Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-15T01:25:31.590Z Has data issue: false hasContentIssue false

Section 5 - Characteristics of Fetal Growth Restriction

Published online by Cambridge University Press:  23 July 2018

Christoph Lees
Affiliation:
Imperial College London
Gerard H. A. Visser
Affiliation:
Universiteit Utrecht, The Netherlands
Kurt Hecher
Affiliation:
University Medical Centre, Hamburg
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Pardi, G, Cetin, I, Marconi, AM, Lanfranchi, A, Bozzetti, P, Buscaglia, M, et al. Diagnostic value of blood sampling in fetuses with growth retardation. N Engl J Med 1993 Oct 2;328(10):692–6.Google Scholar
Galan, HL, Jozwik, M, Rigano, S, Regnault, TR, Hobbins, JC, Battaglia, FC, et al. Umbilical vein blood flow determination in the ovine fetus: Comparison of Doppler ultrasonographic and steady-state diffusion techniques. Am J Obstet Gynecol 1999 Nov 1;181(5 Pt 1):1149–53.Google Scholar
Schmidt, KG, Di Tommaso, M, Silverman, NH, Rudolph, AM. Doppler echocardiographic assessment of fetal descending aortic and umbilical blood flows. Validation studies in fetal lambs. Circulation 1991 Apr 30;83(5):1731–7.Google Scholar
Meschia, G, Cotter, JR, Makowski, EL, Burron, DH. Simultaneous measurement of uterine and umbilical blood flows and oxygen uptakes. Exp Physiol 1967 Aug 1;52:118.Google Scholar
Dawes, GS, Mott, JC. Changes on O2 distribution and consumption in foetal lambs with variations in umbilical blood flow. J Physiol 1964 Jan 25;170:524–40.Google Scholar
Wallace, JM, Bourke, DA, Aitken, RP, Leitch, N, Hay, WW. Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am J Physiol Regul Integr Comp Physiol 2002 Feb 25;282:1027–36.Google Scholar
Figueras, F, Fernández, S, Hernandez-Andrade, E, Gratacós, E. Umbilical venous blood flow measurement: Accuracy and reproducibility. Ultrasound Obstet Gynecol 2008 Sep;32(4):587–91.Google Scholar
Di Naro, E, Ghezzi, F, Raio, L, Franchi, M, D’Addario, V, Lanzillotti, G, et al. Umbilical vein blood flow in fetuses with normal and lean umbilical cord. Ultrasound Obstet Gynecol 2001 Feb 28;17(3):224–8.Google Scholar
Ferrazzi, E, Bellotti, M, Marconi, AM, Barbera, AF, Pardi, G. Peak velocity of the outflow of the aorta: Correlations with acid base status and oxygenation in growth retarded fetuses. 1965 Jan 4;85:663–7.CrossRefGoogle Scholar
Meschia, G, Cotter, JR, Barron, DH. The hemoglobin, O2, CO2, and H+ concentrations in the umbilical bloods of sheep. Q J Exp Physiol Cogn Med Sci 1965 Aug 4;50:185–95.Google Scholar
Battaglia, FC, Meschia, G. Review of studies in human pregnancies of uterine and umbilical blood flows. Dev Period Med 2013 Feb 7;XVIII(4):287–92.Google Scholar
Pennati, G, Bellotti, M, De Gasperi, C, Rognoni, G. Spatial velocity profile changes along the cord in normal human fetuses: Can these affect Doppler measurements of venous umbilical blood flow? Ultrasound Obstet Gynecol 2004 Feb 4;23(2):131–7.Google Scholar
Burton, GJ, Woods, AW, Jauniaux, E, Kingdom, JCP. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2010 Nov 4;30(6):473–82.Google Scholar
Marconi, AM, Cetin, I, Ferrazzi, E, Ferrari, M, Pardi, G, Battaglia, FC. Lactate metabolism in normal and growth-retarded human fetuses. Pediatr Res 1990 Sep 28;28(6):652–6.Google Scholar
Alfirevic, Z, Neilson, JP. Doppler ultrasonography in high-risk pregnancies: Systematic review with meta-analysis. 1995 Jan 4;172:1379–87.Google Scholar
Rigano, S, Bozzo, M, Padoan, A, Mustoni, P, Bellotti, M, Galan, HL, et al. Small size-specific umbilical vein diameter in severe growth restricted fetuses that die in utero. Prenat Diagn 2008 Oct;28(10):908–13.Google Scholar
Bellotti, M, Pennati, G, De, Gasperi, C, Battaglia, FC, Ferrazzi, E. Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. Am J Physiol Heart Circ Physiol 2000 Aug 31;279(3):H1256–63.Google Scholar
Kiserud, T. Physiology of the fetal circulation. Semin Fetal Neonatal Med 2005 Dec;10(6):493503.Google Scholar
Kiserud, T, Ozaki, T, Nishina, H, Rodeck, C, Hanson, MA. Effect of NO, phenylephrine, and hypoxemia on ductus venosus diameter in fetal sheep. Am J Physiol Heart Circ Physiol 2000 Aug 31;279(3):H1166–71.CrossRefGoogle ScholarPubMed
Bellotti, M, Pennati, G, Pardi, G, Fumero, R. Dilatation of the ductus venosus in human fetuses: Ultrasonographic evidence and mathematical modeling. Am J Physiol Heart Circ Physiol 1998;275(5):H1759–67.Google Scholar
Bellotti, M, Pennati, G, Gasperi, CD, Bozzo, M, Battaglia, FC, Ferrazzi, E. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol 2004 May;190(5):1347–58.Google Scholar
Kiserud, T, Kessler, J, Ebbing, C, Rasmussen, S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol 2006;28(2):143–9.Google Scholar
Regnault, TRH, Friedman, JE, Wilkening, RB, Anthony, RV, Hay, WW, Jr. Fetoplacental transport and utilization of amino acids in IUGR – a review. Placenta 2005 Apr;26:S52S62.Google Scholar
Lees, C, Marlow, N, Arabin, B, Bilardo, CM, Brezinka, C, Derks, JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013 Sep 23;42(4):400–8.Google Scholar
TRUFFLE Lancet Paper 2015.Google Scholar
Trudinger, B. Doppler: More or less? Ultrasound Obstet Gynecol 2007;29(3):243–6.Google Scholar
Figueras, F, Gardosi, J. Intrauterine growth restriction: New concepts in antenatal surveillance, diagnosis, and management. Am J Obstet Gynecol 2011 Apr 1;204(4):288300.Google Scholar
Cetin, I, Ronzoni, S, Marconi, AM, Perugino, G, Corbetta, C, Battaglia, FC, et al. Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies. Am J Obstet Gynecol 1996 May;174(5):1575–83.Google Scholar
Ronzoni, S, Marconi, AM, Paolini, CL, Teng, C, Pardi, G, Battaglia, FC. The effect of a maternal infusion of amino acids on umbilical uptake in pregnancies complicated by intrauterine growth restriction. Am J Obstet Gynecol 2002 Sep;187(3):741–6.CrossRefGoogle ScholarPubMed
Ferrazzi, E, Rigano, S, Bozzo, M, Bellotti, M, Giovannini, N, Galan, H, et al. Umbilical vein blood flow in growth-restricted fetuses. Ultrasound Obstet Gynecol 2000 Oct 1;16(5):432–8.CrossRefGoogle ScholarPubMed
Rigano, S, Bozzo, M, Ferrazzi, E, Bellotti, M, Battaglia, FC, Galan, HL. Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: A longitudinal study. Am J Obstet Gynecol 2001 Oct 1;185(4):834–8.Google Scholar
