Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-30T18:49:41.132Z Has data issue: false hasContentIssue false

Section 1 - Basic Principles

Published online by Cambridge University Press:  23 July 2018

Christoph Lees
Affiliation:
Imperial College London
Gerard H. A. Visser
Affiliation:
Universiteit Utrecht, The Netherlands
Kurt Hecher
Affiliation:
University Medical Centre, Hamburg
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Gardosi, J, Chang, A, Kalyan, B, Sahota, D, Symonds, EM. Customised antenatal growth charts. Lancet 1992; 339(8788):283–7.Google Scholar
Pilliod, RA, Cheng, YW, Snowden, JM, Doss, AE, Caughey, AB. The risk of intrauterine fetal death in the small-for-gestational-age fetus. Am J Obstet Gynecol 2012;207(4):318.e1, 318.e6.Google Scholar
Gardosi, J, Madurasinghe, V, Williams, M, Malik, A, Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ 2013;346:f108.CrossRefGoogle ScholarPubMed
McIntire, DD, Bloom, SL, Casey, BM, Leveno, KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 1999;340(16):1234–8.Google Scholar
Henriksen, T. The macrosomic fetus: A challenge in current obstetrics. Acta Obstet Gynecol Scand 2008;87(2):134–45.Google Scholar
Zhang, X, Decker, A, Platt, RW, Kramer, MS. How big is too big? The perinatal consequences of fetal macrosomia. Am J Obstet Gynecol 2008;198(5):517.e1, 517.e6.Google Scholar
Glinianaia, SV, Rankin, J, Pearce, MS, Parker, L, Pless-Mulloli, T. Stillbirth and infant mortality in singletons by cause of death, birthweight, gestational age and birthweight-for-gestation, Newcastle upon Tyne 1961–2000. Paediatr Perinat Epidemiol 2010;24(4):331–42.Google Scholar
Vangen, S, Stoltenberg, C, Skjaerven, R, Magnus, P, Harris, JR, Stray-Pedersen, B. The heavier the better? Birthweight and perinatal mortality in different ethnic groups. Int J Epidemiol 2002;31(3):654–60.Google Scholar
Francis, JH, Permezel, M, Davey, MA. Perinatal mortality by birthweight centile. Aust N Z J Obstet Gynaecol 2014;54(4):354–9.Google Scholar
Moraitis, AA, Wood, AM, Fleming, M, Smith, GC. Birth weight percentile and the risk of term perinatal death. Obstet Gynecol 2014;124(2 Pt 1):274–83.Google Scholar
Vasak, B, Koenen, SV, Koster, MP, Hukkelhoven, CW, Franx, A, Hanson, MA, Visser, GH. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol 2015;45(2):162–7.CrossRefGoogle ScholarPubMed
Jarvis, S, Glinianaia, SV, Torrioli, MG, et al. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 2003;362(9390):1106–11.Google Scholar
Houle, B, Clark, SJ, Kahn, K, Tollman, S, Yamin, A. The impacts of maternal mortality and cause of death on children’s risk of dying in rural South Africa: Evidence from a population based surveillance study (1992–2013). Reprod Health 2015;12 Suppl 1:S7,4755-12-S1-S7. Epub 2015 May 6.CrossRefGoogle ScholarPubMed
Moucheraud, C, Worku, A, Molla, M, Finlay, JE, Leaning, J, Yamin, A. Consequences of maternal mortality on infant and child survival: A 25-year longitudinal analysis in Butajira Ethiopia (1987–2011). Reprod Health 2015;12 Suppl 1:S4,4755-12-S1-S4. Epub 2015 May 6.Google Scholar
Morales-Rosello, J, Khalil, A, Morlando, M, Papageorghiou, A, Bhide, A, Thilaganathan, B. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol 2014;43(3):303–10.Google Scholar
Akolekar, R, Syngelaki, A, Gallo, DM, Poon, LC, Nicolaides, KH. Umbilical and fetal middle cerebral artery Doppler at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015;46(1):8292.Google Scholar
Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2(8663):577–80.Google Scholar
Barker, DJ. Fetal origins of coronary heart disease. BMJ 1995;311(6998):171–4.Google Scholar
Lawlor, DA, Ronalds, G, Clark, H, Smith, GD, Leon, DA. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: Findings from the Aberdeen Children of the 1950s prospective cohort study. Circulation 2005;112(10):1414–18.Google Scholar
Osmond, C, Kajantie, E, Forsen, TJ, Eriksson, JG, Barker, DJ. Infant growth and stroke in adult life: The Helsinki birth cohort study. Stroke 2007;38(2):264–70.Google Scholar
Hales, CN, Barker, DJ, Clark, PM, Cox, LJ, Fall, C, Osmond, C, Winter, PD. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991;303(6809):1019–22.CrossRefGoogle ScholarPubMed
Gardosi, J, Francis, A. Adverse pregnancy outcome and association with small for gestational age birthweight by customized and population-based percentiles. Am J Obstet Gynecol 2009;201(1):28.e1,28.e8.CrossRefGoogle ScholarPubMed
Boers, KE, Vijgen, SM, Bijlenga, D, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: Randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087. doi:10.1136/bmj.c7087.Google Scholar
Froen, JF, Gardosi, JO, Thurmann, A, Francis, A, Stray-Pedersen, B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand 2004;83(9):801–7.CrossRefGoogle ScholarPubMed
Singh, T, Leslie, K, Bhide, A, D’Antonio, F, Thilaganathan, B. Role of second-trimester uterine artery Doppler in assessing stillbirth risk. Obstet Gynecol 2012;119(2 Pt 1):256–61.Google Scholar
Alfirevic, Z, Stampalija, T, Gyte, GM. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 2013; 11:CD007529.Google Scholar
Cruz-Martinez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011;117(3):618–26.Google Scholar
Morales-Rosello, J, Khalil, A, Morlando, M, Bhide, A, Papageorghiou, A, Thilaganathan, B. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 2015;45(2):156–61.Google Scholar
Prior, T, Mullins, E, Bennett, P, Kumar, S. Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: A prospective observational study. Am J Obstet Gynecol 2013;208(2):124.e1,124.e6.Google Scholar
Bricker, L, Medley, N, Pratt, JJ. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst Rev 2015;6:CD001451.Google Scholar
Warrander, LK, Batra, G, Bernatavicius, G, et al. Maternal perception of reduced fetal movements is associated with altered placental structure and function. PLoS One 2012;7(4):e34851.Google Scholar
Saastad, E, Tveit, JV, Flenady, V, Stray-Pedersen, B, Fretts, RC, Bordahl, PE, Froen, JF. Implementation of uniform information on fetal movement in a Norwegian population reduced delayed reporting of decreased fetal movement and stillbirths in primiparous women – a clinical quality improvement. BMC Res Notes 2010;3(1):2, doi: 10.1186/1756-0500-3-2.Google Scholar

