Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T09:33:33.908Z Has data issue: false hasContentIssue false

11 - The baby with an enlarging head or ventriculomegaly

from Section III - Solving clinical problems and interpretation of test results

Published online by Cambridge University Press:  07 December 2009

Cornelia F. Hagmann
Affiliation:
Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Nicola J. Robertson
Affiliation:
Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
University College London
Cornelia F. Hagmann
Affiliation:
University College London
Nicola J. Robertson
Affiliation:
University College London
Get access

Summary

Introduction to the clinical problem

The widespread use of ultrasound imaging has completely changed the nature of neonatal practice in many areas, not least with regard to the diagnosis and management of hydrocephalus. It is very rare nowadays to be presented with a baby with a rapidly enlarging head circumference, dilated scalp veins and sunsetting eyes, because most cases are detected antenatally or detected in postnatal life before clinical signs develop. The widespread availability of ultrasound imaging means that it is no longer necessary to make the diagnosis by transillumination of the skull or air encephalography. The detection of ventriculomegaly in an asymptomatic fetus or neonate has created new challenges, because at the time of initial diagnosis it cannot be known whether progressive ventricular dilatation will develop.

The availability of imaging does not mean that postnatal measurement of the head circumference is redundant, and serial measurements are still vitally important in helping to determine whether the ventricles are enlarging progressively. Babies still present with large heads which are due to familial megalencephaly, and it is essential to measure the head circumference of both parents in a well baby with a big head before embarking on an expensive series of investigations which may not be necessary, and will only serve to worry the parents.

Ventriculomegaly may be congenital or acquired. In this chapter we discuss fetal ventriculomegaly, postnatally acquired ventricular dilatation, and the management and prognosis of non-progressive and progressive ventriculomegaly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Filly, RA, Cardoza, JD, Goldstein, RB, Barkovich, AJ. Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram. Radiology 1989; 172 (2): 403–8.CrossRefGoogle ScholarPubMed
Cardoza, JD, Goldstein, RB, Filly, RA. Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 1988; 169 (3): 711–14.CrossRefGoogle ScholarPubMed
Achiron, R, Schimmel, M, Achiron, A, Mashiach, S. Fetal mild idiopathic lateral ventriculomegaly: is there a correlation with fetal trisomy?Ultrasound Obstet Gynecol 1993; 3 (2): 89–92.CrossRefGoogle Scholar
Gupta, JK, Bryce, FC, Lilford, RJ. Management of apparently isolated fetal ventriculomegaly. Obstet Gynecol Surv 1994; 49 (10): 716–21.CrossRefGoogle ScholarPubMed
Pilu, G, Reece, EA, Goldstein, I, Hobbins, JC, Bovicelli, L. Sonographic evaluation of the normal developmental anatomy of the fetal cerebral ventricles: II. The atria. Obstet Gynecol 1989; 73 (2): 250–6.Google ScholarPubMed
Heiserman, J, Filly, RA, Goldstein, RB. Effect of measurement errors on sonographic evaluation of ventriculomegaly. J Ultrasound Med 1991; 10 (3): 121–4.CrossRefGoogle ScholarPubMed
