Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-16T21:26:23.293Z Has data issue: false hasContentIssue false

4 - Lunar tectonics

Published online by Cambridge University Press:  30 March 2010

Thomas R. Watters
Affiliation:
Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC
Catherine L. Johnson
Affiliation:
Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Tectonic landforms on the Moon predominantly occur on the nearside, associated directly with the lunar maria. Basin-localized lunar tectonics is expressed by two landforms: wrinkle ridges, and linear and arcuate rilles or troughs. Wrinkle ridges are complex morphologic landforms found in mare basalts, interpreted to be contractional tectonic landforms formed by thrust faulting and folding. Linear and arcuate rilles are long, narrow troughs, interpreted to be graben formed by extension, deforming both mare basalts at basin margins and the highlands adjacent to the basins. In contrast to basin-localized tectonics, landforms of the nearside are the more broadly distributed lobate scarps. Lobate scarps on the Moon are relatively small-scale asymmetric landforms that are often segmented with lobate margins. These landforms are the surface expression of thrust faults and are the dominant tectonic feature on the lunar farside. Crater density ages indicate that crustal extension associated with lunar maria ceased at ~3.6 Ga. Crustal shortening in the maria, however, continued to as recently as ~1.2 Ga. The cessation of extension may have resulted from the superposition of compressional stresses from global contraction on flexural extensional stress due to loading from the mare basalts. The lobate scarps formed less than 1 Ga and appear to be among the youngest endogenic features on the Moon. The presence of young lobate scarp thrust faults supports late-stage compression of the lunar crust.

Type
Chapter
Information
Planetary Tectonics , pp. 121 - 182
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. M. (1951). The Dynamics of Faulting and Dyke Formation, with Applications to Britain. Edinburgh, UK: Oliver & Boyd.Google Scholar
Aoshima, C. and Namiki, N. (2001). Structures beneath lunar basins: Estimates of Moho and elastic thickness from local analysis of gravity and topography (abs.). Lunar Planet. Sci. Conf. XXXII, 1561–1562. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Archinal, B. A., Rosiek, M. R., Kirk, R. L., and Redding, B. L. (2006). The Unified Lunar Control Network 2005, USGS Open File Report 2006–1367. http://pubs.usgs.gov/of/2006/1367/.
Arkani-Hamed, J. (1998). The lunar mascons revisited. J. Geophys. Res., 103, 3709–3739.CrossRefGoogle Scholar
Baldwin, R. B. (1963). The Measure of the Moon. Chicago, IL: University of Chicago Press.Google Scholar
Baldwin, R. B. (1965). A Fundamental Survey of the Moon. New York, NY: McGraw-Hill.Google Scholar
Baldwin, R. B. (1970). A new method of determining the depth of the lava in lunar maria. Astron. Soc. Pacific Publ. 82, 857–864.CrossRefGoogle Scholar
Binder, A. B. (1982). Post-Imbrian global lunar tectonism: Evidence for an initially totally molten Moon. Earth, Moon, and Planets, 26, 117–133.CrossRefGoogle Scholar
Binder, A. B. and Gunga, H.-C. (1985). Young thrust-fault scarps in the highlands: Evidence for an initially totally molten Moon. Icarus, 63, 421–441.CrossRefGoogle Scholar
Binder, A. B. and Lange, M. A. (1980). On the thermal history, thermal state, and related tectonism of a Moon of fission origin. The Moon, 17, 29–45.CrossRefGoogle Scholar
Binder, A. B. and Oberst, J. (1985). High stress shallow moonquakes: Evidence for an initially totally molten Moon. Earth Planet. Sci. Lett., 74, 149–154.CrossRefGoogle Scholar
Boyce, J. M. (1976). Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs. Proc. Lunar Planet. Sci. Conf. 7, 2717–2728.Google Scholar
Brennan, W. J. (1975). Modification of premare impact craters by volcanism and tectonism. The Moon, 12, 449–461.CrossRefGoogle Scholar
Brennan, W. J. (1976). Multiple ring structures and the problem of correlation between lunar basins. Proc. Lunar. Planet. Sci. Conf. 7, 2833–2843.Google Scholar
Bryan, W. B. (1973). Wrinkle-ridges as deformed surface crust on ponded mare lava. Geochim. Cosmochim. Acta, 1, (Suppl.), 93–106.Google Scholar
Bulow, R. and Lognonné, P. (2007). Lunar internal structure from reflected and converted core phases (abs.). Eos Trans. AGU, P51B-0483.Google Scholar
Bulow, R., Johnson, C. L., and Shearer, P. (2005). New events discovered in the lunar apollo seismic data. J. Geophys. Res., 110, E10003, doi:10.1029/2005JE002414.CrossRefGoogle Scholar
Bulow, R., Johnson, C. L., Bills, B., and Shearer, P. (2007). Temporal and spatial properties of some deep moonquake clusters. J. Geophys. Res., 112, E09003, doi:10.1029/2006JE002847.CrossRefGoogle Scholar
Carr, M. H. (1969). Geologic map of the Alphonsus region of the Moon. U.S. Geol. Surv. Map 1–599 (RLC-14), scale 1:250 000.