References

Redman, CW, Sargent, IL, Staff, AC. IFPA Senior Award Lecture: Making sense of preeclampsia – two placental causes of preeclampsia? Placenta 2014;35 Suppl:S20–5.Google Scholar
Poon, LC, Syngelaki, A, Akolekar, R, Lai, J, Nicolaides, KH. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther 2013;33(1):1627.Google Scholar
Akolekar, R, Syngelaki, A, Poon, L, Wright, D, Nicolaides, KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013;33(1):815.CrossRefGoogle ScholarPubMed
Ganzevoort, W, Rep, A, Bonsel, GJ, De Vries, JI, Wolf, H, for the Pi. Dynamics and incidence patterns of maternal complications in early onset hypertension of pregnancy. BJOG 2007;114(6):741–50.Google Scholar
Rasmussen, S, Irgens, LM. Fetal growth and body proportion in preeclampsia. Obstet Gynecol 2003;101(3):575–83.Google Scholar
Melchiorre, K, Sharma, R, Thilaganathan, B. Cardiovascular implications in preeclampsia: An overview. Circulation 2014;130(8):703–14.Google Scholar
Roberts, JM, Cooper, DW. Pathogenesis and genetics of pre-eclampsia. Lancet 2001;357(9249):53–6.Google Scholar
Redman, CW, Sacks, GP, Sargent, IL. Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999;180(2 Pt 1):499506.Google Scholar
Pathak, S, Lees, CC, Hackett, G, Jessop, F, Sebire, NJ. Frequency and clinical significance of placental histological lesions in an unselected population at or near term. Virchows Arch 2011;459(6):565–72.Google Scholar
Kloosterman, GJ. On intrauterine growth – the significance of prenatal care. Int J Gynaecol Obstet 1970;8(6 part 2):895912.Google Scholar
Unterscheider, J, Daly, S, Geary, MP, Kennelly, MM, McAuliffe, FM, O’Donoghue, K, et al. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO Study. Am J Obstet Gynecol 2013;208(4):290 e1–6.Google Scholar
Hecher, K, Bilardo, CM, Stigter, RH, Ville, Y, Hackeloer, BJ, Kok, HJ, et al. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet Gynecol 2001;18(6):564–70.Google Scholar
Oros, D, Figueras, F, Cruz-Martinez, R, Meler, E, Munmany, M, Gratacos, E. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol 2011;37(2):191–5.Google Scholar
Ferrazzi, E, Bozzo, M, Rigano, S, Bellotti, M, Morabito, A, Pardi, G, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002;19(2):140–6.CrossRefGoogle ScholarPubMed
Baschat, AA, Cosmi, E, Bilardo, CM, Wolf, H, Berg, C, Rigano, S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109(2 Pt 1):253–61.Google Scholar
Baschat, AA, Gembruch, U, Harman, CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001;18(6):571–7.Google Scholar
Del Rio, M, Martinez, JM, Figueras, F, Bennasar, M, Olivella, A, Palacio, M, et al. Doppler assessment of the aortic isthmus and perinatal outcome in preterm fetuses with severe intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;31(1):41–7.Google Scholar
Cruz-Martinez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011;117(3):618–26.Google Scholar
Flood, K, Unterscheider, J, Daly, S, Geary, MP, Kennelly, MM, McAuliffe, FM, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: Results of the multicenter PORTO Study. Am J Obstet Gynecol 2014;211(3):288 e1–5.Google Scholar
Morales-Rosello, J, Khalil, A, Morlando, M, Papageorghiou, A, Bhide, A, Thilaganathan, B. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol 2014;43(3):303–10.Google Scholar
Bilardo, CM, Wolf, H, Stigter, RH, Ville, Y, Baez, E, Visser, GH, et al. Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet Gynecol 2004;23(2):119–25.Google Scholar
Chappell, LC, Duckworth, S, Seed, PT, Griffin, M, Myers, J, Mackillop, L, et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: A prospective multicenter study. Circulation 2013;128(19):2121–31.Google Scholar
Benton, SJ, Hu, Y, Xie, F, Kupfer, K, Lee, SW, Magee, LA, et al. Can placental growth factor in maternal circulation identify fetuses with placental intrauterine growth restriction? Am J Obstet Gynecol 2012;206(2):163 e1–7.Google Scholar
Calabrese, S, Cardellicchio, M, Mazzocco, M, Taricco, E, Martinelli, A, Cetin, I. Placental growth factor (PLGF) maternal circulating levels in normal pregnancies and in pregnancies at risk of developing placental insufficiency complications. Reprod Sci 2012;19(3):211A–2A.Google Scholar
Chaiworapongsa, T, Romero, R, Korzeniewski, SJ, Kusanovic, JP, Soto, E, Hernandez-Andrade, E, et al. Prediction of stillbirth and late-onset preeclampsia. Reprod Sci 2012;19(3):90A–1A.Google Scholar
Griffin, M, Seed, P, Webster, L, Tarft, H, Chappell, L, Shennan, A. Placental growth factor (PLGF) and ultrasound parameters for predicting the small for gestational age infant (SGA) in suspected small for gestational age: Pelican FGR study. J Matern Fetal Neonatal Med 2014;27:121–2.Google Scholar
Arduini, D, Rizzo, G, Caforio, L, Boccolini, MR, Romanini, C, Mancuso, S. Behavioural state transitions in healthy and growth retarded fetuses. Early Hum Dev 1989;19(3):155–65.Google Scholar
Groom, KM, North, RA, Poppe, KK, Sadler, L, McCowan, LM. The association between customised small for gestational age infants and pre-eclampsia or gestational hypertension varies with gestation at delivery. BJOG 2007;114(4):478–84.Google Scholar
Ganzevoort, W, Rep, A, Bonsel, GJ, Fetter, WP, Van Sonderen, L, De Vries, JI, et al. A randomised controlled trial comparing two temporising management strategies, one with and one without plasma volume expansion, for severe and early onset pre-eclampsia. BJOG 2005;112(10):1358–68.Google Scholar
Dektas, B, Sibai, B, Habli, M. Pregnancies complicated with fetal growth restriction (FGR) are associated with a high rate of subsequent development of preeclampsia? Am J Obstet Gynecol 2013;208(1):S179–S80.CrossRefGoogle Scholar
Gordijn, SJ, Beune, IM, Thilaganathan, B, Papageorghiou, A, Baschat, AA, Baker, PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016;48(3):333–9.Google Scholar
Vasak, B, Koenen, SV, Koster, MP, Hukkelhoven, CW, Franx, A, Hanson, MA, et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol 2014.Google Scholar
Villar, J, Papageorghiou, AT, Pang, R, Ohuma, EO, Ismail, LC, Barros, FC, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21 Project: The Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diabetes Endocrinol 2014.Google Scholar
Papageorghiou, AT, Ohuma, EO, Altman, DG, Todros, T, Cheikh, Ismail, L, Lambert, A, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014;384(9946):869–79.Google Scholar