Alagappan, R, Browning, PD, Laorr, A, McGahan, JP. Distal lateral ventricular atrium: reevaluation of normal range. Radiology 1994; 193 (2): 405–8.CrossRefGoogle ScholarPubMed
Farrell, TA, Hertzberg, BS, Kliewer, MA, Harris, L, Paine, SS. Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 1994; 193 (2): 409–11.CrossRefGoogle ScholarPubMed
Patel, MD, Goldstein, RB, Tung, S, Filly, RA. Fetal cerebral ventricular atrium: difference in size according to sex. Radiology 1995; 194 (3): 713–15.CrossRefGoogle Scholar
Hilpert, PL, Hall, BE, Kurtz, AB. The atria of the fetal lateral ventricles: a sonographic study of normal atrial size and choroid plexus volume. AJR Am J Roentgenol 1995; 164 (3): 731–4.CrossRefGoogle ScholarPubMed
Senat, MV, Bernard, JP, Schwarzler, P, Britten, J, Ville, Y. Prenatal diagnosis and follow-up of 14 cases of unilateral ventriculomegaly. Ultrasound Obstet Gynecol 1999; 14 (5): 327–32.CrossRefGoogle ScholarPubMed
Mercier, A, Eurin, D, Mercier, PY, Verspyck, E, Marpeau, L, Marret, S. Isolated mild fetal cerebral ventriculomegaly: a retrospective analysis of 26 cases. Prenat Diagn 2001; 21 (7): 589–95.CrossRefGoogle ScholarPubMed
Filly, RA, Goldstein, RB, Callen, PW. Fetal ventricle: importance in routine obstetric sonography. Radiology 1991; 181 (1): 1–7.CrossRefGoogle ScholarPubMed
Vergani, P, Locatelli, A, Strobelt, N, Cavallone, M, Ceruti, P, Paterlini, G, Ghidini, A. Clinical outcome of mild fetal ventriculomegaly. Am J Obstet Gynecol 1998; 178 (2): 218–22.CrossRefGoogle ScholarPubMed
Achiron, R, Yagel, S, Rotstein, Z, Inbar, O, Mashiach, S, Lipitz, S. Cerebral lateral ventricular asymmetry: is this a normal ultrasonographic finding in the fetal brain?Obstet Gynecol 1997; 89 (2): 233–7.CrossRefGoogle ScholarPubMed
Bromley, B, Frigoletto, FD Jr., Benacerraf, BR. Mild fetal lateral cerebral ventriculomegaly: clinical course and outcome. Am J Obstet Gynecol 1991; 164 (3): 863–7.CrossRefGoogle ScholarPubMed
Breeze, AC, Dey, PK, Lees, CC, Hackett, GA, Smith, GC, Murdoch, EM. Obstetric and neonatal outcomes in apparently isolated mild fetal ventriculomegaly. J Perinat Med 2005; 33 (3): 236–40.CrossRefGoogle ScholarPubMed
Goldstein, RB, Pidus, AS, Filly, RA, Cardoza, J. Mild lateral cerebral ventricular dilatation in utero: clinical significance and prognosis. Radiology 1990; 176 (1): 237–42.CrossRefGoogle ScholarPubMed
Goldstein, I, Copel, JA, Makhoul, IR. Mild cerebral ventriculomegaly in fetuses: characteristics and outcome. Fetal Diagn Ther 2005; 20 (4): 281–4.CrossRefGoogle ScholarPubMed
Gaglioti, P, Danelon, D, Bontempo, S, Mombro, M, Cardaropoli, S, Todros, T. Fetal cerebral ventriculomegaly: outcome in 176 cases. Ultrasound Obstet Gynecol 2005; 25 (4): 372–7.CrossRefGoogle ScholarPubMed
Patel, MD, Filly, AL, Hersh, DR, Goldstein, RB. Isolated mild fetal cerebral ventriculomegaly: clinical course and outcome. Radiology 1994; 192 (3): 759–64.CrossRefGoogle ScholarPubMed
Toi, A. Spontaneous resolution of fetal ventriculomegaly in a diabetic patient. J Ultrasound Med 1987; 6 (1): 37–9.CrossRefGoogle Scholar
Kelly, EN, Allen, VM, Seaward, G, Windrim, R, Ryan, G. Mild ventriculomegaly in the fetus, natural history, associated findings and outcome of isolated mild ventriculomegaly: a literature review. Prenat Diagn 2001; 21 (8): 697–700.CrossRefGoogle ScholarPubMed
Ouahba, J, Luton, D, Vuillard, Eet al. Prenatal isolated mild ventriculomegaly: outcome in 167 cases. Br J Obstet Gynaecol 2006; 113 (9): 1072–9.CrossRefGoogle ScholarPubMed
Chervenak, FA, Duncan, C, Ment, LRet al. Outcome of fetal ventriculomegaly. Lancet 1984; 2 (8396): 179–81.CrossRefGoogle ScholarPubMed