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.CrossRefGoogle Scholar
Cartwright, J. A., Mansfield, C. S., and Trudgill, B. D. (1996). The growth of normal faults by segment linkage. Geol. Soc. Am. Spec. Publ., 99, 163–177.CrossRefGoogle Scholar
Chenet, H., Lognonné, P., Wieczorek, M., and Mizutani, H. (2006). Lateral variations of lunar crustal thickness from Apollo seismic dataset. Earth Planet. Sci. Lett., 243, 1–14.CrossRefGoogle Scholar
Cheng, C. H. and Toksöz, M. N. (1978). Tidal stresses in the Moon. J. Geophys. Res., 83, 845–853.CrossRefGoogle Scholar
Clark, R. and Cox, S. (1996). A modern regression approach to determining fault displacement–length scaling relationships. J. Struct. Geol., 18, 147–154.CrossRefGoogle Scholar
Colton, G. W., Howard, K. A., and Moore, H. J. (1972). Mare ridges and arches in southern Oceanus Procellarum, Photogeology. Apollo 16 Prel. Sci. Rep., NASA Spec. Publ., SP-315, 29–90 – 29–93.Google Scholar
Comer, R. P., Solomon, S. C., and Head, J. W. (1979). Elastic lithospheric thickness on the Moon from mare tectonic features: a formal inversion. Proc. Lunar Planet. Sci. Conf. 10, 2441–2463.Google Scholar
Cook, A. C., Watters, T. R., Robinson, M. S., Spudis, P. D., and Bussey, D. B. J. (2000). Lunar polar topography derived from Clementine stereoimages. J. Geophys. Res., 105, 12 023–12 033.CrossRefGoogle Scholar
Cooper, B. L., Carter, J. L., and Sapp, C. A. (1994). New evidence for graben origin of Oceanus Procellarum from lunar sounder optical imagery. J. Geophys. Res., 99, 3799–3812.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992a). Physical explanation for the displacement–length relationship of faults using a post-yield fracture-mechanics model. J. Struct. Geol., 14, 1133–1148.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992b). Displacement–length scaling relationship for faults data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.CrossRefGoogle Scholar
Cowie, P. A., Scholz, C. H., Edwards, M., and Malinverno, A. (1993). Fault strain and seismic coupling on mid-ocean ridges. J. Geophys. Res., 98, 17 911–17 920.CrossRefGoogle Scholar
Crosby, A. and McKenzie, D. (2005). Measurements of elastic thickness under ancient lunar terrain. Icarus, 173, 100–107.CrossRefGoogle Scholar
Dawers, N. H. and Anders, M. H. (1995). Displacement–length scaling and fault linkage, J. Struct. Geol., 17, 607–614.CrossRefGoogle Scholar
Dawers, N. H., Anders, M. H., and Scholz, C. H. (1993). Growth of normal faults: displacement–length scaling. Geology, 21, 1107–1110.2.3.CO;2>CrossRefGoogle Scholar
Dombard, A. J. and Gillis, J. J. (2001). Testing the viability of topographic relaxation as a mechanism for the formation of lunar floor-fractured craters. J. Geophys. Res., 106, 27 901–27 910.CrossRefGoogle Scholar
Ewing, M., Latham, G., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Meissner, R., Duennebier, F., and Kovach, R. (1971). Seismology of the Moon and implications on internal structure, origin and evolution (abs.). In Highlights of Astronomy, ed. Jager, C.. Dordrecht: Reidel, pp. 155–172.CrossRefGoogle Scholar
Fielder, G. (1961). Structure of the Moon's Surface. New York, NY: Pergamon.Google Scholar
Freed, A. M., Melosh, H. J., and Solomon, S. C. (2001). Tectonics of mascon loading: Resolution of the strike-slip faulting paradox. J. Geophys. Res., 106, 20 603–20 620.CrossRefGoogle Scholar
Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., and Spohn, T. (2006). Seismic models of the Moon and constraints on temperature and mineralogy. Phys. Earth Planet. Inter., 159, 140–166.CrossRefGoogle Scholar
Gilbert, G. K. (1893). The Moon's face, a study of the origin of its features. Philos. Soc. Washington Bull., 12, 241–292.Google Scholar
Gillespie, P. A., Walsh, J. J., and Watterson, J. (1992). Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation. J. Struct. Geol., 14, 1157–1172.CrossRefGoogle Scholar
Goins, N. R., Dainty, A. M., and Toksöz, M. N. (1981). Seismic energy release of the Moon. J. Geophys. Res., 86, 378–388.CrossRefGoogle Scholar
Golombek, M. P. (1979). Structural analysis of lunar grabens and the shallow crustal structure of the Moon. J. Geophys. Res., 84, 4657–4666.CrossRefGoogle Scholar