References

Lees, C, Marlow, N, Arabin, B, Bilardo, CM, Brezinka, C, Derks, JB, Duvekot, J, Frusca, T, Diemert, A, Ferrazzi, E, Ganzevoort, W, Hecher, K, Martinelli, P, Ostermayer, E, Papageorghiou, AT, Schlembach, D, Schneider, KTM, Thilaganathan, B, Todros, T, Van Wassenaer Leemhuis, A, Valcamonico, A, Visser, GHA, Wolf, H. Perinatal morbidity and mortality in early‐onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42(4):400–8. doi:10.1002/uog.13190.Google Scholar
Mongelli, M, Gardosi, J. Fetal growth velocity. Lancet 1999;353(9170):2156. doi:10.1016/S0140-6736(05)75590–2.Google Scholar
Lin, CC, Santolaya-Forgas, J. Current concepts of fetal growth restriction: Part I. Causes, classification, and pathophysiology.Obstet Gynecol 1998;92(6):1044–55.Google Scholar
Papageorghiou, AT, Ohuma, EO, Altman, DG, Todros, T. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014 Sep 6;384(9946):869–79. doi: 10.1016/S0140-6736(14)61490–2.Google Scholar
Gardosi, J, Figueras, F, Clausson, B, Francis, A. The customised growth potential: An international research tool to study the epidemiology of fetal growth. Paediatr Perinat Epidemiol 2011;25(1):210. doi:10.1111/j.1365-3016.2010.01166.x.Google Scholar
Unterscheider, J, Daly, S, Geary, MP, Kennelly, MM, McAuliffe, FM, O’Donoghue, K, Hunter, A, Morrison, JJ, Burke, G, Dicker, P, Tully, EC, Malone, FD. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO study. Am J Obstet Gynecol 2013;208(4):290.e1-.e6. doi:10.1016/j.ajog.2013.02.007.Google Scholar
Yaron, Y, Heifetz, S, Ochshorn, Y, Lehavi, O, Orr-Urtreger, A. Decreased first trimester PAPP-A is a predictor of adverse pregnancy outcome. Prenat Diagn 2002;22(9):778–82. doi:10.1002/pd.407.Google Scholar
Goetzl, L, Krantz, D, Group, NBS. Low first-trimester PAPP-a identifies pregnancies requiring IUGR screening. Am J Obstet Gynecol December 2003;189(6): Supplement, Page S215Google Scholar
Krantz, D, Goetz, L, Simpson, JL. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am J Obstet Gynecol 2004 Oct;191(4):1452–8.Google Scholar
Albaiges, G. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks’ gestation. Obstet Gynecol 2000;96(4):559–64.Google Scholar
Campbell, S, Black, RS, Lees, CC, Armstrong, V, Peacock, JL. Doppler ultrasound of the maternal uterine arteries: Disappearance of abnormal waveforms and relation to birthweight and pregnancy outcome. http://dxdoiorg/101080/j1600-04122000079008631x. 2009;79(8):631–4. doi:10.1080/j.1600-0412.2000.079008631.xGoogle Scholar
Kingdom, JCP, Burrell, SJ, Kaufmann, P. Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet Gynecol 1997;9(4):271–86. doi:10.1046/j.1469-0705.1997.09040271.x.Google Scholar
Ott, WJ. Diagnosis of intrauterine growth restriction: Comparison of ultrasound parameters. Am J Perinatol 2002;19(3):133–7. doi:10.1055/s-2002–25313.Google Scholar
Rowlands, DJ, Vyas, SK. Longitudinal study of fetal middle cerebral artery flow velocity waveforms preceding fetal death. BJOG 1995;102(11):888–90. doi:10.1111/j.1471-0528.1995.tb10876.x.Google Scholar
Baschat, AA, Hecher, K. Fetal growth restriction due to placental disease. Semin Perinatol 2004;28(1):6780.Google Scholar
Lees, CC, Marlow, N, Van Wassenaer-Leemhuis, A, Arabin, B, Bilardo, CM, Brezinka, C, Calvert, S, Derks, JB, Diemert, A, Duvekot, JJ, Ferrazzi, E, Frusca, T, Ganzevoort, W, Hecher, K, Martinelli, P, Ostermayer, E, Papageorghiou, AT, Schlembach, D, Schneider, KTM, Thilaganathan, B, Todros, T, Valcamonico, A, Visser, GHA, Wolf, H. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): A randomised trial. Lancet March 2015. doi:10.1016/S0140-6736(14)62049-3.Google Scholar
Ferrazzi, E, Bozzo, M, Rigano, S, Bellotti, M, Morabito, A, Pardi, G, Battaglia, FC, Galan, HL. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth‐restricted fetus. Ultrasound Obstet Gynecol 2002;19(2):140–6. doi:10.1046/j.0960-7692.2002.00627.x.Google Scholar
Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, K. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 1995;91(1):129–38. doi:10.1161/01.CIR.91.1.129.Google Scholar
Vergani, P, Roncaglia, N, Locatelli, A, Andreotti, C, Crippa, I, Pezzullo, JC, Ghidini, A. Antenatal predictors of neonatal outcome in fetal growth restriction with absent end-diastolic flow in the umbilical artery. Am J Obstet Gynecol 2005;193(3 Pt 2):1213–18. doi:10.1016/j.ajog.2005.07.032.Google Scholar
Khoury, MJ, Erickson, JD, Cordero, JF, McCarthy, BJ. Congenital malformations and intrauterine growth retardation: A population study. Pediatrics 1988;82(1):8390.Google Scholar
Rosenthal, GL, Wilson, PD, Permutt, T, Boughman, JA, Ferencz, C. Birth weight and cardiovascular malformations: A population-based study. The Baltimore-Washington Infant Study. Am J Epidemiol 1991;133(12):1273–81.Google Scholar
Rosenthal, GL. Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol 1996;143(5):505–13.Google Scholar
Spiers, PS. Does growth retardation predispose the fetus to congenital malformation? Lancet 1982;1(8267):312–14.Google Scholar