Mahony, BS, Nyberg, DA, Hirsch, JH, Petty, CN, Hendricks, SK, Mack, . Mild idiopathic lateral cerebral ventricular dilatation in utero: sonographic evaluation. Radiology 1988; 169 (3): 715–21.CrossRefGoogle ScholarPubMed
Nyberg, DA, Mack, , Hirsch, J, Pagon, RO, Shepard, TH. Fetal hydrocephalus: sonographic detection and clinical significance of associated anomalies. Radiology 1987; 163 (1): 187–191.CrossRefGoogle ScholarPubMed
Tomlinson, MW, Treadwell, MC, Bottoms, SF. Isolated mild ventriculomegaly: associated karyotypic abnormalities and in utero observations. J Matern Fetal Med 1997; 6 (4): 241–4.Google ScholarPubMed
Morris, JE, Rickard, S, Paley, MN, Griffiths, PD, Rigby, A, Whitby, EH. The value of in-utero magnetic resonance imaging in ultrasound diagnosed foetal isolated cerebral ventriculomegaly. Clin Radiol 2007; 62 (2): 140–4.CrossRefGoogle ScholarPubMed
Greco, P, Vimercati, A, Cosmo, L, Laforgia, N, Mautone, A, Selvaggi, L. Mild ventriculomegaly as a counselling challenge. Fetal Diagn Ther 2001; 16 (6): 398–401.CrossRefGoogle ScholarPubMed
Pilu, G, Falco, P, Gabrielli, S, Perolo, A, Sandri, F, Bovicelli, L. The clinical significance of fetal isolated cerebral borderline ventriculomegaly: report of 31 cases and review of the literature. Ultrasound Obstet Gynecol 1999; 14 (5): 320–6.CrossRefGoogle ScholarPubMed
Lipitz, S, Yagel, S, Malinger, G, Meizner, I, Zalel, Y, Achiron, R. Outcome of fetuses with isolated borderline unilateral ventriculomegaly diagnosed at mid-gestation. Ultrasound Obstet Gynecol 1998; 12 (1): 23–6.CrossRefGoogle ScholarPubMed
Nicolaides, KH, Berry, S, Snijders, RJ, Thorpe-Beeston, JG, Gosden, C. Fetal lateral cerebral ventriculomegaly: associated malformations and chromosomal defects. Fetal Diagn Ther 1990; 5 (1): 5–14.CrossRefGoogle ScholarPubMed
Levine, D, Barnes, PD, Madsen, JR, Abbott, J, Mehta, T, Edelman, RR. Central nervous system abnormalities assessed with prenatal magnetic resonance imaging. Obstet Gynecol 1999; 94 (6): 1011–19.Google ScholarPubMed
Levine, D. Fetal magnetic resonance imaging. Top Magn Reson Imaging 2001; 12 (1): 1–2.CrossRefGoogle ScholarPubMed
Levine, D. Magnetic resonance imaging in prenatal diagnosis. Curr Opin Pediatr 2001; 13 (6): 572–8.CrossRefGoogle ScholarPubMed
Levine, D. Ultrasound versus magnetic resonance imaging in fetal evaluation. Top Magn Reson Imaging 2001; 12 (1): 25–38.CrossRefGoogle ScholarPubMed
Levine, D, Barnes, PD, Madsen, JR, Li, W, Edelman, RR. Fetal central nervous system anomalies: MR imaging augments sonographic diagnosis. Radiology 1997; 204 (3): 635–642.CrossRefGoogle ScholarPubMed
Levine, D, Barnes, PD, Robertson, RR, Wong, G, Mehta, TS. Fast MR imaging of fetal central nervous system abnormalities. Radiology 2003; 229 (1): 51–61.CrossRefGoogle ScholarPubMed
Whitby, EH, Paley, MN, Sprigg, Aet al. Comparison of ultrasound and magnetic resonance imaging in 100 singleton pregnancies with suspected brain abnormalities. Br J Obstet Gynaecol 2004; 111 (8): 784–92.CrossRefGoogle ScholarPubMed
Whitby, E, Paley, MN, Davies, N, Sprigg, A, Griffiths, PD. Ultrafast magnetic resonance imaging of central nervous system abnormalities in utero in the second and third trimester of pregnancy: comparison with ultrasound. Br J Obstet Gynaecol 2001; 108 (5): 519–26.Google ScholarPubMed
Salomon, LJ, Ouahba, J, Delezoide, ALet al. Third-trimester fetal MRI in isolated 10- to 12-mm ventriculomegaly: is it worth it?Br J Obstet Gynaecol 2006; 113 (8): 942–7.CrossRefGoogle ScholarPubMed