Golombek, M. P. (1985). Fault type predictions from stress distributions on planetary surfaces: Importance of fault initiation depth. J. Geophys. Res., 90, 3065–3074.CrossRefGoogle Scholar
Golombek, M. P. and McGill, G. E. (1983). Grabens, basin tectonics, and the maximum total expansion of the Moon. J. Geophys. Res., 88, 3563–3578.CrossRefGoogle Scholar
Golombek, M. P., Plescia, J. B., and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. Proc. Lunar Planet Sci. Conf. 21, 679–693.Google Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23 811–23 821.CrossRefGoogle Scholar
Greeley, R. (1971). Lunar Hadley Rille: Considerations of its origin. Science, 172, 722–725.CrossRefGoogle ScholarPubMed
Greeley, R. and Spudis, P. D. (1978). Mare volcanism in the Herigonius region of the Moon. Proc. Lunar Planet. Sci. Conf. 9, 3333–3349.Google Scholar
Hall, J. L., Solomon, S. C., and Head, J. W. (1981). Lunar floor-fractured craters: Evidence for viscous relaxation of crater topography. J. Geophys. Res., 86, 9537–9552.CrossRefGoogle Scholar
Hardacre, K. M. and Cowie, P. A. (2003). Controls on strain localization in a two-dimensional elastoplastic layer: Insights into size-frequency scaling of extensional fault populations. J. Geophys. Res., 108, 2529.CrossRefGoogle Scholar
Hartmann, W. K. and Wood, C. A. (1971). Moon: Origin and evolution of multiring basins. The Moon, 3, 3–78.CrossRefGoogle Scholar
Head, J. W. (1976). Lunar volcanism in space and time. Rev. Geophys. Space Phys., 14, 265–300.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2006). New views of lunar geoscience: An introduction and overview. Rev. Mineral. Geochem., 60, 1–81.CrossRefGoogle Scholar
Hiesinger, H., Jaumann, R., Neukam, G., and Head, J. W. (2000). Ages of mare basalts on the lunar nearside. J. Geophys. Res., 105, 29 239–29 276.CrossRefGoogle Scholar
Hiesinger, H., HeadIII, J. W., Wolf, U., Jaumann, R., and Neukum, G. (2003). Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res., 108 (E7), 5065, doi:10.1029/2002JE001985.CrossRefGoogle Scholar
Hodges, C. A. (1973). Mare ridges and lava lakes. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 31–12 – 31–21.Google Scholar
Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H., and Binder, A.B. (1999). Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett., 26, 2327–2330.CrossRefGoogle Scholar
Howard, K. A. and Muehlberger, W. R. (1973). Lunar thrust faults in the Taurus–Littrow region. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 31–32 – 31–25.Google Scholar
Johnson, A. M. (1980). Folding and faulting of strain-hardening sedimentary rocks. Tectonophysics, 62, 251–278.CrossRefGoogle Scholar
Khan, A. and Mosegaard, K. (2002). An inquiry into the lunar interior – A non linear inversion of the Apollo seismic data. J. Geophy. Res., 107, doi:10.1029/2001JE001658.CrossRefGoogle Scholar
Khan, A., Maclennan, J., Taylor, S. R., and Connolly, J. A. D. (2006). Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J. Geophys. Res., 111, E05005, doi:10.1029/2005JE002608.CrossRefGoogle Scholar
Khan, A., Connolly, J. A. D., Olsen, N., and Mosegaard, K. (2007). Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions (abs.). Lunar Planet. Sci. Conf. XXXVIII, 1086. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Konopliv, A. S. and Yuan, D. N. (1999). Lunar Prospector 100th degree gravity model development. Proc. Lunar Planet. Sci. Conf. 30, 1067–1068.Google Scholar
Konopliv, A. S., Binder, A. B., Hood, L. L., Kucinskas, A. B., Sjogren, W. L., and Williams, J. G. (1998). Improved gravity field of the Moon from Lunar Prospector. Science, 281, 1476–1480.CrossRefGoogle ScholarPubMed
Konopliv, A. S., Asmar, S. W., Carranza, E., Sjogren, W. L., and Yuan, D. N. (2001). Recent gravity models as a result of the Lunar Prospector mission. Icarus, 150, 1–18.CrossRefGoogle Scholar
Lammlein, D. R. (1973). Lunar seismicity, structure and tectonics. PhD dissertation, Columbia University, New York.Google Scholar
Lammlein, D. (1977). Lunar seismicity and tectonics. Phys. Earth Planet. Inter., 14, 224–273.CrossRefGoogle Scholar