Capper, A. The fate and development of the immature and of the premature child: A clinical study. Review of the Literature and Study of Cerebral Hemorrhage in the New-Born Infant. Am J Dis Child 1928;35(2):262–88. doi:10.1001/archpedi.1928.01920200094012.Google Scholar
Kumar, S. Handbook of Fetal Medicine. Cambridge University Press, 2010.Google Scholar
Hussain, U, Daemen, A, Missfelder-Lobos, H, De, Moor, B, Timmerman, D, Bourne, T, Lees, C. Umbilical artery pulsatility index and fetal abdominal circumference in isolated gastroschisis. Ultrasound Obstet Gynecol 2011;38(5):538–42. doi:10.1002/uog.8947.Google Scholar
Carroll, SG, Kuo, PY, Kyle, PM, Soothill, PW. Fetal protein loss in gastroschisis as an explanation of associated morbidity. Am J Obstet Gynecol 2001;184(6):1297–301. doi:10.1067/mob.2001.114031.Google Scholar
Norman, SM, Odibo, AO, Longman, RE, Roehl, KA, Macones, GA, Cahill, AG. Neural tube defects and associated low birth weight. Am J Perinatol 2012;29(6):473–6. doi:10.1055/s-0032-1304830.Google Scholar
Scott, KE, Usher, R. Fetal malnutrition: Its incidence, causes, and effects. Am J Obstet Gynecol 1966;94(7):951–63.Google Scholar
Snijders, RJ, Sherrod, C, Gosden, CM, Nicolaides, KH. Fetal growth retardation: Associated malformations and chromosomal abnormalities. Am J Obstet Gynecol 1993;168(2):547–55.Google Scholar
Wilkins-Haug, L, Roberts, DJ, Morton, CC. Confined placental mosaicism and intrauterine growth retardation: A case-control analysis of placentas at delivery. Am J Obstet Gynecol 1995;172(1):4450. doi:10.1016/0002-9378(95)90082–9.Google Scholar
Boghassian, NS et al. Anthropometric charts for infants with trisomies 21, 18, or 13 born between 22 weeks gestation and term: The VON charts. Am J Med Genet A 2012 Feb;158A(2):322–32. doi: 10.1002/ajmg.a.34423. Epub 2012 Jan 13.Google Scholar
Morris, JK, Cole, TJ, Springett, AL, Dennis, J. Down syndrome birth weight in England and Wales: Implications for clinical practice. Am J Med Genet A 2015;167A(12):3070–5. doi:10.1002/ajmg.a.37366.Google Scholar
Yeo, L, Guzman, ER, Day-Salvatore, D, Walters, C, Chavez, D, Vintzileos, AM. Prenatal detection of fetal trisomy 18 through abnormal sonographic features. J Ultrasound Med 2003;22(6):581–90quiz591–2.Google Scholar
Snijders, RJ, Sebire, NJ, Nayar, R, Souka, A, Nicolaides, KH. Increased nuchal translucency in trisomy 13 fetuses at 10–14 weeks of gestation. Am J Med Genet 1999;86(3):205–7.Google Scholar
Kroes, I, Janssens, S, Defoort, P. Ultrasound features in trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) in a consecutive series of 47 cases. Facts Views Vis Obgyn 2014;6(4):245–9.Google Scholar
Abu-Amero, S, Wakeling, EL, Preece, M, Whittaker, J, Stanier, P, Moore, GE. Epigenetic signatures of Silver-Russell syndrome. J Med Genet 2010;47(3):150–4. doi:10.1136/jmg.2009.071316.Google Scholar
Prickett, AR, Ishida, M, Böhm, S, Frost, JM, Puszyk, W, Abu-Amero, S, Stanier, P, Schulz, R, Moore, GE, Oakey, RJ. Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum Genet 2015;134(3):317–32. doi:10.1007/s00439-014-1526-1.Google Scholar
Price, SM, Stanhope, R, Garrett, C, Preece, MA, Trembath, RC. The spectrum of Silver-Russell syndrome: A clinical and molecular genetic study and new diagnostic criteria. J Med Genet 1999;36(11):837–42.Google Scholar
Wakeling, EL, Amero, SA, Alders, M, Bliek, J, Forsythe, E, Kumar, S, Lim, DH, MacDonald, F, Mackay, DJ, Maher, ER, Moore, GE, Poole, RL, Price, SM, Tangeraas, T, Turner, CLS, Van, Haelst, MM, Willoughby, C, Temple, IK, Cobben, JM. Epigenotype–phenotype correlations in Silver-Russell syndrome. J Med Genet 2010;47(11):jmg.2010.079111-jmg.2010.079768. doi:10.1136/jmg.2010.079111.Google Scholar
Paladini, D, Volpe, P. Ultrasound of Congenital Fetal Anomalies: Differential Diagnosis and Prognostic Indicators. 2014.Google Scholar
Chen, M, Hwu, W-L, Kuo, S-J, Chen, C-P, Yin, P-L, Chang, S-P, Lee, D-J, Chen, T-H, Wang, B-T, Lin, CC. Subtelomeric rearrangements and 22q11.2 deletion syndrome in anomalous growth-restricted fetuses with normal or balanced G-banded karyotype. Ultrasound Obstet Gynecol 2006;28(7):939–43. doi:10.1002/uog.3884.Google Scholar
Volpe, P, Marasini, M, Caruso, G, Marzullo, A, Buonadonna, AL, Arciprete, P, Di Paolo, S, Volpe, G, Gentile, M. 22q11 deletions in fetuses with malformations of the outflow tracts or interruption of the aortic arch: Impact of additional ultrasound signs. Prenat Diagn 2003;23(9):752–7. doi:10.1002/pd.682.Google Scholar
Tavormina, PL, Shiang, R, Thompson, LM, Zhu, YZ, Wilkin, DJ, Lachman, RS, Wilcox, WR, Rimoin, DL, Cohn, DH, Wasmuth, JJ. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 1995;9(3):321–8. doi:10.1038/ng0395-321.Google Scholar
Vanhoenacker, FM, Van der Aa, N, Blaumeiser, B. The French telephone receiver sign in thanatophoric dysplasia. JBR-BTR 2009;92(1):63.Google Scholar
Langer, LO, Yang, SS, Hall, JG, Sommer, A, Kottamasu, SR, Golabi, M, Krassikoff, N. Thanatophoric dysplasia and cloverleaf skull. Am J Med Genet Suppl 1987;3:167–79.Google Scholar