Malinger, G, Lev, D, Lerman-Sagie, T. Fetal central nervous system: MR imaging versus dedicated US – need for prospective, blind, comparative studies. Radiology 2004; 232 (1): 306; author reply pp. 306–7.CrossRefGoogle ScholarPubMed
Malinger, G, Ben-Sira, L, Lev, D, Ben-Aroya, Z, Kidron, D, Lerman-Sagie, T. Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obstet Gynecol 2004; 23 (4): 333–40.CrossRefGoogle ScholarPubMed
Fogliarini, C, Chaumoitre, K, Chapon, Fet al. Assessment of cortical maturation with prenatal MRI. Part II: abnormalities of cortical maturation. Eur Radiol 2005; 15 (9): 1781–9.CrossRefGoogle ScholarPubMed
Breeze, AC, Alexander, PM, Murdoch, EM, Missfelder-Lobos, HH, Hackett, GA, Lees, CC. Obstetric and neonatal outcomes in severe fetal ventriculomegaly. Prenat Diagn 2007; 27 (2): 124–9.CrossRefGoogle ScholarPubMed
Twining, P, Jaspan, T, Zuccollo, J. The outcome of fetal ventriculomegaly. Br J Radiol 1994; 67 (793): 26–31.CrossRefGoogle ScholarPubMed
Graham, E, Duhl, A, Ural, S, Allen, M, Blakemore, K, Witter, F. The degree of antenatal ventriculomegaly is related to pediatric neurological morbidity. J Matern Fetal Med 2001; 10 (4): 258–63.CrossRefGoogle ScholarPubMed
Bloom, SL, Bloom, DD, DellaNebbia, C, Martin, LB, Lucas, MJ, Twickler, DM. The developmental outcome of children with antenatal mild isolated ventriculomegaly. Obstet Gynecol 1997; 90 (1): 93–7.CrossRefGoogle ScholarPubMed
Laskin, MD, Kingdom, J, Toi, A, Chitayat, D, Ohlsson, A. Perinatal and neurodevelopmental outcome with isolated fetal ventriculomegaly: a systematic review. J Matern Fetal Neonatal Med 2005; 18 (5): 289–98.CrossRefGoogle ScholarPubMed
Kinzler, WL, Smulian, JC, McLean, DA, Guzman, ER, Vintzileos, AM. Outcome of prenatally diagnosed mild unilateral cerebral ventriculomegaly. J Ultrasound Med 2001; 20 (3): 257–262.CrossRefGoogle ScholarPubMed
Whitelaw, A. Endogenous fibrinolysis in neonatal cerebrospinal fluid. Eur J Pediatr 1993; 152 (11): 928–930.CrossRefGoogle ScholarPubMed
Whitelaw, A, Mowinckel, MC, Abildgaard, U. Low levels of plasminogen in cerebrospinal fluid after intraventricular haemorrhage: a limiting factor for clot lysis?Acta Paediatr 1995; 84 (8): 933–6.CrossRefGoogle ScholarPubMed
Whitelaw, A, Christie, S, Pople, I. Transforming growth factor-beta 1: a possible signal molecule for posthemorrhagic hydrocephalus?Pediatr Res 1999; 46 (5): 576–580.CrossRefGoogle ScholarPubMed
Whitelaw, A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol 2001; 6 (2): 135–46.CrossRefGoogle ScholarPubMed
Kaiser, AM, Whitelaw, AG. Cerebrospinal fluid pressure during post haemorrhagic ventricular dilatation in newborn infants. Arch Dis Child 1985; 60 (10): 920–4.CrossRefGoogle ScholarPubMed
Savman, K, Nilsson, UA, Blennow, M, Kjellmer, I, Whitelaw, A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res 2001; 49 (2): 208–12.CrossRefGoogle ScholarPubMed
Savman, K, Blennow, M, Hagberg, H, Tarkowski, E, Thoresen, M, Whitelaw, A. Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 2002; 91 (12): 1357–63.CrossRefGoogle ScholarPubMed
Vries, LS, Pierrat, V, Minami, T, Smet, M, Casaer, P. The role of short latency somatosensory evoked responses in infants with rapidly progressive ventricular dilatation. Neuropediatrics 1990; 21 (3): 136–9.CrossRefGoogle ScholarPubMed
Wozniak, M, McLone, DG, Raimondi, AJ. Micro- and macrovascular changes as the direct cause of parenchymal destruction in congenital murine hydrocephalus. J Neurosurg 1975; 43 (5): 535–45.CrossRefGoogle ScholarPubMed