Parra-Saavedra, M, Crovetto, F, Triunfo, S, Savchev, S, Parra, G, Sanz, M, et al. Added value of umbilical vein flow as a predictor of perinatal outcome in term small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2013 Jul 26;42(2):189–95.Google Scholar
Sanz-Cortés, M, Figueras, F, Bargalló, N, Padilla, N, Amat-Roldan, I, Gratacós, E. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2010 Feb 3;36(2):159–65.Google Scholar
Figueras, F, Oros, D, Cruz-Martinez, R, Padilla, N, Hernandez-Andrade, E, Botet, F, et al. Neurobehavior in term, small-for-gestational age infants with normal placental function. Pediatrics 2009 Oct 26;124(5):e934–41.Google Scholar
Mando, C, De Palma, C, Stampalija, T, Anelli, GM, Figus, M, Novielli, C, et al. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am J Physiol Endocrinol Metab 2014 Feb 15;306(4):E404–13.Google Scholar
Barker, JA. Fetal origins of coronary heart disease. BMJ 1995;311:171–4.Google Scholar

References

Barker, DJ, Osmond, C, Golding, J, Kuh, D, Wadsworth, ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989 Mar 4;298(6673):564–7.Google Scholar
Tintu, A, Rouwet, E, Verlohren, S, Brinkmann, J, Ahmad, S, Crispi, F, Van Bilsen, M, Carmeliet, P, Staff, AC, Tjwa, M, Cetin, I, Gratacós, E, Hernandez-Andrade, E, Hofstra, L, Jacobs, M, Lamers, WH, Morano, I, Safak, E, Ahmed, A, le Noble, F. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences. PLoS One 2009;4:e5155.Google Scholar
Gluckman, PD. Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatr Res 2004;56:311–17.CrossRefGoogle ScholarPubMed
Palinski, W, Napoli, C. Impaired fetal growth, cardiovascular disease, and the need to move on. Circulation 2008;117:341–3.Google Scholar
Phillips, D. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia 1996;39:1119–22.Google Scholar
Gluckman, PD, Hanson, MA, Cooper, C, Thornburg, KL. Effect of in utero and early-life conditions on adult health. N Engl J Med 2008;359:6173.Google Scholar
Committee on Practice Bulletins Gynecology, American College of Obstetricians and Gynecologists. Intrauterine growth restriction. Clinical management guidelines for obstetrician-gynecologists. Int J Gynecol Obstet 2001;72:8596.Google Scholar
Figueras, F, Gratacós, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 2014;36:8698.Google Scholar
Alberry, M, Soothill, P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 2007;92:62–7.Google Scholar
Baschat, AA, Cosmi, E, Bilardo, CM, Wolf, H, Berg, C, Rigano, S, Germer, U, Moyano, D, Turan, S, Hartung Jm Bhide, A, Muller, T, Bower, S, Nicolaides, KH, Thilaganathan, B, Gembruch, U, Ferrazzi, E, Hecher, K, Galan, H, Harman, CR. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109:253–61.Google Scholar
Crispi, F, Gratacós, E. Fetal cardiac function: Technical considerations and potential research and clinical applications. Fetal Diagn Ther 2012;32(1–2):4764.Google Scholar
Crispi, F, Hernandez-Andrade, E, Pelsers, MM, Plasencia, W, Benavides-Serralde, JA, Eixarch, E, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008 Sep;199(3):254 e1–8.CrossRefGoogle ScholarPubMed
Comas, M, Crispi, F, Cruz-Martinez, R, Martinez, JM, Figueras, F, Gratacós, E. Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 2010;203:45.e145.e7.Google Scholar
Cruz-Lemini, M Crispi, F, Valenzuela-Alcaraz, B, Figueras, F, Gómez, O, Sitges, M, Bijnens, B, Gratacós, E. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am J Obstet Gynecol 2014 Jun;210(6):552.e1552.e22.Google Scholar
Crispi, F, Bijnens, B, Figueras, F, Bartrons, J, Eixarch, E, Le Noble, F, Ahmed, A, Gratacós, E. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 2010 Jun 8;121(22):2427–36.Google Scholar
Demicheva, E, Crispi, F. Long-term follow-up of intrauterine growth restriction: Cardiovascular disorders. Fetal Diagn Ther 2014;36(2):143–53.Google Scholar
Baschat, AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 2011;37:501–14.Google Scholar
Crispi, F, Figueras, F, Cruz-Lemini, M, Bartrons, J, Bijnens, B, Gratacos, E. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol 2012;207:121.e1–e9.Google Scholar
Parra-Saavedra, M, Crovetto, F, Triunfo, S, Savchev, S, Peguero, A, Nadal, A, Parra, G, Gratacos, E, Figueras, F. Placental findings in late-onset SGA births without Doppler signs of placental insufficiency. Placenta 2013 Dec;34(12):1136–41.Google Scholar
Guyton, AC. HJ. Textbook of Medical Physiology. 12 edn. Philadelphia, PA: Elsevier Saunder 2011.Google Scholar
Bijnens, B, Cikes, M, Butakoff, C, Sitges, M, Crispi, F. Myocardial motion and deformation: What does it tell us and how does it relate to function? Fetal Diagn Ther 2012;32(12):516.Google Scholar
Bijnens, BH, Cikes, M, Claus, P, Sutherland, GR. Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur J Echocardiogr 2009 Mar;10(2):216–26.Google Scholar
Huhta, JC. Guidelines for the evaluation of heart failure in the fetus with or without hydrops. Pediatr Cardiol 2004 May–Jun;25(3):274–86.Google Scholar
Rychik, J, Tian, Z, Bebbington, M, Xu, F, McCann, M, Mann, S, et al. The twin-twin transfusion syndrome: Spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 2007 Oct;197(4):392 e1–8.Google Scholar
Opie, LH, Commerford, PJ, Gersh, BJ, MA. P. Controversies in ventricular remodelling. Lancet 2006;367:356–67.Google Scholar
Jessup, M AW, Casey, DE, Feldman, AM, Francis, GS, Ganiats, TG, Konstam, MA, Mancini, DM, Rahko, PS, Silver, MA, Stevenson, LW, Yancy, CW. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009;14(119):19772016.Google Scholar
Kiserud, T, Acharya, G. The fetal circulation. Prenat Diagn 2004 Dec 30;24(13):1049–59.Google Scholar
Comas, M, Crispi, F. Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn Ther 2012;32(1–2):30–8.Google Scholar
Germanakis, I, Gardiner, H. Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn Ther 2012;32(1–2):3946.Google Scholar
Godfrey, ME, Messing, B, Valsky, DV, Cohen, SM, Yagel, S. Fetal cardiac function: M-mode and 4D spatiotemporal image correlation. Fetal Diagn Ther 2012;32(1–2):1721.Google Scholar
Hernandez-Andrade, E, Benavides-Serralde, JA, Cruz-Martinez, R, Welsh, A, Mancilla-Ramirez, J. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagn Ther 2012;32(1–2):22–9.Google Scholar
Lee, W, Allan, L, Carvalho, JS, Chaoui, R, Copel, J, Devore, G, Hecher, K, Munoz, H, Nelson, T, Paladini, D, Yagel, S. ISUOG consensus statement: What constitutes a fetal echocardiogram? Ultrasound Obstet Gynecol 2008;32:239–42.Google Scholar