Picone, O, Simon, I, Benachi, A, Brunelle, F, Sonigo, P. Comparison between ultrasound and magnetic resonance imaging in assessment of fetal cytomegalovirus infection. Prenat Diagn 2008;28(8):753–8. doi:10.1002/pd.2037.Google Scholar
Lazzarotto, T, Guerra, B, Lanari, M, Gabrielli, L, Landini, MP. New advances in the diagnosis of congenital cytomegalovirus infection. J Clin Virol 2008;41(3):192–7. doi:10.1016/j.jcv.2007.10.015.Google Scholar
Feldman, B, Yinon, Y, Tepperberg, Oikawa, M, Yoeli, R, Schiff, E, Lipitz, S. Pregestational, periconceptional, and gestational primary maternal cytomegalovirus infection: Prenatal diagnosis in 508 pregnancies. Am J Obstet Gynecol 2011;205(4):342.e1342.e6. doi:10.1016/j.ajog.2011.05.030.Google Scholar
Ruellan Eugene, G, Barjot, P, Campet, M, Vabret, A, Herlicoviez, M, Muller, G, Levy, G, Guillois, B, Freymuth, F, Freymuth, F. Evaluation of virological procedures to detect fetal human cytomegalovirus infection: Avidity of IgG antibodies, virus detection in amniotic fluid and maternal serum. J Med Virol 1996;50(1):915. doi:10.1002/(SICI)1096–9071(199609)50:1<9::AID-JMV3>3.0.CO;2–5.Google Scholar
Guerra, B, Lazzarotto, T, Quarta, S, Lanari, M, Bovicelli, L, Nicolosi, A, Landini, MP. Prenatal diagnosis of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol 2000;183(2):476–82. doi:10.1067/mob.2000.106347.Google Scholar
Gouarin, S, Gault, E, Vabret, A, Cointe, D, Rozenberg, F, Grangeot-Keros, L, Barjot, P, Garbarg-Chenon, A, Lebon, P, Freymuth, F. Real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples from mothers with primary infection. J Clin Microbiol 2002;40(5):1767–72. doi:10.1128/JCM.40.5.1767-1772.2002.Google Scholar
Picone, O, Costa, J-M, Leruez-Ville, M, Ernault, P. Cytomegalovirus (CMV) glycoprotein B genotype and CMV DNA load in the amniotic fluid of infected fetuses. Prenat Diagn 2004.Google Scholar
Nedelec, O, Bellagra, N, Devisme, L, Hober, D, Wattré, P, Dewilde, A. [Congenital human cytomegalovirus infection: Value of human cytomegalovirus DNA quantification in amniotic fluid]. Ann Biol Clin (Paris) 2002;60(2):201–7.Google Scholar
Revello, MG, Lazzarotto, T, Guerra, B, Spinillo, A, Ferrazzi, E, Kustermann, A, Guaschino, S, Vergani, P, Todros, T, Frusca, T, Arossa, A, Furione, M, Rognoni, V, Rizzo, N, Gabrielli, L, Klersy, C, Gerna, G, CHIP Study Group. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med 2014;370(14):1316–26. doi:10.1056/NEJMoa1310214.Google Scholar
Jacquemard, F, Yamamoto, M, Costa, J-M, Romand, S, Jaqz-Aigrain, E, Dejean, A, Daffos, F, Ville, Y. Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG 2007;114(9):1113–21. doi:10.1111/j.1471-0528.2007.01308.x.Google Scholar
Kimberlin, DW, Jester, PM, Sánchez, PJ. Valganciclovir for symptomatic congenital cytomegalovirus disease. N Engl J Med 2015;372(10):933–43. doi:10.1056/NEJMoa1404599.Google Scholar
Lipitz, S, Yinon, Y, Malinger, G, Yagel, S, Levit, L, Hoffman, C, Rantzer, R, Weisz, B. Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol 2013;41(5):508–14. doi:10.1002/uog.12377.Google Scholar
Farkas, N, Hoffmann, C, Ben-Sira, L, Lev, D, Schweiger, A, Kidron, D, Lerman-Sagie, T, Malinger, G. Does normal fetal brain ultrasound predict normal neurodevelopmental outcome in congenital cytomegalovirus infection? Prenat Diagn 2011;31(4):360–6. doi:10.1002/pd.2694.Google Scholar
Malinger, G, Lev, D, Lerman-Sagie, T. Imaging of fetal cytomegalovirus infection. Fetal Diagn Ther 2011;29(2):117–26. doi:10.1159/000321346.Google Scholar
Yinon, Y, Farine, D, Yudin, MH. Screening, diagnosis, and management of cytomegalovirus infection in pregnancy. Obstet Gynecol Surv 2010;65(11):736–43. doi:10.1097/OGX.0b013e31821102b4.Google Scholar
Dunn, D, Wallon, M, Peyron, F, Petersen, E, Peckham, C, Gilbert, R. Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 1999;353(9167):1829–33. doi:10.1016/S0140-6736(98)08220-8.Google Scholar
Romand, et al. Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii. Am J Obstet Gynecol March 2004;190(3):797–802.Google Scholar
Malinger, G, Werner, H, Rodriguez, Leonel, JC, Rebolledo, M, Duque, M, Mizyrycki, S, Lerman, Sagie, T, Herrera, M. Prenatal brain imaging in congenital toxoplasmosis. Prenat Diagn 2011;31(9):881–6. doi:10.1002/pd.2795.Google Scholar
Berrébi, A, Assouline, C, Bessières, M-H, Lathière, M, Cassaing, S, Minville, V, Ayoubi, J-M. Long-term outcome of children with congenital toxoplasmosis. Am J Obstet Gynecol 2010;203(6):552.e1-e6. doi:10.1016/j.ajog.2010.06.002.Google Scholar
Tookey, PA. Review of antenatal rubella susceptibility screening and the standard criteria for screening. Institute of Child Health May 2012:111.Google Scholar
Hardelid, P, Cortina-Borja, M, Williams, D, Tookey, PA, Peckham, CS, Cubitt, WD, Dezateux, C. Rubella seroprevalence in pregnant women in North Thames: Estimates based on newborn screening samples. J Med Screen 2009;16(1):16. doi:10.1258/jms.2009.008080.Google Scholar
Robertson, SE, Featherstone, DA, Gacic-Dobo, M, Hersh, BS. Rubella and congenital rubella syndrome: Global update. Rev Panam Salud Publica 2003;14(5):306–15.Google Scholar