Volpe, J. Neurology of the Newborn, 4th edn. Philadelphia, Saunders, 2001.Google Scholar
Boillat, CA, Jones, HC, Kaiser, GL, Harris, NG. Ultrastructural changes in the deep cortical pyramidal cells of infant rats with inherited hydrocephalus and the effect of shunt treatment. Exp Neurol 1997; 147 (2): 377–88.CrossRefGoogle ScholarPubMed
Lary, S, Vries, LS, Kaiser, A, Dubowitz, LM, Dubowitz, V. Auditory brain stem responses in infants with posthaemorrhagic ventricular dilatation. Arch Dis Child 1989; 64 (1 Spec No): 17–23.CrossRefGoogle ScholarPubMed
Vries, LS, Liem, KD, Dijk, Ket al. Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediatr 2002; 91 (2): 212–17.CrossRefGoogle ScholarPubMed
Dykes, FD, Dunbar, B, Lazarra, A, Ahmann, PA. Posthemorrhagic hydrocephalus in high-risk preterm infants: natural history, management, and long-term outcome. J Pediatr 1989; 114 (4 Pt 1): 611–18.CrossRefGoogle ScholarPubMed
Murphy, BP, Inder, TE, Rooks, Vet al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 2002; 87 (1): F37–41.CrossRefGoogle ScholarPubMed
Hudgins, RJ, Boydston, WR, Gilreath, CL. Treatment of posthemorrhagic hydrocephalus in the preterm infant with a ventricular access device. Pediatr Neurosurg 1998; 29 (6): 309–13.CrossRefGoogle ScholarPubMed
Davies, MW, Swaminathan, M, Chuang, SL, Betheras, FR. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed 2000; 82 (3): F218–23.CrossRefGoogle ScholarPubMed
Levene, MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child 1981; 56 (12): 900–4.CrossRefGoogle ScholarPubMed
Allan, WC, Holt, PJ, Sawyer, LR, Tito, AM, Meade, SK. Ventricular dilation after neonatal periventricular-intraventricular hemorrhage. Natural history and therapeutic implications. Am J Dis Child 1982; 136 (7): 589–93.CrossRefGoogle ScholarPubMed
London, DA, Carroll, BA, Enzmann, DR. Sonography of ventricular size and germinal matrix hemorrhage in premature infants. AJR Am J Roentgenol 1980; 135 (3): 559–64.CrossRefGoogle ScholarPubMed
Sauerbrei, EE, Digney, M, Harrison, PB, Cooperberg, PL. Ultrasonic evaluation of neonatal intracranial hemorrhage and its complications. Radiology 1981; 139 (3): 677–85.CrossRefGoogle ScholarPubMed
Skolnick, ML, Rosenbaum, AE, Matzuk, T, Guthkelch, AN, Heinz, ER. Detection of dilated cerebral ventricles in infants: a correlative study between ultrasound and computed tomography. Radiology 1979; 131 (2): 447–51.CrossRefGoogle ScholarPubMed
Levene, MI, Starte, DR. A longitudinal study of post-haemorrhagic ventricular dilatation in the newborn. Arch Dis Child 1981; 56 (12): 905–10.CrossRefGoogle ScholarPubMed
Helmke, K, Winkler, P. [Sonographically determined normal values of the intracranial ventricular system in the first year of life.] Monatsschr Kinderheilkd 1987; 135 (3): 148–52.Google ScholarPubMed
Poland, RL, Slovis, TL, Shankaran, S. Normal values for ventricular size as determined by real time sonographic techniques. Pediatr Radiol 1985; 15 (1): 12–14.CrossRefGoogle ScholarPubMed
Saliba, E, Bertrand, P, Gold, F, Vaillant, MC, Laugier, J. Area of lateral ventricles measured on cranial ultrasonography in preterm infants: reference range. Arch Dis Child 1990; 65 (10 Spec No): 1029–32.CrossRefGoogle ScholarPubMed
Levene, MI, Williams, JL, Fawer, CL. Ultrasound of the infant's brain. Clinics in Developmental Medicine, no. 92. Spastics International Medical Publications. 1985 Oxford, Blackwell.