Lammlein, D., Latham, G. V., Dorman, J., Nakamura, Y., and Ewing, M. (1974). Lunar seismicity, structure and tectonics. Rev. Geophys. Space Phys., 12, 1–21.CrossRefGoogle Scholar
Lemoine, F. G. R., Smith, D. E., Zuber, M. T., Neumann, G. A., and Rowlands, D. D. (1997). A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J. Geophys. Res., 102, 16 339–16 359.CrossRefGoogle Scholar
Lognonné, P. and Johnson, C. L. (2007). Planetary seismology. In Treatise on Geophysics, Vol. 10, Ch. 4., ed. Schubert, G.. New York: Elsevier.Google Scholar
Lognonné, P., Gagnepain-Beyneix, J., and Chenet, H. (2003). A new seismic model of the Moon: Implication in terms of structure, formation and evolution. Earth Plan. Sci. Lett., 6637, 1–18.Google Scholar
Lucchitta, B. K. (1976). Mare ridges and related highland scarps: Results of vertical tectonism. Geochim. Cosmochim. Acta, 3, (Suppl.), 2761–2782.Google Scholar
Lucchitta, B. K. (1977). Topography, structure, and mare ridges in southern Mare Imbrium and northern Oceanus Procellarum. Proc. Lunar Sci. Conf. 8, Geochim. Cosmochim. Acta, 3, (Suppl.), 2691–2703.Google Scholar
Lucchitta, B. K. and Watkins, J. A. (1978). Age of graben systems on the Moon. Proc. Lunar Planet. Sci. Conf. 9, Geochim. Cosmochim. Acta, 3, (Suppl.), 3459–3472.Google Scholar
Margot, J. L., Campbell, D. B., Jurgens, R. F., Slade, M. A., and Stacy, N. J. (1998). The topography of the lunar polar regions from Earth-based radar interferometry (abs.). Lunar Planet. Sci. Conf. 29, 1845. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Margot, J. L., Campbell, D. B., Jurgens, R. F., and Slade, M. A. (1999). Topography of the lunar poles from radar interferometry: a survey of cold trap locations. Science, 284, 1658, doi:10.1126/science.284.5420.1658.CrossRefGoogle ScholarPubMed
Marrett, R. and Allmendinger, R. W. (1991). Estimates of strain due to brittle faulting: sampling of fault populations. J. Struct. Geol., 13, 735–738.CrossRefGoogle Scholar
Masursky, H., Colton, G. W., and El-Baz, F. (1978). Apollo over the Moon: A view from orbit. NASA Spec. Publ., SP-362.Google Scholar
Mattingly, T. K., El-Baz, F., and Laidley, R. A. (1972). Observations and impressions from lunar orbit. Apollo 16 Prel. Sci. Rep., 28–1 – 28–16.Google Scholar
Maxwell, T. A. (1978). Origin of multi-ring basin ridge systems: An upper limit to elastic deformation based on a finite-element model. (Proc. Lunar Planet. Sci. Conf. 9), Geochim. Cosmochim. Acta, 3, (Suppl.), 3541–3559.Google Scholar
Maxwell, T.A. and Phillips, R. J. (1978). Stratigraphic correlation of the radar-detected subsurface interface in Mare Crisium. Geophys. Res. Lett., 5, 811–814.CrossRefGoogle Scholar
Maxwell, T. A., El-Baz, F., and Ward, S. W. (1975). Distribution, morphology, and origin of ridges and arches in Mare Serenitatis. Geol. Soc. Am. Bull., 86, 1273–1278.2.0.CO;2>CrossRefGoogle Scholar
McCauley, J. F. (1969). Geologic map of the Alphonsus region Ga region of the Moon. U.S. Geol. Surv. Map 1–586, scale 1:50 000.
McGill, G. E. (1971). Attitude of fractures bounding straight and arcuate lunar rilles. Icarus, 14, 53–58.CrossRefGoogle Scholar
McGill, G. E. (2000). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah: Discussion. J. Struct. Geol., 22, 135–140.CrossRefGoogle Scholar
Mege, D. and Reidel, S. P. (2001). A method for estimating 2D wrinkle ridge strain from application of fault displacement scaling to the Yakima folds, Washington. Geophys. Res. Lett., 28, 3545–3548.CrossRefGoogle Scholar
Melosh, H. J. (1978). The tectonics of mascon loading. Proc. Lunar Planet. Sci. Conf.9, 3513–3525.Google Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374–400.Google Scholar
Melosh, H. J. and Williams, C. A. (1989). Mechanics of graben formation in crustal rocks: A finite element analysis. J. Geophys. Res., 94, 13 961–13 973.CrossRefGoogle Scholar
Minshull, T. A. and Goulty, N. R. (1988). The influence of tidal stresses on deep moonquake activity. Phys. Earth Planet. Inter., 52, 41–55.CrossRefGoogle Scholar
Moore, J. M. and Schultz, R. A. (1999). Processes of faulting in jointed rocks of Canyonlands National Park. Geol. Soc. Am. Bull., 111, 808–822.2.3.CO;2>CrossRefGoogle Scholar
