et al. Treatment of the Lennox syndrome with ACTH: a clinical and electroencephalographic study. Brain Dev 1979;1(4):267276Google Scholar
Bello-Espinosa, LE, Rajapakse, T, Rho, JM, Buchhalter, J. Efficacy of intravenous immunoglobulin in a cohort of children with drug-resistant epilepsy. Pediatr Neurol 2015;52(5):509516CrossRefGoogle Scholar
Billiau, AD, Witters, P, Ceulemans, B, et al. Intravenous immunoglobulins in refractory childhood-onset epilepsy: effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia 2007;48(9):17391749Google Scholar
Kossoff, EH, Krauss, GL, McGrogan, JR, Freeman, JM. Efficacy of the Atkins diet as therapy for intractable epilepsy. Neurology 2003;61(12):17891791Google Scholar
Kossoff, EH, McGrogan, JR, Bluml, RM, et al. A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia 2006;47(2):421424CrossRefGoogle ScholarPubMed
Sirven, J, Whedon, B, Caplan, D, et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 1999;40(12):17211726Google Scholar
Lancman, G, Virk, M, Shao, H, et al. Vagus nerve stimulation vs. corpus callosotomy in the treatment of Lennox-Gastaut syndrome: a meta-analysis. Seizure 2013;22(1):38CrossRefGoogle ScholarPubMed
Iwasaki, M, Uematsu, M, Nakayama, T, et al. Parental satisfaction and seizure outcome after corpus callosotomy in patients with infantile or early childhood onset epilepsy. Seizure 2013;22(4):303305Google Scholar
Maehara, T, Shimizu, H. Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia 2001;42(1):6771Google Scholar
Park, MS, Nakagawa, E, Schoenberg, MR, Benbadis, SR, Vale, FL. Outcome of corpus callosotomy in adults. Epilepsy Behav 2013;28(2):181184Google Scholar
Roger, J, Remy, C, Bureau, M, et al. [Lennox-Gastaut syndrome in the adult]. Rev Neurol (Paris) 1987;143(5):401405Google Scholar
Boyer, JP, Deschatrette, A, Delwarde, M. [Convulsive autism?: apropos of 9 cases of primary autism associated with the Lennox-Gastaut syndrome]. Pediatrie 1981;36(5):353368Google Scholar
Camfield, C, Camfield, P. Twenty years after childhood-onset symptomatic generalized epilepsy the social outcome is usually dependency or death: a population-based study. Dev Med Child Neurol 2008;50(11):859863Google Scholar
Doose, H, Gerken, H, Leonhardt, R, Volzke, E, Volz, C. Centrencephalic myoclonic-astatic petit mal. Clinical and genetic investigation. Neuropadiatrie 1970;2(1):5978CrossRefGoogle ScholarPubMed
Guerrini, R, Aicardi, J. Epileptic encephalopathies with myoclonic seizures in infants and children (severe myoclonic epilepsy and myoclonic-astatic epilepsy). J Clin Neurophysiol 2003;20(6):449461Google Scholar
Harkin, LA, McMahon, JM, Iona, X, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007;130(Pt 3):843852Google Scholar
Kilaru, S, Bergqvist, AG. Current treatment of myoclonic astatic epilepsy: clinical experience at the Children’s Hospital of Philadelphia. Epilepsia 2007;48(9):17031707Google Scholar
Oguni, H, Tanaka, T, Hayashi, K, et al. Treatment and long-term prognosis of myoclonic-astatic epilepsy of early childhood. Neuropediatrics 2002;33(3):122132Google Scholar
Camfield, P, Camfield, C. Epileptic syndromes in childhood: clinical features, outcomes, and treatment. Epilepsia 2002;43(Suppl 3):2732Google Scholar
Caraballo, RH, Cejas, N, Chamorro, N, et al. Landau-Kleffner syndrome: a study of 29 patients. Seizure 2014;23(2):98104Google Scholar
Sánchez Fernández, I, Loddenkemper, T, Peters, JM, Kothare, SV. Electrical status epilepticus in sleep: clinical presentation and pathophysiology. Pediatr Neurol 2012;47(6):390410Google Scholar
