Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: June 2018

A. W. F. Edwards and the Origin of Bayesian Phylogenetics

from Part 2 - Commentaries
Chen, M.-H., Kuo, L., and Lewis, P. 2014. Bayesian Phylogenetics: Methods, Algorithms, and Applications. London: Chapman & Hall/CRC.
Drummond, A. J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
Edwards, A. W. F. 1972. Likelihood. Cambridge: Cambridge University Press.
Edwards, A. W. F. 2004. Comment on Bellhouse, David R. ‘The Reverend Thomas Bayes FRS: a biography to celebrate the tercentenary of his birth’. Statistical Science 19, 3437.
Felsenstein, J. 1973a. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25, 471492.
Felsenstein, J. 1973b. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22, 240249.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA. Sinauer Associates.
Felsenstein, J. and Kishino, H. 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Systematic Biology 42, 193200.
Fienberg, S. E. 2006. When did Bayesian inference become “Bayesian”? Bayesian Analysis 1, 140.
Guindon, S. and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their application. Biometrika 57, 97109.
Hillis, D. M. and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182192.
Horai, S., Satta, Y., Hayasaka, K., et al. 1992. Man’s place in Hominoidea revealed by mitochondrial DNA genealogy [Erratum J Mol Evol 1993; 37:89]. Journal of Molecular Evolution 35, 3243.
Huelsenbeck, J. P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.
Kendall, D. G. 1948. On the generalized birth-and-death process. Annals of Mathematical Statistics 19, 115.
Kingman, J. F. C. 1982. The coalescent. Stochastic Processes and their Applications 13, 235248.
Kishino, H. and Hasegawa, M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29, 170179.
Lartillot, N. and Poujol, R. 2011. A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Molecular Biology and Evolution 28, 729744.
Lartillot, N., Lepage, T., and Blanquart, S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 22862288.
Lewis, P. O., Holder, M. T., and Holsinger, K. E. 2005. Polytomies and Bayesian phylogenetic inference. Systematic Biology 54, 241253.
Li, S., Pearl, D., and Doss, H. 2000. Phylogenetic tree reconstruction using Markov chain Monte Carlo. Journal of the American Statistical Association 95, 493508.
Mau, B. and Newton, M. A. 1997. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics 6, 122131.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 10871092.
Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. In Statistical Decision Theory and Related Topics, eds. Gupta, S. S. and Yackel, J., New York: Academic Press, 127.
Rannala, B. and Yang, Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304311.
Ronquist, F., Teslenko, M., van der Mark, P., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.
Smouse, P. E. and Li, W.-H. 1987. Likelihood analysis of mitochondrial restriction-cleavage patterns for the human-chimpanzee-gorilla trichotomy. Evolution 41, 11621176.
Solis-Lemus, C., Knowles, L. L. and Ane, C. 2015. Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution 69, 492507.
Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of Theoretical Biology 267, 396404.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.
Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. 1996. In Molecular Systematics, eds. Hillis, D. M., Moritz, C., and Mable, B. K., Sunderland, MA: Sinauer Associates, 407514.
Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge: Cambridge University Press.
Yang, Z. 1997. How often do wrong models produce better phylogenies? Molecular Biology and Evolution 14, 105108.
Yang, Z. 2007. Fair-balance paradox, star-tree paradox and Bayesian phylogenetics. Molecular Biology and Evolution 24, 16391655.
Yang, Z. 2014. Molecular Evolution: A Statistical Approach. Oxford: Oxford University Press.
Yang, Z. 2016. In Encyclopedia of Evolutionary Biology, ed. Kliman, R. M., New York: Elsevier, 137140,
Yang, Z. and Roberts, D. 1995. On the use of nucleic acid sequences to infer early branchings in the tree of life. Molecular Biology and Evolution 12, 451458.
Yang, Z. and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo Method. Molecular Biology and Evolution 14, 717724.
Yang, Z. and Rannala, B. 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Systematic Biology 54, 455470.
Yang, Z. and Zhu, T. 2018. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proceedings of the National Academy of Sciences of the USA 115, 18541859.
Zharkikh, A. and Li, W.-H. 1992. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Molecular Biology and Evolution 9, 11191147.
Zwickl, D. J. and Holder, M. T. 2004. Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Systematic Biology 53, 877888.