Lipscomb, AP, Thorburn, RJ, Stewart, AL, Reynolds, EO, Hope, PL. Early treatment for rapidly progressive post-haemorrhagic hydrocephalus. Lancet 1983; 1 (8339): 1438–9.CrossRefGoogle ScholarPubMed
Allan, WC, Holt, PJ, Sawyer, LR, Tito, AM, Meade, SK.Ventricular dilatation after neonatal periventricular-intraventricular hemorrhage. Natural history and therapeutic implications. Am J Dis Child 1982; 136 (7): 589–93.CrossRefGoogle ScholarPubMed
Quisling, RG, Reeder, JD, Setzer, ES, Kande, JV. Temporal comparative analysis of computed tomography with ultrasound for intracranial hemorrhage in premature infants. Neuroradiology 1983; 24 (4): 205–11.CrossRefGoogle ScholarPubMed
Whitelaw, A, Pople, I, Cherian, S, Evans, D, Thoresen, M. Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics 2003; 111 (4 Pt 1): 759–765.CrossRefGoogle ScholarPubMed
Ventriculomegaly Trial Group. Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation. Arch Dis Child 1990; 65 (1 Spec No): 3–10.CrossRef
International PHVD Drug Trial Group. International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy. Lancet 1998; 352 (9126): 433–40.CrossRef
Brann, B St, Wofsy, C, Papile, , Angelus, P, Backstrom, C. Quantification of neonatal cerebral ventricular volume by real-time ultrasonography. In vivo validation of the cylindrical coordinate method. J Ultrasound Med 1990; 9 (1): 9–15.CrossRefGoogle ScholarPubMed
Kampmann, W, Walka, MM, Vogel, M, Obladen, M. 3-D sonographic volume measurement of the cerebral ventricular system: in vitro validation. Ultrasound Med Biol 1998; 24 (8): 1169–74.CrossRefGoogle ScholarPubMed
Nagdyman, N, Walka, MM, Kampmann, W, Stover, B, Obladen, M. 3-D ultrasound quantification of neonatal cerebral ventricles in different head positions. Ultrasound Med Biol 1999; 25 (6): 895–900.CrossRefGoogle ScholarPubMed
Csutak, R, Unterassinger, L, Rohrmeister, C, Weninger, M, Vergesslich, KA. Three-dimensional volume measurement of the lateral ventricles in preterm and term infants: evaluation of a standardised computer-assisted method in vivo. Pediatr Radiol 2003; 33 (2): 104–9.CrossRefGoogle ScholarPubMed
Haiden, N, Klebermass, K, Rucklinger, Eet al. 3-D ultrasonographic imaging of the cerebral ventricular system in very low birth weight infants. Ultrasound Med Biol 2005; 31 (1): 7–14.CrossRefGoogle ScholarPubMed
Gilmore, JH, Gerig, G, Specter, Bet al. Infant cerebral ventricle volume: a comparison of 3-D ultrasound and magnetic resonance imaging. Ultrasound Med Biol 2001; 27 (8): 1143–6.CrossRefGoogle ScholarPubMed
Chadduck, WM, Seibert, JJ, Adametz, J, Glasier, CM, Crabtree, M, Stansell, CA. Cranial Doppler ultrasonography correlates with criteria for ventriculoperitoneal shunting. Surg Neurol 1989; 31 (2): 122–8.CrossRefGoogle ScholarPubMed
Chadduck, WM, Crabtree, HM, Blankenship, JB, Adametz, J. Transcranial Doppler ultrasonography for the evaluation of shunt malfunction in pediatric patients. Childs Nerv Syst 1991; 7 (1): 27–30.CrossRefGoogle ScholarPubMed
Taylor, GA, Madsen, JR. Neonatal hydrocephalus: hemodynamic response to fontanelle compression – correlation with intracranial pressure and need for shunt placement. Radiology 1996; 201 (3): 685–9.CrossRefGoogle ScholarPubMed