Muehlberger, W. R. (1974). Structural history of southeastern Mare Serenitatis and adjacent highlands. Proc. Lunar Sci. Conf. 5, Geochim. Cosmochim. Acta, 1, (Suppl.), 101–110.Google Scholar
Mueller, K. and Golombek, M. P. (2004). Compressional structures on Mars. Annu. Rev. Earth Planet. Sci., doi:10.1146/annurev.earth.1132.101802.120553.CrossRefGoogle Scholar
Muller, P. M. and Sjogren, W. L. (1968). Masons: lunar mass concentrations. Science, 161, 680–684.CrossRefGoogle Scholar
Nakamura, Y. (1977). HFT events: shallow moonquakes?Phys. Earth Planet. Inter., 14, 217–223.CrossRefGoogle Scholar
Nakamura, Y. (1980). Shallow moonquakes: How they compare with earthquakes. Proc. Lunar Planet. Sci. Conf. 11, 1847–1853.Google Scholar
Nakamura, Y. (1983). Seismic velocity structure of the lunar mantle. J. Geophys. Res., 88, 677–686.CrossRefGoogle Scholar
Nakamura, Y. (2003). New identification of deep moonquakes in the Apollo lunar seismic data. Phys. Earth Planet. Inter., 139, 197–205.CrossRefGoogle Scholar
Nakamura, Y. (2005). Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res., 110, E01001, doi:10.1029/2004JE002332.CrossRefGoogle Scholar
Nakamura, Y. (2007). Within-nest hypocenter distribution and waveform polarization of deep moonquakes and their possible implications (abs.). Lunar Planet. Sci. Conf. XXXVIII, 1160. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Nakamura, Y., Duennebier, F. K., Latham, G. V., and Dorman, H. J. (1976). Structure of the lunar mantle. J. Geophys. Res., 81, 4818–4824.CrossRefGoogle Scholar
Nakamura, Y., Latham, G. V., Dorman, H. J., Ibrahim, A.-B. K., Koyama, J., and Horvath, P. (1979). Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior. Proc. Lunar Sci. Conf. 10, 2299–2309.Google Scholar
Nakamura, Y., Latham, G. V., Dorman, J., and Harris, J. (1981). Passive seismic experiment long-period event catalog: Final version. Technical Report No. 18, Galveston Geophysics Laboratory, University of Texas at Austin.Google Scholar
Neukum, G. and Ivanov, B. A. (1994). Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, hazards due to comets and asteroids. In Space Science Series, ed. Gehrels, T., Matthews, M. S. and Schumann, A.. Tucson, AZ: University of Arizona Press, 359.Google Scholar
Neumann, G. A., Zuber, M. T., Smith, D. E., and Lemoine, F. G. (1996). The lunar crust: Global structure and signature of major basins. J. Geophys. Res., 101, 16 843–16 863.CrossRefGoogle Scholar
Nino, P., Philip, H., and Chery, J. (1998). The role of bed-parallel slip in the formation of blind thrust faults. J. Struct. Geol., 20, 503–516.CrossRefGoogle Scholar
Nozette, S., Rustan, P., Pleasance, L. P., Kordas, J. F., Lewis, I. T., Park, H. S., Priest, R. E., Horan, D. M., Regeon, P., Lichtenberg, C. L., Shoemaker, E. M., Eliason, E. M., McEwen, A. S., Robinson, M. S., Spudis, P. D., Acton, C. H., Buratti, B. J., Duxbury, T. C., Baker, D. N., Jakosky, B. M., Blamont, J. E., Corson, M. P., Resnick, J. H., Rollins, C. J., Davies, M. E., Lucey, P. G., Malaret, E., Massie, M. A., Pieters, C. M., Reisse, R. A., Simpson, R. A., Smith, D. E., Sorenson, T. C., Vorder Breugge, R. W., and Zuber, M. T. (1994). The Clementine mission to the Moon: Scientific overview. Science, 266, 1835–1839.CrossRefGoogle ScholarPubMed
Oberst, J. (1987). Unusually high stress drops associated with shallow moonquakes. J. Geophys. Res., 92, 1397–1405.CrossRefGoogle Scholar
Ockendon, J. R. and Turcotte, D. L. (1977). On the gravitational potential and field anomalies due to thin mass layers. Geophys. J., 48, 479–492.CrossRefGoogle Scholar
Ono, T., Kumamoto, A., Nakagawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., Kobayashi, T., Kasahara, Y., and Oya, H. (2009). Lunar radar sounder observations of subsurface layers under the nearside maria of the Moon. Science, 323, 909–912.CrossRefGoogle Scholar
Peeples, W. J., Sill, W. R., May, T. W., Ward, S. H., Philips, R. J., Jordan, R. L., Abbott, E. A., and Killpack, T. J. (1978). Orbital radar evidence for Lunar subsurface layering in Maria Serenitatis and Crisium. J. Geophys. Res., 83, 3459–3468.CrossRefGoogle Scholar