Kasper, DL, Braunwald, E, Fauci, A, et al: Harrison’s Principles of Internal Medicine. 16 edn. New York: McGraw-Hill, 2005, p. 1346.Google Scholar
Timmerman, E, Clur, SA, Pajkrt, E, Bilardo, CM. First-trimester measurement of the ductus venosus pulsatility index and the prediction of congenital heart defects. Ultrasound Obstet Gynecol 2010;36:668–75.Google Scholar
Cruz-Martinez, R, Figueras, F, Bennasar, M, Garcia-Posadas, R, Crispi, F, Hernandez-Andrade, E, et al. Normal reference ranges from 11 to 41 weeks’ gestation of fetal left modified myocardial performance index by conventional Doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagn Ther 2011:32(1–2):7986.Google Scholar
Tei, C, Nishimura, RA, Seward, JB, Tajik, AJ. Noninvasive Doppler-derived myocardial performance index: Correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 1997;10:169–78.Google Scholar
Yagel, S, Silverman, NH, Gembruch, U: Fetal Cardiology: Embryology, Genetics, Physiology, Echocardiographic Evaluation, Diagnosis and Perinatal Management of Cardiac Diseases. 2 edn. New York: Informa Healthcare USA, 2009.Google Scholar
Gardiner, HM, Pasquini, L, Wolfenden, J, Barlow, A, Li, W, Kulinskaya, E, et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006 Oct 26;113(1):3947.Google Scholar
Carvalho, JS, O’Sullivan, C, Shinebourne, EA, Henein, MY. Right and left ventricular long-axis function in the fetus using angular M-mode. Ultrasound Obstet Gynecol 2001 Dec;18(6):619–22.Google Scholar
Trambaiolo, P, Tonti, G, Salustri, A, Fedele, F, Sutherland, G. New insights into regional systolic and diastolic left ventricular function with tissue Doppler echocardiography: From qualitative analysis to a quantitative approach. J Am Soc Echocardiogr 2001 Feb;14(2):8596.Google Scholar
Yu, CM, Sanderson, JE, Marwick, TH, Oh, JK. Tissue Doppler imaging: A new prognosticator for cardiovascular diseases. J Am Coll Cardiol 2007 May 15;49(19):1903–14.CrossRefGoogle ScholarPubMed
Crispi, F, Sepulveda-Swatson, E, Cruz-Lemini, M, Rojas-Benavente, J, Garcia-Posada, R, Dominguez, JM, et al. Feasibility and reproducibility of a standard protocol for 2D speckle tracking and tissue Doppler-based strain and strain rate analysis of the fetal heart. Fetal Diagn Ther 2012;32(1–2):96108.CrossRefGoogle ScholarPubMed
Van Mieghem, T, DeKoninck, P, Steenhaut, P, Deprest, J. Methods for prenatal assessment of fetal cardiac function. Prenat Diagn 2009;29:1193–203.Google Scholar
Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, K. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation: Arterial, intracardiac, and venous blood flow velocity studies. Circulation 1995;91:129–38.Google Scholar
Cruz-Lemini, M, Bijnens, B, Valenzuela-Alcaraz, B, Sitges, M, Figueras, F, Crispi, F, Gratacós, E. Cardiac remodeling in utero in early- and late-onset intrauterine growth restriction. Ultrasound Obstet Gynecol 2012:40 (Issue S1):14.Google Scholar
Cruz-Lemini, M, Crispi, F, Valenzuela-Alcaraz, B, Figueras, F, Sitges, M, Gomez, O, et al. Value of annular M-mode displacement versus tissue Doppler velocities to assess cardiac function in intrauterine growth restriction. Ultrasound Obstet Gynecol 2013 Aug;42(2):175–81.Google Scholar
Bilardo, CM, Wolf, H, Stigter, RH, Ville, Y, Baez, E, Visser, CHA, Hecher, K. Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet Gynecol 2004;23:119–25.Google Scholar
Makikallio, K, Vuolteenaho, O, Jouppila, P, Rasanen, J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation 2002;105:2058–63.Google Scholar
Niewiadomska-Jarosik, K, Lipecka-Kidawska, E, Kowalska-Koprek, U, et al. Assessment of cardiac function in fetuses with intrauterine growth retardation using the Tei index. Med Wieku Rozwoj 2005;9:153–60.Google Scholar
Larsen, LU, Petersen, OB, Sloth, E, Uldbjerg, N. Color Doppler myocardial imaging demonstrates reduced diastolic tissue velocity in growth retarded fetuses with flow redistribution. Eur J Obstet Gynecol Reprod Biol 2011 Apr;155(2):140–5.Google Scholar
Crispi, F, Bijnens, B, Sepulveda-Swatson, E, Cruz-Lemini, M, Rojas-Benavente, J, Gonzalez-Tendero, A, Garcia-Posada, R, Rodriguez-Lopez, M, Demicheva, E, Sitges, M, Gratacós, E. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging 2014 Sep;7(5):781–7.Google Scholar
Comas, M, Crispi, F, Cruz-Martinez, R, Figueras, F, Gratacos, E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstet Gynecol 2011 Jul;205(1):57.e1–6.Google Scholar
Cruz-Martinez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Changes in myocardial performance index and aortic isthmus and ductus venosus Doppler in term, small-for-gestational age fetuses with normal umbilical artery pulsatility index. Ultrasound Obstet Gynecol 2011;38(4):400–5.Google Scholar
Pérez-Cruz, M, Crispi, F, Fernández, M, Parra, J, Gómez Roig, M, Gratacós, E. Fetal cardiac function in late IUGR versus SGA defined by estimated fetal weight, cerebro-placental ratio and uterine artery Doppler. Ultrasound Obstet Gynecol 2014:44 (Issue S1): 19.Google Scholar
Chaiworapongsa, T, Espinoza, J, Yoshimatsu, J, et al. Subclinical myocardial injury in small-for-gestational-age neonates. J Matern Fetal Neonatal Med 2002;11:385–90.Google Scholar
Crispi, F, Gonzalez-Tendero, A, Zhang, C, Balicevic, V, Cardenas, R, Loncaric, S, Bonnin, A, Gratacós, E, Bijnens, B. Cardiac fiber orientation and coronary changes in a rabbit model of IUGR using X-ray phase-contrast synchrotron radiation-based micro-CT. Ultrasound Obstet Gynecol 2014; 44 (Issue S1): 133.Google Scholar
Gonzalez-Tendero, A, Torre, I, Garcia-Canadilla, P, Crispi, F, García-García, F, Dopazo, J, Bijnens, B, Gratacós, E. Intrauterine growth restriction is associated with cardiac ultrastructural and gene expression changes related to the energetic metabolism in a rabbit model. Am J Physiol Heart Circ Physiol 2013 Dec;305(12):H1752–60.Google Scholar
Iruretagoyena, JY, Torre, I, Amat-Roldan, I, Psilodimitrakopoulos, S, Crispi, F, Garcia-Canadilla, P, Gonzalez-Tendero, A, Nadal, A, Eixarch, E, Loza-Alvarez, P, Artigas, D, Gratacos, E. Ultrastructural analysis of myocardiocyte sarcomeric changes in relation with cardiac dysfunction in human fetuses with intrauterine growth restriction. Am J Obstet Gynecol 2011;204:S34.Google Scholar