References

Bramham, K, Parnell, B, Nelson-Piercy, C, et al. Chronic hypertension and pregnancy outcomes: Systematic review and meta-analysis. BMJ 2014;348:g2301.Google Scholar
Dahlstrom, BL, Engh, ME, Bukholm, G, et al. Changes in the prevalence of pre-eclampsia in Akershus County and the rest of Norway during the past 35 years. Acta Obstet Gynecol Scand 2006;85:916–21.Google Scholar
Klungsøyr, K, Morken, NH, Irgens, L, Vollset, SE, Skjaerven, R. Secular trends in the epidemiology of pre-eclampsia throughout 40 years in Norway: Prevalence, risk factors and perinatal survival. Paediatr Perinat Epidemiol 2012;26:190–8.Google Scholar
Sibai, BM. Diagnosis and management of gestational hypertension and reeclampsia. Obstet Gynecol 2003;102:181–92.Google Scholar
Saftlas, AF, Olson, DR, Franks, AL, et al. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am J Obstet Gynecol 1990;163:460–5.Google Scholar
Ananth, CV, Vintzileos, AM. Maternal-fetal conditions necessitating a medical intervention resulting in preterm birth. Am J Obstet Gynecol 2006;195:1557–63.Google Scholar
American College of Obstetricians and Gynecologists. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol 2013;122:1122–31.Google Scholar
Lowe, SA, Brown, MA, Dekker, GA, et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust N Z J Obstet Gynaecol 2009;49:242–6.Google Scholar
Saudan, P, Brown, MA, Buddle, ML et al. Does gestational hypertension become pre-eclampsia? BJOG 1998;105:1177–84.Google Scholar
Roberts, CL, Algert, CS, Morris, JM, et al. Hypertensive disorders in pregnancy: A population-based study. Med J Australia 2005;182:332–5.Google Scholar
Macdonald-Wallis, C, Tilling, K, Fraser, A, et al. Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: Findings from a prospective cohort. Hypertension 2014;64:3644.Google Scholar
Marin, R, Gorostidi, M, Portal, CG, et al. Long-term prognosis of hypertension in pregnancy. Hypertens Pregnancy 2000;19:199209.Google Scholar
Magnussen, EB, Vatten, LJ, Smith, GD, Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol 2009; 114:961–70.Google Scholar
Melamed, N, Ray, JG, Hladunewich, M, et al. Gestational hypertension and preeclampsia: Are they the same disease? J Obstet Gynaecol Can 2014 Jul; 36(7):642–7.Google Scholar
Zetterström, K, Lindeberg, SN, Haglund, B, et al. Chronic hypertension as a risk factor for offspring to be born small for gestational age. Acta Obstet Gynecol Scand 2006;85(9):1046–50.Google Scholar
Osol, G, Moore, LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation 2014;21:3847.Google Scholar
Burton, GJ, Fowden, A. The placenta: A multifaceted, transient organ. Phil Trans R Soc 2015;370(1663):20140066.Google Scholar
Nelson, SH, Steinsland, OS, Wang, Y, et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res 2000;87:406–11.Google Scholar
Burton, GJ, Woods, AW, Jauniaux, E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009;30:473–82.Google Scholar
Gyselaers, W, Mullens, W, Tomsin, K, et al. Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: A review. Ultrasound Obstet Gynecol 2011;38:123–9.Google Scholar
Huppertz, B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension 2008;5:970–5.Google Scholar
Jauniaux, E, Watson, AL, Hempstock, J, et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 2000;157:2111–22.Google Scholar
Burton, GJ, Watson, AL, Hempstock, J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 2002;87:2954–9.Google Scholar
Burton, GJ, Jauniaux, E, Charnock-Jones, DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol 2010;54:303–12.Google Scholar
Redman, CW, Sargent, IL. Latest advances in understanding preeclampsia. Science 2005;308:1592–4.Google Scholar
Moll, W. Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation. Eur J Obstet Gynecol Reprod Biol 2003;110 Suppl 1:S19–27.Google Scholar
Redman, CW. Current topic: Pre-eclampsia and the placenta. Placenta 1991;12:301–8.Google Scholar
Redman, CW, Sargent, IL, Staff, AC. IFPA Senior Award Lecture: Making sense of pre-eclampsia – Two placental causes of preeclampsia? Placenta 2014;35 Suppl:S20–5.Google Scholar
Senft, D, Ronai, ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015 Feb 2. pii:S0968-0004(15)00003-1.Google Scholar
Burton, GJ, Jauniaux, E. Placental oxidative stress: From miscarriage to preeclampsia. J Soc Gynecol Investig 2004;11:342e52.Google Scholar
Roberts, JM, Taylor, RN, Musci, TJ et al. Preeclampsia: An endothelial cell disorder. Am J Obstet Gynecol 1989;161:1200–4.Google Scholar
Redman, CW, Sargent, IL. Placental stress and pre-eclampsia: A revised view. Placenta 2009;30 Suppl A:S38–42.Google Scholar
Redman, CW, Sargent, IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response – a review. Placenta 2003;Suppl A:S21–7.Google Scholar
Sitia, S, Tomasoni, L, Atzeni, F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev 2010;9:830–4.Google Scholar
Prieto, D, Contreras, C, Sánchez, A. Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 2014;12:412–26.Google Scholar
Maynard, SE, Min, JY, Merchan, J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003;111:649e58.Google Scholar
De Falco, S. The discovery of placenta growth factor and its biological activity. Exp Mol Med 2012;44:19.Google Scholar
Lankhorst, S, Saleh, L, Danser, AJ, et al. Etiology of angiogenesis inhibition-related hypertension. Curr Opin Pharmacol 2014;21C:713.Google Scholar
LaMarca, BD, Alexander, BT, Gilbert, JS, et al. Pathophysiology of hypertension in response to placental ischemia during pregnancy: A central role for endothelin? Gend Med 2008;5 Suppl A:S133–8.Google Scholar
Yung, HW, Hemberger, M, Watson, ED, et al. Endoplasmic reticulum stress disrupts placental morphogenesis: Implications for human intrauterine growth restriction. J Pathol 2012;228:554–64.Google Scholar
Xiong, X, Demianczuk, NN, Saunders, LD, et al. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol 2002;155:203–9.Google Scholar
Moore, MP, Redman, CW. Case-control study of severe pre-eclampsia of early onset. Br Med J Clin Res Ed 1983;287:580–3.Google Scholar
Lees, C, Marlow, N, Arabin, B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42:400–8.Google Scholar
Verlohren, S1, Melchiorre, K, Khalil, A, et al. Uterine artery Doppler, birth weight and timing of onset of pre-eclampsia: Providing insights into the dual etiology of late-onset pre-eclampsia. Ultrasound Obstet Gynecol 2014;44:293–8.Google Scholar
Almog, B, Shehata, F, Aljabri, S, et al. Placenta weight percentile curves for singleton and twins deliveries. Placenta 2011;32:58e62.Google Scholar
Norwitz, ER, Snegovskikh, VV, Caughey, AB. Prolonged pregnancy: When should we intervene? Clin Obstet Gynecol 2007;50:547e57.Google Scholar
Caughey, AB, Stotland, NE, Escobar, GJ. What is the best measure of maternal complications of term pregnancy: Ongoing pregnancies or pregnancies delivered? Am J Obstet Gynecol 2003;189:1047e52.Google Scholar
Jones, CJ, Fox, H. Ultrastructure of the placenta in prolonged pregnancy. J Pathol 1978;126:173e9.Google Scholar
Dahlstrøm, B, Romundstad, P, Øian, P et al. Placenta weight in pre-eclampsia. Acta Obstet Gynecol Scand 2008;87:608e11.Google Scholar
Rasmussen, S, Irgens, LM, Espinoza, J. Maternal obesity and excess of fetal growth in pre-eclampsia. BJOG 2014;121:1351–7.Google Scholar
Morales-Roselló, J, Khalil, A, Morlando, M, et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol 2014;43:303–10.Google Scholar
Redman, CW, Jacobson, S-L, Russell, R. Hypertension in pregnancy. In Powrie, RO, Greene, ME, Camann, W, eds. Medical Disorders in Obstetric Practice. Wiley-Blackwell, Chichester. 2010:153–81.Google Scholar
Lisonkova, S, Joseph, KS. Incidence of preeclampsia: Risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol 2013;209:544.e1544.e12.Google Scholar
Redman, CW, Sargent, IL. Immunology of pre-eclampsia. Am J Reprod Immunol 2010;63:534–43.Google Scholar
Cotechini, T, Komisarenko, M, Sperou, A, et al. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med 2014;211:165–79.Google Scholar
Whitley, GS, Dash, PR, Ayling, LJ, Prefumo, F, Thilaganathan, B, Cartwright, JE. Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am J Pathol 2007;170:1903–9.Google Scholar
Melchiorre, K, Sutherland, G, Sharma, R, Nanni, M, Thilaganathan, B. Mid-gestational maternal cardiovascular profile in preterm and term pre-eclampsia: A prospective study. BJOG 2013;120:496504.Google Scholar
Parks, WT. Placental hypoxia: The lesions of maternal malperfusion. Semin Perinatol 2015;39:919.Google Scholar
Fitzgerald, B, Levytska, K, Kingdom, J, et al. Villous trophoblast abnormalities in extremely preterm deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta 2011;32:339–45.Google Scholar
Staff, AC, Dechend, R, Pijnenborg, R. Learning from the placenta: Acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health. Hypertension 2010;56:1026–34.Google Scholar