Phillips, R. J., Conel, J. E., Abbott, E. A., Sjogren, W. L., and Morton, J. B. (1972). Mascons: Progress toward a unique solution for mass distribution. J. Geophys. Res., 77, 7106–7114.CrossRefGoogle Scholar
Phillips, R. J., Adams, G. F., Brown, W. E., Eggleton, R. E., Jackson, P., Jordan, R., Peeples, W. J., Porcello, L. J., Ryu, J., Schaber, G., Sill, W. R., Thompson, T. W., Ward, S. H., and Zelenka, J. S. (1973). The Apollo 17 Lunar Sounder (Proc. Lunar Science Conf. 4). Geochim. Cosmochim. Acta, 3, (Suppl. 4), 2821–2831.Google Scholar
Pike, R. J. (1971). Genetic implications of the shapes of Martian and lunar craters. Icarus, 15, 384–395.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–1299.2.0.CO;2>CrossRefGoogle Scholar
Pritchard, M. E. and Stevenson, D. J. (2000). Thermal aspects of a lunar origin by giant impact. In Origin of the Earth and Moon, ed. Canup, R., and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 179–196.Google Scholar
Quaide, W. L. (1965). Rilles, ridges, and domes: Clues to maria history. Icarus, 4, 374.CrossRefGoogle Scholar
Raitala, J. (1984). Terra scarps indicating youngest terra faults on the Moon. Earth, Moon, and Planets, 31, 63–74.CrossRefGoogle Scholar
Reidel, S. P. (1984). The Saddle Mountains: The evolution of an anticline in the Yakima fold belt. Am. Jour. Sci., 284, 942–978.CrossRefGoogle Scholar
Robinson, M. S. and Joliff, B. L. (2002). Apollo 17 landing site: Topography, photometric corrections, and heterogeneity of the surrounding highland massifs. J. Geophys. Res. Planets, 107, 20–1, E11, 5110, doi:10.1029/2001JE001614.CrossRefGoogle Scholar
Roering, J. J., Cooke, M. L., and Pollard, D. D. (1997). Why blind thrust faults do not propagate to the Earth's surface: Numerical modeling of coseismic deformation associated with thrust-related anticlines. J. Geophys. Res., 102, 12 901–12 912.CrossRefGoogle Scholar
Rosiek, M. R., Cook, A. C., Robinson, M. S., Watters, T. R., Archinal, B. A., Kirk, R. L., and Barrett, J. M. (2007). A revised planet-wide digital elevation model of the moon (abs.), Lunar Planet. Sci. Conf. XXXVIII, 2297. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Schaber, G. G. (1973a). Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography. Proc. Lunar Sci. Conf. 4, 73–92.Google Scholar
Schaber, G. G. (1973b). Eratosthenian volcanism in Mare Imbrium: Sources of youngest lava flows. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 31–22 – 31–25.Google Scholar
Schaber, G. G., Boyce, J. M., and Moore, H. J. (1976). The scarcity of mappable flow lobes on the lunar maria: Unique morphology of the Imbrium flows. Proc. Lunar Sci. Conf. 7, 2783–2800.Google Scholar
Schenk, P. M., and Bussey, B. J. (2004). Galileo stereo topography of the lunar north polar region. Geophys. Res. Lett., 31, L23701.CrossRefGoogle Scholar
Schmitt, H. H. and Cernan, E. A. (1973). Geological investigation of the Apollo 17 landing site. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 5–1 – 5–21.Google Scholar
Scholz, C. H. and Cowie, P. A. (1990). Determination of geologic strain from fault slip data. Nature, 346, 837–839.CrossRefGoogle Scholar
Schultz, P. H. (1976a). Moon Morphology: Interpretations Based on Lunar Orbiter Photography. Austin, TX: University of Texas Press.Google Scholar
Schultz, P. H. (1976b). Floor-fractured lunar craters. The Moon, 15, 241–273.CrossRefGoogle Scholar
Schultz, P. H., Staid, M. I., and Pieters, C. M. (2006). Lunar activity from recent gas release. Nature, 444, 184–186, doi:10.1038/nature05303.CrossRefGoogle ScholarPubMed
Schultz, R. A. (1997). Displacement–length scaling for terrestrial and Martian faults: Implications for Valles Marineris and shallow planetary grabens. J. Geophys. Res., 102, 12 009–12 015.CrossRefGoogle Scholar
Schultz, R. A. (1999). Understanding the process of faulting: Selected challenges and opportunities at the edge of the 21st century. J. Struct. Geol., 21, 985–993.CrossRefGoogle Scholar
Schultz, R. A. (2000). Localizaton of bedding-plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Schultz, R. A. and Fori, A. N. (1996). Fault-length statistics and implications of graben sets at Candor Mensa, Mars. J. Struct. Geol., 18, 272–383.CrossRefGoogle Scholar