Quinn, MW, Ando, Y, Levene, MI. Cerebral arterial and venous flow-velocity measurements in post-haemorrhagic ventricular dilatation and hydrocephalus. Dev Med Child Neurol 1992; 34 (10): 863–9.CrossRefGoogle ScholarPubMed
Pople, IK, Quinn, MW, Bayston, R, Hayward, RD. The Doppler pulsatility index as a screening test for blocked ventriculo-peritoneal shunts. Eur J Pediatr Surg 1991; 1 (Suppl 1): 27–9.CrossRefGoogle ScholarPubMed
Seibert, JJ, McCowan, TC, Chadduck, WMet al. Duplex pulsed Doppler US versus intracranial pressure in the neonate: clinical and experimental studies. Radiology 1989; 171 (1): 155–9.CrossRefGoogle ScholarPubMed
Quinn, MW, Levene, MI. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage. Arch Dis Child Fetal Neonatal Ed 1994; 70 (2): F158–9.CrossRefGoogle ScholarPubMed
Pople, IK. Doppler flow velocities in children with controlled hydrocephalus: reference values for the diagnosis of blocked cerebrospinal fluid shunts. Childs Nerv Syst 1992; 8 (3): 124–5.CrossRefGoogle Scholar
Weninger, M, Salzer, HR, Pollak, Aet al. External ventricular drainage for treatment of rapidly progressive posthemorrhagic hydrocephalus. Neurosurgery 1992; 31 (1): 52–7; discussion pp. 57–8.Google ScholarPubMed
Rhodes, TT, Edwards, WH, Saunders, RLet al. External ventricular drainage for initial treatment of neonatal posthemorrhagic hydrocephalus: surgical and neurodevelopmental outcome. Pediatr Neurosci 1987; 13 (5): 255–62.CrossRefGoogle ScholarPubMed
Brouwer, AJ, Groenendaal, F, Hoogen, Aet al. The incidence of infections of ventricular reservoirs in the treatment of post haemorrhagic ventricular dilatation: a retrospective study (1992–2003). Arch Dis Child Fetal Neonatal Ed 2007; 92 (1): F41–3.CrossRefGoogle Scholar
Gaskill, SJ, Marlin, AE, Rivera, S. The subcutaneous ventricular reservoir: an effective treatment for posthemorrhagic hydrocephalus. Childs Nerv Syst 1988; 4 (5): 291–5.Google ScholarPubMed
McComb, JG, Ramos, AD, Platzker, AC, Henderson, DJ, Segall, HD. Management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant with a subcutaneous ventricular catheter reservoir. Neurosurgery 1983; 13 (3): 295–300.CrossRefGoogle ScholarPubMed
Boynton, BR, Boynton, CA, Merritt, TA, Vaucher, YE, James, HE, Bejar, RF. Ventriculoperitoneal shunts in low birth weight infants with intracranial hemorrhage: neurodevelopmental outcome. Neurosurgery 1986; 18 (2): 141–5.CrossRefGoogle ScholarPubMed
Balthasar, AJ, Kort, H, Cornips, EM, Beuls, EA, Weber, JW, Vles, JS. Analysis of the success and failure of endoscopic third ventriculostomy in infants less than 1 year of age. Childs Nerv Syst 2007; 23 (2): 151–5.CrossRefGoogle ScholarPubMed
Koch-Wiewrodt, D, Wagner, W. Success and failure of endoscopic third ventriculostomy in young infants: are there different age distributions?Childs Nerv Syst 2006; 22 (12): 1537–41.CrossRefGoogle ScholarPubMed
Haines, SJ, Lapointe, M. Fibrinolytic agents in the management of posthemorrhagic hydrocephalus in preterm infants: the evidence. Childs Nerv Syst 1999; 15 (5): 226–34.CrossRefGoogle ScholarPubMed