Skilton, MK, Evans, N, Griffiths, KA, Harmer, JA, Celermajer, D. Aortic wall thickness in newborns with intrauterine restriction. Lancet 2005;23:1484–6.Google Scholar
Stergiotou, I, Crispi, F, Valenzuela-Alcaraz, B, Cruz-Lemini, M, Bijnens, B, Gratacos, E. Aortic and carotid intima-media thickness in term small-for-gestational-age newborns and relationship with prenatal signs of severity. Ultrasound Obstet Gynecol 2014 Jun;43(6):625–31.Google Scholar
Cosmi, E, Visentin, S, Fanelli, T, Mautone, AJ, Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet Gynecol 2009 Nov;114(5):1109–14.Google Scholar
Martin, H, Hu, J, Gennser, G, Norman, M. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 2000;102:2739–44.Google Scholar
Bjarnegård, N, Morsing, E, Cinthio, M, Länne, T, Brodszki, J. Cardiovascular function in adulthood following intrauterine growth restriction with abnormal fetal blood flow. Ultrasound Obstet Gynecol 2013 Feb;41(2):177–84.Google Scholar
Berenson, GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol 2002;90:3L7L.Google Scholar
Girsen, A, Ala-Kopsala, M, Makikallio, K, Vuolteenaho, O, Rasanen, J. Cardiovascular hemodynamics and umbilical artery N-terminal peptide of proB-type natriuretic peptide in human fetuses with growth restriction. Ultrasound Obstet Gynecol 2007;29:296303.Google Scholar
Baschat, AA. Ductus venosus Doppler for fetal surveillance in high-risk pregnancies. Clin Obstet Gynecol 2010 Dec;53(4):858–68.Google Scholar
Cruz-Lemini, M, Crispi, F, Van Mieghem, T, Pedraza, D, Cruz-Martinez, R, Acosta-Rojas, R, et al. Risk of perinatal death in early-onset intrauterine growth restriction according to gestational age and cardiovascular Doppler indices: A multicenter study. Fetal Diagn Ther 2012;32(1–2):116–22.Google Scholar
Hernandez-Andrade, E, Crispi, F, Benavides-Serralde, JA, Plasencia, W, Diesel, HF, Eixarch, E, Acosta-Rojas, R, Figueras, F, Nicolaides, K, Gratacós, E. Contribution of the myocardial performance index and aortic isthmus blood flow index to predicting mortality in preterm growth-restricted fetuses. Ultrasound Obstet Gynecol 2009 Oct;34(4):430–6.Google Scholar
Williams, CL, Hayman, LL, Daniels, SR, Robinson, TN, Steinberger, J, Paridon, S, Bazzarre, T. Cardiovascular health in childhood: A statement for health professionals from the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2002;106:143–60.Google Scholar
Skilton, MR, Mikkilä, V, Würtz, P, Ala-Korpela, M, Sim, KA, Soininen, P, Kangas, AJ, Viikari, JS, Juonala, M, Laitinen, T, Lehtimäki, T, Taittonen, L, Kähönen, M, Celermajer, DS, Raitakari, OT. Fetal growth, omega-3 (ω-3) fatty acids, and progression of subclinical atherosclerosis: preventing fetal origins of disease? The Cardiovascular Risk in Young Finns Study. Am J Clin Nutr 2013;97:5865.Google Scholar
Skilton, MR, Ayer, JG, Harmer, JA, Webb, K, Leeder, SR, Marks, GB, Celermajer, DS. Impaired fetal growth and arterial wall thickening. A randomized trial of omega-3 supplementation. Pediatrics 2012;129:e698.Google Scholar
Rodriguez-Lopez, M, Osorio, L, Acosta, R, Cruz-Lemini, M, Figueras, J, Figueras, F, Gratacós, E, Crispi, F. Effect of postnatal diet on reverting cardiovascular remodelling in intrauterine growth restriction. Ultrasound Obstet Gynecol 2014; 44 (Issue S1): 120.Google Scholar
Mancia, G, Fagard, R, Narkiewicz, K, Redón, J, Zanchetti, A, Böhm, M, Christiaens, T, Cifkova, R, De Backer, G, Dominiczak, A, Galderisi, M, Grobbee, DE, Jaarsma, T, Kirchhof, P, Kjeldsen, SE, Laurent, S, Manolis, AJ, Nilsson, PM, Ruilope, LM, Schmieder, RE, Sirnes, PA, Sleight, P, Viigimaa, M, Waeber, B, Zannad, F; Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013;31:1281–357.Google Scholar
Kavey, RE, Allada, V, Daniels, SR, Hayman, LL, McCrindle, BW, Newburger, JW, Parekh, RS, Steinberger, J. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: Endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–38.Google Scholar

References

Barker, DJ, Osmond, C, Golding, J, Kuh, D, Wadsworth, ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989;298:564–7.Google Scholar
Manning Frank, A: Fetal medicine, Principles and Practice. Chapter 2, The fetal heart rate – genesis of fetal heart rate patterns. Appleton & Lange Verlag, Norwalk, CT, 1995.Google Scholar
Dawes, GS, Visser, GH, Goodman, JD, Levine, DH. Numerical analysis of the human fetal heart rate: Modulation by breathing and movement. Am J Obstet Gynecol 1981;140:535–44.Google Scholar
Henson, GL, Dawes, GS, Redman, CW. Antenatal fetal heart-rate variability in relation to fetal acid-base status at caesarean section. BJOG 1983;90:516–21.Google Scholar
Murotsuki, J, Bocking, AD, Gagnon, R. Fetal heart rate patterns in growth-restricted fetal sheep induced by chronic fetal placental embolization. Am J Obstet Gynecol 1997;176:282–90.Google Scholar
Schäffer, L, Burkhardt, T, Müller-Vizentini, D, Rauh, M, Tomaske, M, Mieth, RA, Bauersfeld, U, Beinder, E. Cardiac autonomic balance in small-for-gestational-age neonates. Am J Physiol Heart Circ Physiol 2008;294:H884–90.Google Scholar
Jones, CT, Robinson, JS. Studies on experimental growth retardation in sheep. Plasma catecholamines in fetuses with small placenta. J Dev Physiol 1983;5:7787.Google Scholar
Lohmeier, TE. The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens 2001;14:147S154S.Google Scholar
McMillen, IC, Robinson, JS. Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol Rev 2005;85:571633.Google Scholar
Pardi, G, Cetin, I, Marconi, AM, Lanfranchi, A, Bozzetti, P, Ferrazzi, E, Buscaglia, M, Battaglia, FC. Diagnostic value of blood sampling in fetuses with growth retardation. N Engl J Med 1993;328:692–6.Google Scholar
Bekedam, DJ, Visser, HA, Mulder, EJH, Poelmann-Weesjes, G. Heart rate variation and movement incidence in growth retarded fetuses: The significance of antenatal late heart rate decelerations. Am J Obstet Gynecol 1987;157:126–33.Google Scholar
Ribbert, LSM, Snijders, RJM, Nicolaides, KH, Visser, GHA. Relation of fetal blood gases and data from computer assisted analysis of fetal heart rate patterns in small for gestation fetuses. BJOG 1991;98:820–3.Google Scholar
Snijders, RJM, Ribbert, LSM, Visser, GHA, Mulder, EJH. Numeric analysis of heart rate variation in intrauterine growth-retarded fetuses: A longitudinal study. Am J Obstet Gynecol 1992;166:22–7.Google Scholar