Schultz, R. A. and Zuber, M. A. (1994). Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads. J. Geophys. Res., 99, 14 691–14 702.CrossRefGoogle Scholar
Scott, D. H. (1973). Small structures of the Taurus-Littrow region. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, pp. 31–25 – 31–29.Google Scholar
Scott, D. H., Diaz, J. M., and Watkins, J. A. (1977). Lunar farside tectonics and volcanism. Proc. Lunar Sci. Conf. 8, 1119–1130.Google Scholar
Sharpton, V. L. (1992). Apollo 17: One giant step toward understanding the tectonic evolution of the Moon: Geology of the Apollo 17 landing site. LPI Tech. Rep. 92–09, Part 1, 50–53.Google Scholar
Sharpton, V. L. and Head, J. W. (1981). The origin of mare ridges: Evidence from basalt stratigraphy and substructure in Mare Serenitatis (abs.). Lunar Planet. Sci. Conf. XII, 961–963.Google Scholar
Sharpton, V. L. and Head, J. W. (1982). Stratigraphy and structural evolution of southern Mare Serenitatis: A reinterpretation based on Apollo Lunar Sounder Experiment data. J. Geophys. Res., 87, 10 983–10 998.CrossRefGoogle Scholar
Sharpton, V. L. and Head, J. W. (1988). Lunar mare ridges: Analysis of ridge-crater intersection and implications for the tectonic origin of mare ridges. Proc. Lunar Sci. Conf. 18, 307–317.Google Scholar
Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Permentier, E. M., Borg, L. E., Longhi, J., Elkins-Tanton, L. T., Neal, C. R., Antonenko, I., Canup, R. M., Halliday, A. N., Grove, T. L., Hager, B. H., Less, D.-C., and Wiechert, U. (2006). Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem., 60, 365–518.CrossRefGoogle Scholar
Simpson, R. W. (1997). Quantifying Anderson's fault types. J. Geophys. Res., 102, 17 909–17 920.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Neumann, G. A., and Lemoine, F. G. (1997). Topography of the Moon from the Clementine LIDAR. J. Geophys. Res., 102, 1591–1611.CrossRefGoogle Scholar
Solomon, S. C. and Chaiken, J. (1976). Thermal expansion and thermal stress in the Moon and terrestrial planets: Clues to early thermal history. Proc. Lunar Sci. Conf. 7, 3229–3243.Google Scholar
Solomon, S. C. and Head, J. W. (1979). Vertical movement in mare basins: Relation to mare emplacement, basin tectonics and lunar thermal history. J. Geophys. Res., 84, 1667–1682.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1980). Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. Space Phys., 18, 107–141.CrossRefGoogle Scholar
Spudis, P. D. (1993). The Geology of Multi-Ring Impact Basins: The Moon and Other Planets. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Spudis, P. D., Swann, G. A., and Greeley, R. (1988a). The formation of Hadley Rille and implications for the geology of the Apollo 15 region. Proc. Lunar Sci. Conf. 18, 243–254.Google Scholar
Spudis, P. D., Hawke, B. R., and Lucey, P. G. (1988b). Materials and formation of the Imbrium Basin. Proc. Lunar Sci. Conf. 18, 155–168.Google Scholar
Spudis, P. D., Reisse, R. A., and Gillis, J. J. (1994). Ancient multiring basins on the Moon revealed by Clementine laser altimetry. Science, 266, 1848–1851.CrossRefGoogle ScholarPubMed
Stöffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner Solar System. Space Sci. Rev., 96, 9–54.CrossRefGoogle Scholar
Strom, R. G. (1972). Lunar mare ridges, rings, and volcanic ring complexes. Mod. Geol., 2, 133–157.Google Scholar
Tjia, H. D. (1970). Lunar wrinkle ridges indicative of strike-slip faulting. Geol. Soc. Am. Bull., 81, 3095–3100.CrossRefGoogle Scholar
Toksöz, M. N. (1974). Geophysical data and the interior of the Moon. Annu. Rev. Earth Planet. Sci., 2, 151.CrossRefGoogle Scholar
Toksöz, M. N., Goins, N. R., and Cheng, C. H. (1977). Moonquakes: Mechanisms and relations to tidal stresses. Science, 196, 979–981.CrossRefGoogle Scholar
,U. S. Geological Survey (USGS) (1972). Preliminary topographic map of part of the Littrow region of the Moon, scale 1:50 000. Flagstaff, AZ.
,U. S. Geological Survey (USGS) (2002). Color-coded topography and shaded relief of the lunar north and south hemispheres, U.S. Geol. Surv. Geol. Invest. Ser., 2769.
