Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T11:02:34.351Z Has data issue: false hasContentIssue false

4 - Bell's inequality from the contextual probabilistic viewpoint

from Part II - Quantum probability

Published online by Cambridge University Press:  04 August 2010

Alisa Bokulich
Affiliation:
Boston University
Gregg Jaeger
Affiliation:
Boston University
Get access

Summary

Introduction

Quantum information and quantum foundations

Quantum information science is about the processing of information by the exploitation of some distinguishing features of quantum systems, such as electrons, photons, ions. In recent years a lot has been promised in the domain of quantum information. In quantum computing it was promised that NP-problems would be solved in polynomial time. In quantum cryptography there were claims that protocols would have practically 100% security. At the moment it is too early to say anything definitive regarding the final results of this great project.

In quantum computing a few quantum algorithms and developed devices, “quantum pre-computers” with a few quantum registers, were created. However, difficulties could no longer be ignored. For some reason it was impossible to create numerous quantum algorithms that could be applied to various problems. Up to now the whole project is based on two or three types of algorithm, and among them one, namely, the algorithms for prime factorization, might be interesting for real-world application. There is a general tendency to consider this situation with quantum algorithms as an occasional difficulty. But, as the years pass, one might start to think that there is something fundamentally wrong. The same feelings are induced by developments in quantum hardware. It seems that the complexity of the problem of creation of a device with a large number N of quantum registers increases extremely non-linearly with increasing N. In quantum cryptography the situation is opposite to that of quantum computing. There were tremendous successes in the development of technologies for production and transmission of quantum information, especially pairs of entangled photons.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×