Visser, GH, Redman, CW, Huisjes, HJ, Turnbull, AC. Nonstressed antepartum heart rate monitoring: Implications of decelerations after spontaneous contractions. Am J Obstet Gynecol 1980;138:429–35.Google Scholar
Emmen, L, Huisjes, HJ, Aarnoudse, JG, Visser, GH, Okken, A. Antepartum diagnosis of the “terminal” fetal state by cardiotocography. BJOG 1975;82:353–9.Google Scholar
Visser, GHA, Sadovsky, G, Nicolaides, KH. Antepartum heart rate patterns in small-for-gestational-age third-trimester fetuses: Correlations with blood gas values obtained at cordocentesis. Am J Obstet Gynecol 1990;162:698703.Google Scholar
Hecher, K, Bilardo, CM, Stigter, RH, Ville, Y, Hackelöer, BJ, Kok, HJ, Senat, MV, Visser, GH. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet Gynecol 2001;18:564–70.Google Scholar
Ribbert, LS, Visser, GH, Mulder, EJ, Zonneveld, MF, Morssink, LP. Changes with time in fetal heart rate variation, movement incidences and haemodynamics in intrauterine growth retarded fetuses: A longitudinal approach to the assessment of fetal well being. Early Hum Dev 1993;31:195208.Google Scholar
Figueras, F, Albela, S, Bonino, S, Palacio, M, Barrau, E, Hernandez, S, Casellas, C, Coll, O, Cararach, V. Visual analysis of antepartum fetal heart rate tracings: Inter- and intra-observer agreement and impact of knowledge of neonatal outcome. J Perinat Med 2005;33:241–5.Google Scholar
Pardey, J, Moulden, M, Redman, CWG. A computer system for the numerical analysis of nonstress tests. Am J Obstet Gynecol 2002;186:1095–103.Google Scholar
Dawes, GS, Visser, GHA, Goodman, JDS, Redman, CWG. Numerical analysis of the human fetal heart rate: The quality of ultrasound recorts. Am J Obstet Gynecol 1981;141:4352.Google Scholar
Street, P, Dawes, GS, Moulden, M, Redman, CWG. Short-term variation in abnormal antenatal fetal heart rate records. Am J Obstet Gynecol 1991;165:515–23.Google Scholar
Nijhuis, IJ, Ten Hof, J, Mulder, EJ, Nijhuis, JG, Narayan, H, Taylor, DJ, Visser, GH. Fetal heart rate in relation to its variation in normal and growth retarded fetuses. Eur J Obstet Gynecol Reprod Biol 2000;89:2733.Google Scholar
Serra, V, Bellver, J, Moulden, M, Redman, CWG. Computerized analysis of normal fetal heart rate pattern throughout gestation. Ultrasound Obstet Gynecol 2009;34:74–9.Google Scholar
Nijhuis, IJM, Ten Hof, J, Mulder, EJH, Nijhuis, JG, Narayan, H, Taylor, DJ et al. Numerical fetal heart rate analysis: Nomograms, minimal duration of recording and intrafetal consistency. Prenat Neonat Med 1998;3:314–22.Google Scholar
Nijhuis, IJ, Ten Hof, J, Nijhuis, JG, Mulder, EJ, Narayan, H, Taylor, DJ, Visser, GH. Temporal organization of fetal behavior from 24-weeks gestation onwards in normal and complicated pregnancies. Dev Psychobiol 1999;34:257–68.Google Scholar
Van Vliet, MA, Martin, CB Jr, Nijhuis, JG, Prechtl, HF. The relationship between fetal activity and behavioral states and fetal breathing movements in normal and growth-retarded fetuses. Am J Obstet Gynecol 1985;153:582–8.Google Scholar
Mushkat, Y, Ascher-Landsberg, J, Keidar, R, Carmon, E, Pauzner, D, David, MP. The effect of betamethasone versus dexamethasone on fetal biophysical parameters. Eur J Obstet Gynecol Reprod Biol 2001;97:50–2.Google Scholar
Mulder, EJ, Derks, JB, Visser, GH. Antenatal corticosteroid therapy and fetal behaviour: A randomised study of the effects of betamethasone and dexamethasone. BJOG 1997;104:1239–47.Google Scholar
Dawes, GS, Serra-Serra, V, Moulden, M, Redman, CW. Dexamethasone and fetal heart rate variation. BJOG 1994;101:675–9.CrossRefGoogle ScholarPubMed
Serra, V, Moulden, M, Bellver, J, Redman, CW. The value of the short-term fetal heart rate variation for timing the delivery of growth-retarded fetuses. BJOG 2008;115:1101–7.Google Scholar
Anceschi, MM, Piazze, JJ, Ruozi-Berretta, A, Cosmi, E, Cerekja, A, Maranghi, L, Cosmi, EV. Validity of short term variation (STV) in detection of fetal acidemia. J Perinat Med 2003;31:231–6.Google Scholar
Dawes, GS, Moulden, M, Redman, CWG. Short term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor. Obstet Gynecol 1992;80:673–8.Google ScholarPubMed
Anceschi, MM, Ruozi-Berretta, A, Piazze, JJ, Cosmi, E, Cerekja, A, Meloni, P, Cosmi, EV. Computerized cardiotocography in the management of intrauterine growth restriction associated with Doppler velocimetry alterations. Int J Gynaecol Obstet 2004;86:365–70.Google Scholar
Lees, CC, Marlow, N, Van Wassenaer-Leemhuis, A, Arabin, B, Bilardo, CM, Brezinka, C, Calvert, S, Derks, JB, Diemert, A, Duvekot, JJ, Ferrazzi, E, Frusca, T, Ganzevoort, W, Hecher, K, Martinelli, P, Ostermayer, E, Papageorghiou, AT, Schlembach, D, Schneider, KT, Thilaganathan, B, Todros, T, Valcamonico, A, Visser, GH, Wolf, H; TRUFFLE study group. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): A randomised trial. Lancet 2015;385:2162–72.Google Scholar
Signorini, MG, Fanelli, A, Magenes, G. Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Comput Math Methods Med 2014;2014:707581. doi: 10.1155/2014/707581. Epub 2014 Jan 30.Google Scholar
Gonçalves, H, Rocha, AP, Ayres-de-Campos, D, Bernardes, J. Frequency domain and entropy analysis of fetal heart rate: Appealing tools for fetal surveillance and pharmacodynamic assessment of drugs. Cardiovasc Hematol Disord Drug Targets 2008;8:91–8.Google Scholar
Van Leeuwen, P, Lange, S, Bettermann, H, Grönemeyer, D, Hatzmann, W. Fetal heart rate variability and complexity in the course of pregnancy. Early Hum Dev 1999;54:259–69.Google Scholar
Schneider, U, Fiedler, A, Liehr, M, Kähler, C, Schleussner, E Fetal heart rate variability in growth restricted fetuses. Biomed Tech (Berl) 2006;51:248–50.Google Scholar
Huhn, EA, Lobmaier, S, Fischer, T, Schneider, R, Bauer, A, Schneider, KT, Schmidt, G: New computerized fetal heart rate analysis for surveillance of intrauterine growth restriction. Prenat Diagn 2011;31:509–14.Google Scholar
Lobmaier, SM, Huhn, EA, Pildner von Steinburg, S, Müller, A, Schuster, T, Ortiz, JU, Schmidt, G, Schneider, KT. Phase-rectified signal averaging as a new method for surveillance of growth restricted fetuses. J Matern Fetal Neonatal Med 2012;25:2523–8.Google Scholar