Vinnik, L., Chenet, H., Gagnepain-Beyneix, J., and Lognonné, P. (2001). First seismic receiver functions on the Moon. Geophys. Res. Lett., 28, 3031–3034.CrossRefGoogle Scholar
Walsh, J. and Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.CrossRefGoogle Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res., 93, 10 236–10 254.CrossRefGoogle Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J. Geophys. Res., 96, 15 599–15 616.CrossRefGoogle Scholar
Watters, T. R. (1992). A system of tectonic features common to Earth, Mars, and Venus. Geology, 20, 609–612.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17 049–17 060.CrossRefGoogle Scholar
Watters, T. R. (2003). Thrust faulting along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res., 108, 5055, doi:10.1029/2002JE001934.CrossRefGoogle Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284–294.CrossRefGoogle Scholar
Watters, T. R. and Konopliv, A. S. (2001). The topography and gravity of Mare Serenitatis: Implications for subsidence of the mare surface. Planet. Space Sci., 49, 743–748.CrossRefGoogle Scholar
Watters, T. R. and Robinson, M. S. (1997). Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res., 102, 10 889–10 904.CrossRefGoogle Scholar
Watters, T. R. and Robinson, M. S. (1999). Lobate scarps and the Martian crustal dichotomy. J. Geophys. Res., 104, 18 981–18 900.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology, 26, 991–994.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Schultz, R. A. (2000). Displacement–length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett., 27, 3659–3662.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (2001). Large-scale lobate scarps in the southern hemisphere of Mercury. Planet. Space Sci., 49, 1523–1530.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., Bina, C. R., and Spudis, P. D. (2004). Thrust faults and the global contraction of Mercury. Geophys. Res. Lett., 31, L04701, doi:10.1029/2003GL019171.CrossRefGoogle Scholar
Watters, T. R., Nimmo, F., and Robinson, M. S. (2005). Extensional troughs in the Caloris Basin of Mercury: Evidence of lateral crustal flow. Geology, 33, 669–672.CrossRefGoogle Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A., and Murchie, S. L. (2009). The tectonics of Mercury: The view after MESSENGER'S first flyby. Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2009.01.025.CrossRefGoogle Scholar
Weber (formerly Bulow), R., Bills, B. G., and Johnson, C. L. (2009). Constraints on deep moonquake focal mechanisms through analyses of tidal stress. J. Geophys. Res. Planets, 114, E05001, doi:10.1029/2008JE003286.Google Scholar
Whitaker, E. A. (1966). The surface of the Moon. In The Nature of the Lunar Surface: Proceedings of the 1965 IAU-NASA Symposium, ed. Hess, W. N., Menzel, D. H. and O'Keefe, J. A.. Baltimore, MD: Johns Hopkins Press, pp. 79–98.Google Scholar
Wichman, R. W. and Schultz, P. H. (1995). Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: Implications of crater modification by viscous relaxation and igneous intrusion models. J. Geophys. Res., 100, 21 201–21 218.CrossRefGoogle Scholar
Wieczorek, M. A. and Phillips, R. J. (1998). Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J. Geophys. Res., 103, 1715–1724.CrossRefGoogle Scholar
Wieczorek, M. A. and Simons, F. J. (2005). Localized spectral analysis on the sphere. Geophys. J. Int., 162, 655–675.CrossRefGoogle Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., Pritchard, M. E., Weiss, B. P., Williams, J. G., Hood, L. L., Righter, K., Neal, C. R., Shearer, C. K., McCallum, I. S., Tompkins, S., Hawke, B. R., Peterson, C., Gillis, J. J., and Bussey, B. (2006). The constitution and structure of the lunar interior. Rev. Mineral. Geochem., 60, 221–364.CrossRefGoogle Scholar
Wilhelms, D. E. (1987). The Geologic History of the Moon. Washington, DC: U.S. Government Printing Office.Google Scholar
Wilhelms, D. E. and McCauley, J. F. (1971). Geologic map of the near side of the Moon. USGS Map I-703, scale 1:5 000 000.
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T., Todd, J., and Dickey, J. O. (2001). Lunar rotational dissipation in solid body and molten core. J. Geophys. Res., 106, 27 933–27 968.CrossRefGoogle Scholar
Wise, D. U. and Yates, M. T. (1970). Mascons as structural relief on a lunar “Moho”. J. Geophys. Res., 75, 261–268.CrossRefGoogle Scholar
Weisberg, O. and Hager, B. H. (1998). Global lunar contraction with subdued surface topography (abs.): Origin of the Earth and Moon, LPI contribution no. 957. Houston, TX: Lunar and Planetary Institute, p. 54.Google Scholar
Wojtal, S. F. (1996). Changes in fault displacement populations correlated to linkage between faults. J. Struct. Geol., 18, 265–279.CrossRefGoogle Scholar
Wollenhaupt, W. R., Sjogren, W. L., Lingenfelter, R. E., Schubert, G., and Kaula, W. M. (1973). Apollo 17 Laser Altimeter. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 33–41 – 33–44.Google Scholar
Wu, S. S. C. and Doyle, F. J. (1990). Topographic mapping. In Planetary Mapping, ed. Greeley, R. and Batson, R. M.. Cambridge: Cambridge University Press, pp. 169–207.Google Scholar
Young, R. A., Brennan, W. J., Wolfe, R. W., and Nichols, P. J. (1973). Volcanism in the lunar maria. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 31–1 – 31–11.Google Scholar
Zuber, M. T., Smith, D. E., Lemoine, F. G., and Neumann, G. A. (1994). The shape and internal structure of the Moon from the Clementine Mission. Science, 266, 1839–1843.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Lunar tectonics
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Catherine L. Johnson, Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Lunar tectonics
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Catherine L. Johnson, Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Lunar tectonics
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Catherine L. Johnson, Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.005
Available formats
×