Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T04:25:03.241Z Has data issue: false hasContentIssue false

13 - Atomistic–continuum coupling: finite temperature and dynamics

from Part IV - Multiscale methods

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

In Chapter 12, we discussed a suite of static atomistic–continuum coupling methods, all with the goal of being an approximate, more efficient alternative to molecular statics (MS) (Chapter 6). While there are many such methods, we demonstrated that they can all be described within a common framework, and summarized the various options that one can select within that framework to define a specific variant of the coupling procedure. We deliberately avoided the question of dynamic multiscale methods in that discussion.

Here, we look at methods whose goal is to be an approximate, low-cost alternative to molecular dynamics (MD) (Chapter 9). The general idea is still embodied in Fig. 12.2, as we envision partitioning the body into two regions: one (BA) that will be treated atomistically using full MD and another (BC) that can be approximated using a continuum approach (commonly discretized using finite elements). Instead of seeking an equilibrium configuration for the body, we now have time-dependent boundary conditions (including prescribed displacements, atomic forces and continuous tractions) and a set of initial conditions from which we want to follow the evolution of the system. In the atomistic region, this means the trajectories of all the atoms. In the continuum region, this may include a discretized approximation to the mean displacement, velocity and temperature fields.

Superficially, this sounds like a straightforward extension of static methods, but in fact there are additional difficulties that make the problem much more complex.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 658 - 689
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×