Fernandez, IS, Chapman, KE, Peters, JM, et al. The tower of Babel: survey on concepts and terminology in electrical status epilepticus in sleep and continuous spikes and waves during sleep in North America. Epilepsia 2013;54(4):741750Google Scholar
Van Hirtum-Das, M, Licht, EA, Koh, S, et al. Children with ESES: variability in the syndrome. Epilepsy Res 2006;70(Suppl 1):S248S258Google Scholar
Loddenkemper, T, Cosmo, G, Kotagal, P, et al. Epilepsy surgery in children with electrical status epilepticus in sleep. Neurosurgery 2009;64(2):328337CrossRefGoogle ScholarPubMed
Sánchez Fernández, I, Chapman, KE, Peters, JM, et al. Continuous spikes and waves during sleep: electroclinical presentation and suggestions for management. Epilepsy Res Treat 2013;2013:583531Google Scholar
Turner, SJ, Morgan, AT, Perez, ER, Scheffer, IE. New genes for focal epilepsies with speech and language disorders. Curr Neurol Neurosci Rep 2015;15(6):35Google Scholar
Lal, D, Steinbrucker, S, Schubert, J, et al. Investigation of GRIN2A in common epilepsy phenotypes. Epilepsy Res 2015;115:9599Google Scholar
Vigevano, F, Arzimanoglou, A, Plouin, P, Specchio, N. Therapeutic approach to epileptic encephalopathies. Epilepsia 2013;54(Suppl 8):4550Google Scholar
Veggiotti, P, Pera, MC, Teutonico, F, et al. Therapy of encephalopathy with status epilepticus during sleep (ESES/CSWS syndrome): an update. Epileptic Disord 2012;14(1):111Google Scholar
Inutsuka, M, Kobayashi, K, Oka, M, Hattori, J, Ohtsuka, Y. Treatment of epilepsy with electrical status epilepticus during slow sleep and its related disorders. Brain Dev 2006;28(5):281286Google Scholar
Mikati, MA, Shamseddine, AN. Management of Landau-Kleffner syndrome. Paediatr Drugs 2005;7(6):377389Google Scholar
Okuyaz, C, Aydin, K, Gucuyener, K, Serdaroglu, A. Treatment of electrical status epilepticus during slow-wave sleep with high-dose corticosteroid. Pediatr Neurol 2005;32(1):6467Google Scholar
Wilson, RB, Eliyan, Y, Sankar, R, Hussain, SA. Amantadine: a new treatment for refractory electrical status epilepticus in sleep. Epilepsy Behav 2018;84:7478Google Scholar
Gross-Selbeck, G. Treatment of “benign” partial epilepsies of childhood, including atypical forms. Neuropediatrics 1995;26(1):4550CrossRefGoogle ScholarPubMed
Raybarman, C. Landau-Kleffner syndrome: a case report. Neurol India 2002;50(2):212213Google ScholarPubMed
Fainberg, N, Harper, A, Tchapyjnikov, D, Mikati, MA. Response to immunotherapy in a patient with Landau-Kleffner syndrome and GRIN2A mutation. Epileptic Disord 2016;18(1):97100Google Scholar
Mikati, MA, Saab, R. Successful use of intravenous immunoglobulin as initial monotherapy in Landau-Kleffner syndrome. Epilepsia 2000;41(7):880886CrossRefGoogle ScholarPubMed
Irwin, K, Birch, V, Lees, J, et al. Multiple subpial transection in Landau-Kleffner syndrome. Dev Med Child Neurol 2001;43(4):248252Google Scholar
Pierson, TM, Yuan, H, Marsh, ED, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014;1(3):190198Google Scholar
Ben-Ari, Y, Holmes, GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006;5(12):10551063Google Scholar
Holmes, GL, Lenck-Santini, PP. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 2006;8(3):504515CrossRefGoogle ScholarPubMed
Holmes, GL. Clinical evidence that epilepsy is a progressive disorder with special emphasis on epilepsy syndromes that do progress. Adv Neurol 2006;97:323331Google Scholar
