Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T13:05:36.394Z Has data issue: false hasContentIssue false

5 - Probabilistic theories: What is special about Quantum Mechanics?

from Part II - Quantum probability

Published online by Cambridge University Press:  04 August 2010

Alisa Bokulich
Affiliation:
Boston University
Gregg Jaeger
Affiliation:
Boston University
Get access

Summary

To my friend and mentor, Professor Attilio Rigamonti.

Unperformed experiments have no results.

Asher Peres

Introduction

More than a century after its birth, quantum mechanics (QM) remains mysterious. We still don't have general principles from which to derive its remarkable mathematical framework, as happened for the amazing Lorentz transformations, which were rederived by Einstein from the invariance of physical laws in inertial frames and from the constancy of the speed of light.

Despite the utmost relevance of the problem of deriving QM from operational principles, research efforts in this direction have been sporadic. The deepest of the early attacks on the problem were the works of Birkhoff, von Neumann, Jordan, and Wigner, attempting to derive QM from a set of axioms with as much physical significance as possible. The general idea in Ref. is to regard QM as a new kind of prepositional calculus, a proposal that spawned the research line of quantum logic, which is based on von Neumann's observation that the two-valued observables – represented in his formulation of QM by orthogonal projection operators – constitute a kind of “logic” of experimental propositions. After a hiatus of two decades of neglect, interest in quantum logic was revived by Varadarajan, and most notably by Mackey, who axiomatized QM within an operational framework, with the single exception of an admittedly ad hoc postulate, which represents the propositional calculus mathematically in the form of an orthomodular lattice. The most significant extension of Mackey's work is the general representation theorem of Piron.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×