Graatsma, EM, Mulder, EJ, Vasak, B, Lobmaier, SM, Pildner von Steinburg, S, Schneider, KT, Schmidt, G, Visser, GH. Average acceleration and deceleration capacity of fetal heart rate in normal pregnancy and in pregnancies complicated by fetal growth restriction. J Matern Fetal Neonatal Med 2012;25:2517–22.Google Scholar
Lobmaier, SM, Mensing van Charante N, Ferrazzi E, Giussani DA, Shaw CJ, Müller A, Ortiz JU, Ostermayer E, Haller B, Prefumo F, Frusca T, Hecher K, Arabin B, Thilaganathan B, Papageorghiou AT, Bhide A, Martinelli P, Duvekot JJ, Van Eyck J, Visser GH, Schmidt G, Ganzevoort W, Lees CC, Schneider KT. Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction – a secondary analysis of TRUFFLE-trial. Am J Obstet Gynecol 2016. Nov;215(5):630.e1-630.e7Google Scholar

References

Hecher, K, Bilardo, CM, Stigter, RH, et al. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet Gynecol 2001;18:564–70.Google Scholar
Baschat, A, Gembruch, U, Harman, CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001;18:571–7.Google Scholar
Ferrazzi, E, Bozzo, M, Rigano, S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002;19:140–6.Google Scholar
Bilardo, CM, Wolf, H, Stigter, RH et al. Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet Gynecol 2004;23:119–25.Google Scholar
Kiserud, T, Rasmussen, S, Skulstad, SM. Blood flow and degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol 2000;182:147–53.Google Scholar
Haugen, G, Kiserud, T, Godfrey, K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol 2004;24:599605.Google Scholar
Tchirikov, M, Schlabritz-Loutsevitch, H, Hubbard, GB, et al. Structural evidence for mechanisms to redistribute hepatic and ductus venosus blood flows in non-human primate fetuses. Am J Obstet Gynecol 2005;192:1146–52.Google Scholar
Haugen, G, Bollerslev, J, Henriksen, T. Human fetoplacental and fetal liver blood flow after maternal glucose loading: A cross-sectional observational study. Acta Obstet Gynecol Scand 2014;93:778–85.Google Scholar
Tchirikov, M, Schröder, HJ, Hecher, K. Ductus venosus shunting in the fetal venous circulation: Regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet Gynecol 2006;27:452–61.Google Scholar
Kessler, J, Rasmussen, S, Kiserud, T. The fetal portal vein: Normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol 2007;30:5260.Google Scholar
Kiserud, T, Kessler, J, Ebbing, C, et al. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol 2006;28:143–9.Google Scholar
Kessler, J, Rasmussen, S, Kiserud, T. The left portal vein as an indicator of watershed in the fetal circulation: Development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol 2007;30:757–64.Google Scholar
Kessler, J, Rasmussen, S, Godfrey, K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: Low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res 2008;63:315–20.Google Scholar
Ebbing, C, Rasmussen, S, Godfrey, KM, et al. Redistribution pattern of fetal liver circulation in intrauterine growth restriction. Acta Obstet Gynecol Scand 2009;88:1118–23.Google Scholar
Haugen, G, Hanson, M, Kiserud, T, et al. Fetal liver-sparing cardiovascular adaptations linked to mother’s slimness and diet. Circ Res 2005;96:1214.Google Scholar
Godfrey, KM, Haugen, G, Kiserud, T, et al. Fetal liver blood flow distribution: Role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One 2012;7:e41759.Google Scholar
Kiserud, T, Ebbing, C, Kessler, J, Rasmussen, S. Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet Gynecol 2006;28:126–36.Google Scholar
Hecher, K, Campbell, S, Snijders, R, et al. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet Gynecol 1994; 4:381–90.Google Scholar
Kessler, J, Rasmussen, S, Hanson, M, et al. Longitudinal reference ranges for ductus venosus flow velocities and waveform indices. Ultrasound Obstet Gynecol 2006 Dec;28:890–8.Google Scholar
Kiserud, T, Kilavuz, O, Hellevik, LR. Venous pulsation in the fetal left portal branch: The effect of pulse and flow direction. Ultrasound Obstet Gynecol 2003; 21:359–64.Google Scholar
Hellevik, LR, Stergiopulos, N, Kiserud, T, et al. A mathematical model of umbilical venous pulsation. J Biomech 2000;33:1123–30.CrossRefGoogle ScholarPubMed
Wada, N, Tachibana, D, Kurihara, Y, et al. Alterations of time-intervals of the ductus venosus and atrioventricular flow velocity waveforms in growth restricted fetuses. Ultrasound Obstet Gynecol 2014; doi: 10.1002/uog.14717.Google Scholar
Rigano, S, Bozzo, M, Ferrazzi, E, et al. Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: A longitudinal study. Am J Obstet Gynecol 2001;185:834–8.Google Scholar
Fouron, JC. The unrecognized physiological and clinical significance of the fetal aortic isthmus. Ultrasound Obstet Gynecol 2003;22: 441–7.Google Scholar
Fouron, JC, Gosselin, J, Amiel-Tison, C, et al. Correlation between prenatal velocity waveforms in the aortic isthmus and neurodevelopmental outcome between the ages of 2 and 4 years. Am J Obstet Gynecol 2001;184:630–6.Google Scholar
Figueras, F, Benavides, A, Del Rio, M, et al. Monitoring of fetuses with intrauterine growth restriction: Longitudinal changes in ductus venosus and aortic isthmus flow. Ultrasound Obstet Gynecol 2009;33:3943.Google Scholar
Chabaneix, J, Fouron, JC, Sosa-Olavarria, A, et al. Profiling left and right ventricular proportional output during fetal life with a novel systolic index in the aortic isthmus. Ultrasound Obstet Gynecol 2014; 44:176–81.Google Scholar
Cruz-Martinez, R, Figueras, F, Oros, D, et al. Cerebral blood perfusion and neurobehavioral performance in full-term small-for-gestational-age fetuses. Am J Obstet Gynecol 2009;201:474.e1–7.Google Scholar
Figueras, F, Eixarch, E, Meler, E, et al. Small-for-gestational-age fetuses with normal umbilical artery Doppler have suboptimal perinatal and neurodevelopmental outcome. Eur J Obstet Gynecol Reprod Biol 2008;136:34–8.Google Scholar
Konje, JC, Bell, SC, Taylor, DJ. Abnormal Doppler velocimetry and blood flow volume in the middle cerebral artery in very severe intrauterine growth restriction: Is the occurrence of reversal of compensatory flow too late? BJOG 2001;108:973–9.Google Scholar
Benavides-Serralde, JA, Hernandez-Andrade, E, Cruz-Martinez, R, et al. Doppler evaluation of the posterior cerebral artery in normally grown and growth restricted fetuses. Prenat Diagn 2014;34:115–20.Google Scholar