Shatskikh, TN, Raghavendra, M, Zhao, Q, Cui, Z, Holmes, GL. Electrical induction of spikes in the hippocampus impairs recognition capacity and spatial memory in rats. Epilepsy Behav 2006;9(4):549556Google Scholar
Hernan, AE, Alexander, A, Lenck-Santini, PP, Scott, RC, Holmes, GL. Attention deficit associated with early life interictal spikes in a rat model is improved with ACTH. PLoS One 2014;9(2):e89812Google Scholar
Nordli, DR, Jr. Idiopathic generalized epilepsies recognized by the International League Against Epilepsy. Epilepsia 2005;46(Suppl 9):4856Google Scholar
Janz, D. Epilepsy with impulsive petit mal (juvenile myoclonic epilepsy). Acta Neurol Scand 1985;72(5):449459Google Scholar
Wirrell, EC, Camfield, CS, Camfield, PR, Gordon, KE, Dooley, JM. Long-term prognosis of typical childhood absence epilepsy: remission or progression to juvenile myoclonic epilepsy. Neurology 1996;47(4):912918Google Scholar
Panayiotopoulos, CP. Idiopathic generalized epilepsies: a review and modern approach. Epilepsia 2005;46(Suppl 9):16Google Scholar
Camfield, CS, Camfield, PR. Juvenile myoclonic epilepsy 25 years after seizure onset: a population-based study. Neurology 2009;73(13):10411045CrossRefGoogle ScholarPubMed
Glauser, T, Ben-Menachem, E, Bourgeois, B, et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 2013;54(3):551563Google Scholar
Camfield, C, Camfield, P. Management guidelines for children with idiopathic generalized epilepsy. Epilepsia 2005;46(Suppl 9):112116Google Scholar
Baykan, B, Altindag, EA, Bebek, N, et al. Myoclonic seizures subside in the fourth decade in juvenile myoclonic epilepsy. Neurology 2008;70(22 Pt 2): 21232129Google Scholar
Striano, S, Capovilla, G, Sofia, V, et al. Eyelid myoclonia with absences (Jeavons syndrome): a well-defined idiopathic generalized epilepsy syndrome or a spectrum of photosensitive conditions? Epilepsia 2009;50(Suppl 5):1519Google Scholar
Engel, J, Jr. Report of the ILAE classification core group. Epilepsia 2006;47(9):15581568Google Scholar
Jeavons, PM. Nosological problems of myoclonic epilepsies in childhood and adolescence. Dev Med Child Neurol 1977;19(1):38Google Scholar
Yang, ZX, Cai, X, Liu, XY, Qin, J. Relationship among eye condition sensitivities, photosensitivity and epileptic syndromes. Chin Med J (Engl) 2008;121(17):16331637Google Scholar
Striano, S, Striano, P, Nocerino, C, et al. Eyelid myoclonia with absences: an overlooked epileptic syndrome? Neurophysiol Clin 2002;32(5):287296CrossRefGoogle ScholarPubMed
Adachi, N, Kanemoto, K, Muramatsu, R, et al. Intellectual prognosis of status epilepticus in adult epilepsy patients: analysis with Wechsler Adult Intelligence Scale-revised. Epilepsia 2005;46(9):15021509Google Scholar
Viravan, S, Go, C, Ochi, A, et al. Jeavons syndrome existing as occipital cortex initiating generalized epilepsy. Epilepsia 2011;52(7):12731279Google Scholar
Striano, P, Sofia, V, Capovilla, G, et al. A pilot trial of levetiracetam in eyelid myoclonia with absences (Jeavons syndrome). Epilepsia 2008;49(3):425430CrossRefGoogle ScholarPubMed
Jung, DE, Yu, R, Yoon, JR, et al. Neuropsychological effects of levetiracetam and carbamazepine in children with focal epilepsy. Neurology 2015;84(23):23122319Google Scholar
Molokwu, OA, Ezeala-Adikaibe, BA, Onwuekwe, IO. Levetiracetam-induced rage and suicidality: two case reports and review of literature. Epilepsy Behav Case Rep 2015;4:7981Google Scholar