Anwar, M, Kadam, S, Hiatt, IM, Hegyi, T. Serial lumbar punctures in prevention of post-hemorrhagic hydrocephalus in preterm infants. J Pediatr 1985; 107 (3): 446–50.CrossRefGoogle ScholarPubMed
Mantovani, JF, Pasternak, JF, Mathew, OPet al. Failure of daily lumbar punctures to prevent the development of hydrocephalus following intraventricular hemorrhage. J Pediatr 1980; 97 (2): 278–81.CrossRefGoogle ScholarPubMed
Kennedy, CR, Ayers, S, Campbell, MJ, Elbourne, D, Hope, P, Johnson, A. Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 2001; 108 (3): 597–607.CrossRefGoogle ScholarPubMed
Luciano, R, Velardi, F, Romagnoli, C, Papacci, P, Stefano, V, Tortorolo, G. Failure of fibrinolytic endoventricular treatment to prevent neonatal post-haemorrhagic hydrocephalus. A case-control trial. Childs Nerv Syst 1997; 13 (2): 73–6.CrossRefGoogle ScholarPubMed
Whitelaw, A, Cherian, S, Thoresen, M, Pople, I. Posthaemorrhagic ventricular dilatation: new mechanisms and new treatment. Acta Paediatr Suppl 2004; 93 (444): 11–14.CrossRefGoogle ScholarPubMed
Whitelaw, A, Evans, D, Carter, Met al. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 2007; 119 (5): e1071–8.CrossRefGoogle ScholarPubMed
Fernell, E, Hagberg, G, Hagberg, B. Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Arch Dis Child Fetal Neonatal Ed 1994; 70 (2): F123–8.CrossRefGoogle ScholarPubMed
Ventricluomegaly Trial Group. Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child Fetal Neonatal Ed 1994; 70 (2): F129–36.CrossRef
Hoppe-Hirsch, E, Laroussinie, F, Brunet, Let al. Late outcome of the surgical treatment of hydrocephalus. Childs Nerv Syst 1998; 14 (3): 97–9.CrossRefGoogle ScholarPubMed
Cooke, RW. Determinants of major handicap in post-haemorrhagic hydrocephalus. Arch Dis Child 1987; 62 (5): 504–6.CrossRefGoogle ScholarPubMed
Vries, LS, Rademaker, KJ, Groenendaal, Fet al. Correlation between neonatal cranial ultrasound, MRI in infancy and neurodevelopmental outcome in infants with a large intraventricular haemorrhage with or without unilateral parenchymal involvement. Neuropediatrics 1998; 29 (4): 180–8.CrossRefGoogle ScholarPubMed
Futagi, Y, Suzuki, Y, Toribe, Y, Nakano, H, Morimoto, K. Neurodevelopmental outcome in children with posthemorrhagic hydrocephalus. Pediatr Neurol 2005; 33 (1): 26–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The baby with an enlarging head or ventriculomegaly
    • By Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The baby with an enlarging head or ventriculomegaly
    • By Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The baby with an enlarging head or ventriculomegaly
    • By Cornelia F. Hagmann, Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Janet M. Rennie, Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals, Nicola J. Robertson, Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
  • Edited by Janet M. Rennie, University College London, Cornelia F. Hagmann, University College London, Nicola J. Robertson, University College London
  • Book: Neonatal Cerebral Investigation
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544750.013
Available formats
×