Benavides-Serralde, A, Scheier, M, Cruz-Martinez, R, et al. Changes in central and peripheral circulation in intrauterine growth-restricted fetuses at different stages of umbilical artery flow deterioration: New fetal cardiac and brain parameters. Gynecol Obstet Invest 2011;71:274–80.Google Scholar
Hernandez-Andrade, E, Serralde, JA, Cruz-Martinez, R. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses? Prenat Diagn 2012;32:103–12.Google Scholar
Baschat, AA, Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol 2003;21:124–7.Google Scholar
Hecher, K, Spernol, R, Stettner, H et al. Potential for diagnosing imminent risk to appropriate- and small-for-gestational-age fetuses by Doppler sonographic examination of umbilical and cerebral arterial blood flow. Ultrasound Obstet Gynecol 1992;2:266–71.Google Scholar
Morales-Roselló, J, Khalil, A, Morlando, M, et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol 2014;43:303–10.Google Scholar
Morales-Roselló, J, Khalil, A, Morlando, M, et al. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 2015;45:156–61.Google Scholar
Parra-Saavedra, M, Simeone, S, Triunfo, S, et al. Correlation between histological signs of placental underperfusion and perinatal morbidity in late-onset small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2015;45:149–55.Google Scholar
Figueras, F, Savchev, S, Triunfo, S., et al. An integrated model with classification criteria to predict small-for-gestational-age fetuses at risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015;45:279–85.Google Scholar
Cruz-Lemini, M, Crispi, F, Valenzuela-Alcaraz, B, et al. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am J Obstet Gynecol 2014;210:552.e1–22Google Scholar
Baschat, A, Muench, MV, Gembruch, U. Coronary artery blood flow velocities in various fetal conditions. Ultrasound Obstet Gynecol 2003;21:426–9.Google Scholar
Lees, C, Marlow, N, van Wassenaer-Leemhuis, A., et al. and the TRUFFLE Group. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): A randomised trial. Lancet 2015;385:2162–72.Google Scholar

References

Cetin, I, Boito, S, Radaelli, T. Evaluation of fetal growth and fetal well-being. Seminars in Ultrasound CT and MRI 2008;29:136–46.Google Scholar
Sparks, JW. Semin Perinatol 1984;8:7493.Google Scholar
Padoan, A, Rigano, S, Ferrazzi, E, et al. Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am J Obstet Gynecol 2004;191(4):1459–64.Google Scholar
Baschat, AA. Fetal responses to placental insufficiency: an update. BJOG 2004;111:1031–41.Google Scholar
Alexander, GR, Kogan, M, Bader, D, et al. US birth weight/gestational age-specific neonatal mortality: 1995–1997 rates for whites, Hispanics, and blacks. Pediatrics 2003;111:e61–6.Google Scholar
De Rooij, SR, Painter, RC, Holleman, F, et al. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr 2007;86:1219–24.Google Scholar
Painter, RC, Osmond, C, Gluckman, P, et al. Transgenerational effect of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008;115:1243–9.Google Scholar
Pardi, G, Cetin, I, Marconi, AM, et al. Diagnostic value of blood sampling in fetuses with growth retardation. N Engl J Med 1993;328:692–6.Google Scholar
Unterscheider, J, Daly, S, Geary, MP, et al. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO Study. Am J Obstet Gynecol 2013;208(4):290.e1–6.Google Scholar
Cetin, I., Mandò, C., Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr Opin Clin Nutr Metab Care 2013;16(3):310–19.Google Scholar
Vaughan, OR, Sferruzzi-Perri, AN, Coan, PM, et al. Environmental regulation of placental phenotype: Implications for fetal growth. Reprod Fertil Dev 2012;24:8096.Google Scholar
Igwebuike, UM. Impact of maternal nutrition on ovine foetoplacental development: A review of the role of insulin-like growth factors. Anim Reprod Sci 2010; 121:189–96.Google Scholar
Imdad, A, Bhutta, ZA. Maternal nutrition and birth outcomes: Effect of balanced protein-energy supplementation. Paediatr Perinat Epidemiol 2012; 26 (Suppl 1):178–90.Google Scholar
McKnight, JR, Satterfield, MC, Li, X, et al. Obesity in pregnancy: Problems and potential solutions. Front Biosci (Elite Ed) 2011; 3:442–52; Review.Google Scholar
Luzzo, KM, Wang, Q, Purcell, SH, et al. High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One 2012;7:e49217.Google Scholar
Mandò, C, Calabrese S, Mazzocco MI, Novielli C, Anelli GM, Antonazzo P, Cetin I. Sex specific adaptations in placental biometry of overweight and obese women. Placenta 2016;38:1–7.Google Scholar
Moran, LJ, Sui, Z, Cramp, CS, Dodd, JM. A decrease in diet quality occurs during pregnancy in overweight and obese women which is maintained postpartum. Int J Obes (Lond) 2013;37(5):704–11.Google Scholar
Josefson, JL, Feinglass, J, Rademaker, AW, et al. Maternal obesity and vitamin D sufficiency are associated with cord blood vitamin D insufficiency. J Clin Endocrinol Metab 2013;98:114–19.Google Scholar
Kim, H, Hwang, JY, Kim, KN, et al. Relationship between body-mass index and serum folate concentrations in pregnant women. Eur J Clin Nutr 2012;66:136–38.Google Scholar
Dao, MC, Sen, S, Iyer, C, et al. Obesity during pregnancy and fetal iron status: Is Hepcidin the link? J Perinatol 2013;33(3):177–81.Google Scholar
Timmermans, S, Jaddoe, VW, Hofman, A, et al. Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: The Generation R Study. Br J Nutr 2009;102(5):777–85.Google Scholar
Novakovic, B, Saffery, R. The ever growing complexity of placental epigenetics – Role in adverse pregnancy outcomes and fetal programming. Placenta 2012; 33:959–70.Google Scholar
Sebert, S, Sharkey, D, Budge, H, et al. The early programming of metabolic health: Is epigenetic setting the missing link? Am J Clin Nutr 2011;94 (Suppl):1953S1958S.Google Scholar
Sibley, CP, Turner, MA, Cetin, I, et al. Placental phenotypes of intrauterine growth. Pediatr Res 2005;58(5):827–32.Google Scholar
Cetin, I, Alvino, G. Intrauterine growth restriction: Implications for placental metabolism and transport. A review. Placenta 2009;30 (Suppl A):S77S82.Google Scholar
Mandò, C, Tabano, S, Colapietro, P, et al. Transferrin receptor gene and protein expression and localization in human IUGR and normal term placentas. Placenta 2011;32:4450.Google Scholar
Furness, D, Fenech, M, Dekker, G, et al. Vitamin B12, Vitamin B6 and homocysteine: Impact on pregnancy outcome. Matern Child Nutr 2013;9(2):155–66.Google Scholar