References

(HFEA), H.F.a.E.A. Fertility Treatment in 2013: Facts and Figures.Google Scholar
O’Flynn, N. Assessment and treatment for people with fertility problems: NICE guideline. Br J Gen Pract 2014;64(618):50–1.Google Scholar
Stojnic, J, et al. Perinatal outcome of singleton pregnancies following in vitro fertilization. Clin Exp Obstet Gynecol 2013;40(2):277–83.Google Scholar
Koudstaal, J, et al. Obstetric outcome of singleton pregnancies after IVF: a matched control study in four Dutch university hospitals. Hum Reprod 2000;15(8):1819–25.Google Scholar
Wang, JX et al. The obstetric outcome of singleton pregnancies following in-vitro fertilization/gamete intra-fallopian transfer. Hum Reprod 1994;9(1):141–6.Google Scholar
Doyle, P, Beral, V, Maconochie, N. Preterm delivery, low birthweight and small-for-gestational-age in liveborn singleton babies resulting from in-vitro fertilization. Hum Reprod 1992;7(3):425–8.Google Scholar
Valenzuela-Alcaraz, B, et al. Differential effect of mode of conception and infertility treatment on fetal growth and prematurity. J Matern Fetal Neonatal Med 2016:16.Google Scholar
Kondapalli, LA, Perales-Puchalt, A. Low birth weight: Is it related to assisted reproductive technology or underlying infertility? Fertil Steril 2013. 99(2):303–10.Google Scholar
Malchau, SS, et al. Perinatal outcomes in 6,338 singletons born after intrauterine insemination in Denmark, 2007 to 2012: The influence of ovarian stimulation. Fertil Steril 2014;102(4):1110–16 e2.Google Scholar
Wisborg, K, Ingerslev, HJ, Henriksen, TB. IVF and stillbirth: A prospective follow-up study. Hum Reprod 2010;25(5):1312–16.Google Scholar
Bensdorp, AJ, et al. Dizygotic twin pregnancies after medically assisted reproduction and after natural conception: Maternal and perinatal outcomes. Fertil Steril 2016.Google Scholar
Takeshima, K, et al. Impact of single embryo transfer policy on perinatal outcomes in fresh and frozen cycles-analysis of the Japanese Assisted Reproduction Technology registry between 2007 and 2012. Fertil Steril 2016;105(2):337–46 e3.Google Scholar
Tomic, V, Tomic, J. Neonatal outcome of IVF singletons versus naturally conceived in women aged 35 years and over. Arch Gynecol Obstet 2011;284(6)1411–16.Google Scholar
Wennberg, AL, et al. Effect of maternal age on maternal and neonatal outcomes after assisted reproductive technology. Fertil Steril 2016.Google Scholar
Luke, B, et al. Factors associated with ovarian hyperstimulation syndrome (OHSS) and its effect on assisted reproductive technology (ART) treatment and outcome. Fertil Steril 2010;94(4):1399–404.Google Scholar
Imudia, AN, et al. Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization. Fertil Steril 2012;97(6):1374–9.Google Scholar
Kalra, SK, et al. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol 2011;118(4):863–71.Google Scholar
Zhu, J, et al. Does IVF cleavage stage embryo quality affect pregnancy complications and neonatal outcomes in singleton gestations after double embryo transfers? J Assist Reprod Genet 2014;31(12):1635–41.Google Scholar
Li, Z, et al. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: A population-based cohort study. Hum Reprod 2014;29(12):2794–801.Google Scholar
Kato, O, et al. Neonatal outcome and birth defects in 6623 singletons born following minimal ovarian stimulation and vitrified versus fresh single embryo transfer. Eur J Obstet Gynecol Reprod Biol 2012;161(1):4650.Google Scholar
Haavaldsen, C, Tanbo, T, Eskild, A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod 2012;27(2):576–82.Google Scholar
Nelissen, EC, et al. Altered gene expression in human placentas after IVF/ICSI. Hum Reprod 2014;29(12):2821–31.Google Scholar
Bloise, E, Feuer, SK, Rinaudo, PF. Comparative intrauterine development and placental function of ART concepti: Implications for human reproductive medicine and animal breeding. Hum Reprod Update 2014;20(6):822–39.Google Scholar
Bertolini, M, et al. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002;58(5):973–94.Google Scholar
Zhang, Y, et al. Ultrastructural study on human placentae from women subjected to assisted reproductive technology treatments. Biol Reprod 2011;85(3):635–42.Google Scholar
Bonduelle, M, et al. Prenatal testing in ICSI pregnancies: Incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod 2002;17(10):2600–14.Google Scholar
Whitelaw, N, et al. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod 2014;29(7):1452–8.Google Scholar
Allen, C, Reardon, W. Assisted reproduction technology and defects of genomic imprinting. BJOG 2005;112(12):1589–94.Google Scholar
Dupont, C, Sifer, C. A review of outcome data concerning children born following assisted reproductive technologies. ISRN Obstet Gynecol 2012:405382.Google Scholar
Zhu, JL, et al. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ 2006;333(7570):679.Google Scholar
Sanchez-Calabuig, MJ, et al. Potential health risks associated to ICSI: Insights from animal models and strategies for a safe procedure. Front Public Health 2014;2:241.Google Scholar

References

Magee, BD, Hattis, D, Kivel, NM. Role of smoking in low birth weight. J Reprod Med 2004;49(1):23–7.Google Scholar
Akolekar, R, Syngelaki, A, Poon, L, Wright, D, Nicolaides, KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013;33(1):815.Google Scholar
Ananth, CV, Peltier, MR, Chavez, MR, Kirby, RS, Getahun, D, Vintzileos, AM. Recurrence of ischemic placental disease. Obstet Gynecol 2007;110(1):128–33.Google Scholar
Alfirevic, Z, Stampalija, T, Gyte, GM. Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 2010;(8):CD001450.Google Scholar
Alfirevic, Z, Milan, SJ, Livio, S. Caesarean section versus vaginal delivery for preterm birth in singletons. Cochrane Database Syst Rev 2013;9:CD000078.Google Scholar
Boers, KE, Vijgen, SM, Bijlenga, D, van der Post, JA, Bekedam, DJ, Kwee, A, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: Randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087.Google Scholar
Lees, C, Marlow, N, Van Wassenaer, A, et al. The Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE) study: Two year neurodevelopmental and intermediate perinatal outcomes. Lancet 2015;385:2162–72.Google Scholar
Thornton, JG, Hornbuckle, J, Vail, A, Spiegelhalter, DJ, Levene, M. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): Multicentred randomised controlled trial. Lancet 2004;364(9433):513–20.Google Scholar
Egger, M, Juni, P, Bartlett, C, Holenstein, F, Sterne, J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess 2003;7(1):176.Google Scholar
Friedman, AM, Cleary, KL. Prediction and prevention of ischemic placental disease. Semin Perinatol 2014;38(3):177–82.Google Scholar
Khan, K. The CROWN initiative: Journal editors invite researchers to develop core outcomes in women’s health. Obstet Gynecol 2014;124(3):487–8.Google Scholar
Wadhwa, PD, Buss, C, Entringer, S, Swanson, JM. Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 2009;27(5):358–68.Google Scholar
Moss, AJ, Francis, CW, Ryan, D. Collaborative clinical trials. N Engl J Med 2011;364(9):789–91.Google Scholar
Kenyon, S, Pike, K, Jones, DR, Brocklehurst, P, Marlow, N, Salt, A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet 2008;372(9646):1310–18.Google Scholar

