Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T15:48:05.323Z Has data issue: false hasContentIssue false

9 - Noisy output: escape rate and soft threshold

Published online by Cambridge University Press:  05 August 2014

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Richard Naud
Affiliation:
University of Ottawa
Liam Paninski
Affiliation:
Columbia University, New York
Get access

Summary

There are various ways to introduce noise in formal spiking neuron models. In the previous chapter we focused on input noise in the form of stochastic spike arrival. In this chapter we assume that the input is known or can be estimated. Stochasticity arises at the level of the neuronal spike generation, i.e., at the moment of the output. The noisy output can be interpreted as arising from a “soft” threshold that enables an “escape” of the membrane potential across the threshold even before the threshold is reached. Models with a noisy threshold or escape noise are the basis of Generalized Linear Models which will be used in Chapters 10 and 11 as a powerful statistical tool for modeling spike-train data.

In Section 9.1, the notion of escape noise is introduced. In Section 9.2 we determine the likelihood that a specific spike train is generated by a neuron model with escape noise. In Section 9.3 we apply the escape noise formalism to the Spike Response Model already encountered in Chapter 6 and show an interesting link to the renewal statistics encountered in Chapter 7. The escape rate formalism gives rise to an efficient description of noise processes, independently of their biophysical nature, be it channel noise or stochastic spike arrival. Indeed, as shown in Section 9.4, noisy input models and noisy output models can behave rather similarly.

Type
Chapter
Information
Neuronal Dynamics
From Single Neurons to Networks and Models of Cognition
, pp. 224 - 242
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×