Menon, R, Baheti, NN, Cherian, A, Iyer, RS. Oxcarbazepine induced worsening of seizures in Jeavons syndrome: lessons learnt from an interesting presentation. Neurol India 2011;59(1):7072Google Scholar
Capovilla, G, Gambardella, A, Rubboli, G, et al. Suppressive efficacy by a commercially available blue lens on PPR in 610 photosensitive epilepsy patients. Epilepsia 2006;47(3):529533Google Scholar
Cross, JH, Jayakar, P, Nordli, D, et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 2006;47(6):952959Google Scholar
Pestana Knight, EM, Schiltz, NK, Bakaki, PM, et al. In response: epilepsy surgery trends in the U.S. – differences between kids and adults. Epilepsia 2015;56(8):13211322Google Scholar
Pestana Knight, EM, Schiltz, NK, Bakaki, PM, et al. Increasing utilization of pediatric epilepsy surgery in the United States between 1997 and 2009. Epilepsia 2015;56(3):375381Google Scholar
Dunkley, C, Kung, J, Scott, RC, et al. Epilepsy surgery in children under 3 years. Epilepsy Res 2011;93(2–3):96106CrossRefGoogle ScholarPubMed
Gowda, S, Salazar, F, Bingaman, WE, et al. Surgery for catastrophic epilepsy in infants 6 months of age and younger. J Neurosurg Pediatr 2010;5(6):603607Google Scholar
Wyllie, E, Comair, YG, Kotagal, P, Raja, S, Ruggieri, P. Epilepsy surgery in infants. Epilepsia 1996;37(7):625637Google Scholar
Wyllie, E, Comair, Y, Ruggieri, P, Raja, S, Prayson, R. Epilepsy surgery in the setting of periventricular leukomalacia and focal cortical dysplasia. Neurology 1996;46(3):839841Google Scholar
Wyllie, E. Surgery for catastrophic localization-related epilepsy in infants. Epilepsia 1996;37(Suppl 1):S22S25Google Scholar
Chugani, HT, Shields, WD, Shewmon, DA, et al. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 1990;27(4):406413Google Scholar
Moosa, AN, Jehi, L, Marashly, A, et al. Long-term functional outcomes and their predictors after hemispherectomy in 115 children. Epilepsia 2013;54(10):17711779Google Scholar
Lee, YJ, Kang, HC, Lee, JS, et al. Resective pediatric epilepsy surgery in Lennox–Gastaut syndrome. Pediatrics 2010;125(1):e58e66Google Scholar
Lee, YJ, Lee, JS, Kang, HC, et al. Outcomes of epilepsy surgery in childhood-onset epileptic encephalopathy. Brain Dev 2014;36(6):496504Google Scholar
Moosa, AN, Gupta, A, Jehi, L, et al. Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology 2013;80(3):253260Google Scholar
Van den Munckhof, B, van D, V, Sagi, L, et al. Treatment of electrical status epilepticus in sleep: a pooled analysis of 575 cases. Epilepsia 2015;56(11):17381746Google Scholar
Sillanpaa, M, Jalava, M, Kaleva, O, Shinnar, S. Long-term prognosis of seizures with onset in childhood. N Engl J Med 1998;338(24):17151722Google Scholar
Looman, WS, Lindeke, LL. Children and youth with special health care needs: partnering with families for effective advocacy. J Pediatr Health Care 2008;22(2):134136Google Scholar
Camfield, PR, Gibson, PA, Douglass, LM. Strategies for transitioning to adult care for youth with Lennox–Gastaut syndrome and related disorders. Epilepsia 2011;52(Suppl 5):2127Google Scholar
Blum, RW. Introduction: improving transition for adolescents with special health care needs from pediatric to adult-centered health care. Pediatrics 2002; 110(6 Pt 2):13011303Google Scholar
Kelly, AM, Kratz, B, Bielski, M, Rinehart, PM. Implementing transitions for youth with complex chronic conditions using the medical home model. Pediatrics 2002;110(6 Pt 2):13221327Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×