References

Roex, A, Nikpoor, P, Van, Eerd, Hodyl, N, Dekker, G. Serial plotting on customised fundal height charts results in doubling of the antenatal detection of small for gestational age fetuses in nulliparous women. Aust NZ J Obstet Gynecol 2012;52:7882.Google Scholar
Gardosi, J, Francis, A. Controlled trial of fundal height measurement plotted on customised antenatal growth charts. BJOG 1999;106:309–17.Google Scholar
Chang, TC, Robson, SC, Boys, RJ, Spencer, JA. Prediction of the small for gestational age infant: Which ultrasonic measurement is best? Obstet Gynecol 1992;80:1030–8.Google Scholar
Coomarasamy, A, Connock, M, Thornton, JG, Khan, KS. Accuracy of ultrasound biometry in the prediction of macrosomia: A systematic quantitative review. BJOG 2005;112(11):1461–6.Google Scholar
Chauhan, SP, Magann, EF. Screening for fetal growth restriction. Clin Obstet Gynecol 2006;49:284–94.Google Scholar
Alfirevic, Z, Stampalija, T, Medley, N. Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 2015, Issue 4. Art. No.: CD001450. DOI: 10.1002/14651858.CD001450.pub4.Google Scholar
Morris, RK, Malin, G, Robson, SC, Kleijnen, J, Zamora, J, Khan, KS. Fetal umbilical artery Doppler to predict compromise of fetal/neonatal wellbeing in high-risk populations: systematic review and bivariate meta-analysis. Ultrasound Obstet Gynecol 2011;37:135–42.Google Scholar
Serra, V, Moulden, M, Bellver, J, Redman, CW. The value of the short-term fetal heart rate variation for timing the delivery of the growth-retarded fetuses. BJOG 2008;115:1101–7.Google Scholar
Yagel, S, Kivilevitch, Z, Cohen, SM, Valsky, DV, Messing, B, Shen, O, et al. The fetal venous system, Part II: Ultrasound evaluation of the fetus with congenital venous system malformation or developing circulatory compromise. Ultrasound Obstet Gynecol 2010;36:93111.Google Scholar
Thornton, JG, Lilford, RJ. Do we need randomised trials of antenatal tests of fetal wellbeing? BJOG 1993; 100:197200.Google Scholar
The GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: Short term outcomes and Bayesian interpretation. BJOG 2003;110:2732.Google Scholar
The GRIT Study Group. Infant wellbeing at 2 years of age in the Growth Restriction Intervention trial (GRIT): A multicentred randomised controlled trial. Lancet 2004;364:513–19.Google Scholar
Walker, D-M, Marlow, N, Upstone, L, Gross, H. Hornbuckle, J, Vail, A, Wolke, D, Thornton, JG on behalf of the GRIT Study Group. The Growth Restriction Intervention Trial (GRIT): Long-term outcomes in a randomised trial of timing of delivery in fetal growth restriction. Am J Obstet Gynecol 2011;204(1):341–9.Google Scholar
Boers, K, Bijlenga, D, Vijgen, S, Van der Post, J, Bekedam, D, Kwee, A, Van der Salm, P, Van Pampus, M, Spaanderman, M, De Boer, K, Bremer, H, Duvekot, J, Hasaart, T, Delemarre, F, Bloemenkamp, K, Van Meir, C, Willekes, C, Wijnen, E, Rijken, M, le Cessie, S, Roumen, F, Thornton, JG, Van Lith, J, Mol, BW, Scherjon, S (2011) Induction versus expectant monitoring for intrauterine growth restriction at term (the DIGITAT trial). BMJ 2011;342:35.Google Scholar
Boers, KE, Van Wyk, L, Van der Post, JAM, et al. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: A subanalysis of the DIGITAT RCT. Am J Obstet Gynecol 2012;206:344.e1–7.Google Scholar
Lees, CC, Marlow, N, Van Wassenaer-Leemhuis, A, et al. for the TRUFFLE study group. Two year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): A randomised trial. Lancet 2015;385:2162–72.Google Scholar
American College of Obstetricians and Gynecologists. ACOG Practice Bulletin no 134: Fetal growth restriction. Obstet Gynecol 2013;121(5):1122–33.Google Scholar
Royal College of Obstetricians and Gynecologists (RCOG) Guideline Committee. The investigation and management of the small for gestational age fetus. Green top guideline No. 31. Jan 2014 www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg31/.Google Scholar
New Zealand Maternal and Fetal Medicine Network (NZMFMN) Guideline for the management of suspected small for gestational age singleton pregnancies and infants after 34 weeks gestation. 2014 www.asum.com.au/newsite/Files/Documents/Resources/NZMFM%20SGA%20Guideline_September%202013.pdf.Google Scholar
Health Service Executive (Ireland). Fetal growth restriction – recognition, diagnosis and management. 2014 www.hse.ie/eng/about/Who/clinical/natclinprog/obsandgynaeprogramme/29-_Fetal_Growth_Restriction-IUGR_CPG_final_.pdf.Google Scholar
Nederlandse Vereniging voor Obstetrie & Gynaecologie (NVOG). Foetale Groeibeperking 2008. http://nvog-documenten.nl/index.php?pagina=/richtlijn/item/pagina.php&richtlijn_id=828.Google Scholar
Society of Obstetricians and Gynecologists Canada (SOGC) Intrauterine growth restriction: screening, diagnosis and management. 2013 http://sogc.org/guidelines/intrauterine-growth-restriction-screening-diagnosis-management/.Google Scholar
Papageorghiou, AT, Ohuma EO, Altman DG, Todros T, Cheikh Ismail L, Lambert A, Jaffer YA, Bertino E, Gravett MG, Purwar M, Noble JA, Pang R, Victora CG, Barros FC, Carvalho M, Salomon LJ, Bhutta ZA, Kennedy SH, Villar J; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014 Sep 6;384(9946):869–79.Google Scholar
Papageorghiou, AT, Ohuma EO, Gravett MG, Hirst J, da Silveira MF, Lambert A, Carvalho M, Jaffer YA, Altman DG, Noble JA, Bertino E, Purwar M, Pang R, Cheikh Ismail L, Victora C, Bhutta ZA, Kennedy SH, Villar J; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for symphysis-fundal height based on serial measurements from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: prospective cohort study in eight countries. BMJ 2016 Nov 7;355:i5662.Google Scholar
Kiserud, T, Piaggio G, Carroli G, Widmer M, Carvalho J, Neerup Jensen L, Giordano D, Cecatti JG, Abdel Aleem H, Talegawkar SA, Benachi A, Diemert A, Tshefu Kitoto A, Thinkhamrop J, Lumbiganon P, Tabor A, Kriplani A, Gonzalez Perez R, Hecher K, Hanson MA, Gülmezoglu AM, Platt LD. The World Health Organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 2017 Jan 24;14(1):e1002220.Google Scholar
National Institute for Health and Care Excellence (NICE). Hypertension in pregnancy: The management of hypertensive disorders during pregnancy. 2010 www.nice.org.uk/guidance/cg107.Google Scholar
Magee, LA, Pels, A, Helewa, M, Rey, E, Von Dadelszen, P, Hypertension Guideline Committee. Prediction and prevention. In: Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: Executive summary. J Obstet Gynaecol Can. 2014 May;36(5):425–6.Google Scholar
World Health Organization (WHO). WHO recommendations for the prevention and treatment of pre-eclampsia and eclampsia. 2011. http://whqlibdoc.who.int/publications/2011/9789241548335_eng.pdf.Google Scholar
Askie, LM, Duley, L Henderson-Smart, DJ, Stewart, LA, on behalf of the PARIS Collaborative Group. (2007) Antiplatelet agents for prevention of pre-eclampsia: A meta-analysis of individual patient data. Lancet 2007;369:1791–8.Google Scholar
Dugoff, L, Hobbins, JC, Malone, FD, Vidaver, J, Sullivan, L, Canick, JA, et al. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol 2005;106 (2):260–7.Google Scholar
Dugoff, L. First- and second-trimester maternal serum markers for aneuploidy and adverse obstetric outcomes. Obstet Gynecol 2010;115:1052–61.Google Scholar
Alfirevic, Z, Stampalija, T, Gyte, GML. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 2013, Issue 11. Art. No.: CD007529. DOI: 10.1002/14651858.CD007529.pub3.Google Scholar
Calvert, JP, Crean, EE, Newcombe, RG, Pearson, JF. Antenatal screening by measurement of symphysis-fundus height. BMJ 1982;285:846.Google Scholar
Quaranta, P, Currell, R, Redman, CW, Robinson, JS. Prediction of small-for-dates infants by measurement of symphysial-fundal-height. BJOG 1981;88(2):115–19.Google Scholar
Robert, PJ, Ho, JJ, Valliapan, J, Sivasangari, S. Symphysial fundal height (SFH) measurement in pregnancy for detecting abnormal fetal growth. Cochrane Database Syst Rev 2012, Issue 7. Art. No.: CD008136. DOI: 10.1002/14651858.CD008136.pub2.Google Scholar
Unterscheider, J, Geary, MP, Daly, S, McAuliffe, FM, Kennelly, MM, Dornan, J, et al. The customised fetal growth potential: A standard for Ireland. Eur J Obstet Gynecol Reprod Biol 2013 Jan;166(1):1417.Google Scholar
Melamed, N, Ray, JG, Shah, PS, Berger, H, Kingdom, JC. Should we use customized fetal growth percentiles in urban Canada? J Obstet Gynaecol Canada 2014;36(2):164–70.Google Scholar
Van Wyk, L, Boers, KE, Van der Post, JAM, et al. Effects on (neuro)developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: Long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol 2012;206:406.e1–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×