Cetin, I, Ronzoni, S, Marconi, AM, et al. Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies. Am J Obstet Gynecol 1996;174(5):1575–83.Google Scholar
Marconi, AM1, Paolini, CL, Stramare, L, et al. Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted pregnancies. Pediatr Res 1999;46(1):114–19.Google Scholar
Paolini, CL, Marconi, AM, Ronzoni, S, et al. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab 2001;86(11):5427–32.Google Scholar
Mandò, C, Tabano, S, Pileri, P, et al. SNAT2 expression and regulation in human growth-restricted placentas. Pediatr Res 2013;74(2):104–10.Google Scholar
Haggarty, P. Placental regulation of fatty acid delivery and its effect on fetal growth – a review. Placenta 2002;23(Suppl. A):S28–38.Google Scholar
Cetin, I, Giovannini, N, Alvino, G, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res 2002;52(5):750–5.Google Scholar
Cetin, I, Koletzko, B. Long-chain u-3 fatty acid supply in pregnancy and lactation. Curr Opin Clin Nutr Metab Care 2008;11:297302.Google Scholar
McArdle, HJ, Andersen, HS, Jones, H, et al. Copper and iron transport across the placenta: regulation and interactions. J Neuroendocrinol 2008;20(4):427e31. Review.Google Scholar
Zimmerman, MB, Hurrel, RF. Nutritional iron deficiency. Lancet 2007;370: 511e20.Google Scholar
Nicolas, G, Chauvet, C, Viatte, L, Danan, JL, Bigard, X, Devaux, I, Beaumont, C, Kahn, A, Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110:1037–44.Google Scholar
Mandò, C, Razini P, Novielli C, Anelli GM, Belicchi M, Erratico S, Banfi S, Meregalli M, Tavelli A, Baccarin M, Rolfo A, Motta S, Torrente Y, Cetin I. Impaired angiogenic potential of human placental mesenchymal stromal cells in intrauterine growth restriction. Stem Cells Transl Med 2016;5(4):451–63.Google Scholar
Pardi, G, Cetin, I, Marconi, AM, et al. Venous drainage of the human uterus: Respiratory gas studies in normal and fetal growth-retarded pregnancies. Am J Obstet Gynecol 1992;166(2):699706.Google Scholar
Sibley, Cp, Pardi, G, Cetin, I, et al. Workshop Report: Pathogenesis of intrauterine growth restriction (IUGR) – conclusions derived from a European Union Biomed 2 Concerted Action Project “Importance of Oxygen Supply in Intrauterine Growth Restricted Pregnancies.” Trophoblast Research 2002;23:S75S79.Google Scholar
Tjoa, ML, Cindrova-Davies, T, Spasic-Boskovic, O, et al. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol 2006;169:400–4.Google Scholar
Yung, HW, Calabrese, S, Hynx, D, et al. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 2008;173:451–62.Google Scholar
Lattuada, D, Colleoni, F, Martinelli, A, et al. Higher mitochondrial DNA content in human IUGR placenta. Placenta 2008;29(12):1029–33.Google Scholar
Lynn, EG, Lu, Z, Minerbi, D, et al. The regulation, control, and consequences of mitochondrial oxygen utilization and disposition in the heart and skeletal muscle during hypoxia. Antioxid Redox Signal 2007;9:1353–61.Google Scholar
Colleoni, F, Lattuada, D, Garretto, A, et al. Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy. Am J Obstet Gynecol 2010;203(4):365.e1–6.Google Scholar
Mandò, C, De Palma, C, Stampalija, T, et al. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am J Physiol Endocrinol Metab 2014;306(4):E404–13.Google Scholar
Belkacemi, L, Jelks, A, Chen, CH, et al. Altered placental development in undernourished rats: Role of maternal glucocorticoids. Reprod Biol Endocrinol 2011;9:105.Google Scholar
Sebert, S, Sharkey, D, Budge, H, et al. The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr 2011; 94(Suppl):1953S–8S.Google Scholar
Cetin, I, Marconi, AM, Bozzetti, P, et al. Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in utero. Am J Obstet Gynecol 1988;158(1):120–6.Google Scholar
Cetin, I, Corbetta, C, Sereni, LP, et al. Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesis. Am J Obstet Gynecol 1990;162(1):253–61.Google Scholar
Cetin, I, Ronzoni, S, Marconi, AM, et al. Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies. Am J Obstet Gynecol 1996;174(5):1575–83.Google Scholar
Cetin, I, Giovannini, N, Alvino, G, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal–maternal relationships. Pediatr Res 2002;52:750–5.Google Scholar
Marconi, Am, Cetin, I, Davoli, E, et al. An evaluation of fetal glucogenesis in intrauterine growth retarded pregnancies by a comparison of steady state fetal and maternal enrichments of plasma glucose at cordocentesis. Metabolism 1993;42:860–4.Google Scholar
Novielli, C, Mandò C, Tabano SM, Anelli GM, Fontana L, Antonazzo P, Miozzo M, Cetin I. Mitochondrial DNA content and methylation in fetal blood of pregnancies with placental insufficiency. Placenta 2017;55:63–70.Google Scholar
Marconi, AM, Paolini, C, Buscaglia, M, et al. The impact of gestational age and fetal growth on the maternal-fetal glucose concentration difference. Obstet Gynecol 1996;87(6):937–42.Google Scholar
Van, Cappellen, AM, Heerschap, A, Nijhuis, JG, et al. Hypoxia, the subsequent systemic metabolic acidosis, and their relationship with cerebral metabolite concentrations: An in vivo study in fetal lambs with proton magnetic resonance spectroscopy. Am J Obstet Gynecol 1999;181(6):1537–45.Google Scholar
Cetin, I, Barberis, B, Brusati, V, et al. Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am J Obstet Gynecol 2011;205(4):350.e1–7.Google Scholar
Ramenghi, LA, Martinelli, A, De Carli, A, et al. Cerebral maturation in IUGR and appropriate for gestational age preterm babies. Reprod Sci 2011;18(5):469–75.Google Scholar
Scherjon, S, Briet, J, Oosting, H, et al. The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic sign of fetal brain sparing. Pediatrics 2000;105:385–91.Google Scholar
Flood, K, Unterscheider, J, Daly, S, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: Results of the multicenter PORTO Study. Am J Obstet Gynecol 2014;211(3):288.e1–5.Google Scholar
Cruz-Martinez, R, Figueras, F, Oros, D, et al. Cerebral blood perfusion and neurobehavioral performance in full-term small-for-gestational-age fetuses. Am J Obstet Gynecol 2009;201(5):474.e1–7.Google Scholar
Eixarch, E, Meler, E, Iraola, A, et al. Neurodevelopmental outcome in 2-years-old infants who were small-for-gestational age term fetus with cerebral blood flow redistribution. Ultrasound Obstet Gynecol 2008;32:849–99.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×