Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T12:42:25.151Z Has data issue: false hasContentIssue false

6 - Stimulation-induced plasticity in the human motor cortex

Published online by Cambridge University Press:  12 August 2009

Joseph Classen
Affiliation:
Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, Bayerische Julius-Maximilians Universität, Würzburg, Germany
Ulf Ziemann
Affiliation:
Clinic of Neurology, J.W. Goethe-University Frankfurt am Main, Germany
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Introduction

Neuronal plasticity may be defined as any functional change within the nervous system outlasting an (experimental) manipulation. Plasticity, by this definition, does not comprise structural changes, such as those occurring during development or repair. Although there is no universally accepted lower limit of its duration, the term ‘plasticity’ is usually only applied when neuronal changes outlast the manipulation by more than a few seconds. In experimental animals, as well as in humans, plasticity is usually defined neurophysiologically by changes in the stimulus–response characteristics (‘excitability’).

Plasticity of the central nervous system has attracted much interest because it is thought to be related to the mechanisms underlying the formation of memories and the learning of new skills. Very likely, it is also involved in restoration of brain function after its initial loss as a consequence of brain injury. Neuronal plasticity may be induced internally, such as by practising movements (see Chapter 4), or externally, for instance, by limb amputation, spinal cord injury or cerebral stroke (see Chapter 8), or by repetitive electrical or magnetic neuronal stimulation, as reviewed here. Models of plasticity relying on external stimulation may be attractive because they allow best to control for experimental conditions. Human models of central nervous system plasticity may contribute particularly relevant information to the understanding of fundamental principles of plasticity. Additionally, the neuronal changes induced in human models of plasticity may themselves prove to be therapeutically useful.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 135 - 165
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antal, A., Nitsche, M. A. & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12: 3553–3555CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Rothwell, J. C.. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res, 122: 79–84CrossRefGoogle ScholarPubMed
Bi, G. Q. & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18: 10464–10472CrossRefGoogle Scholar
Bliss, T. V. & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361: 31–39CrossRefGoogle ScholarPubMed
Boroojerdi, B., Phipps, M., Kopylev, L., Wharton, C. M., Cohen, L. G. & Grafman, J. (2001). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56: 526–528CrossRefGoogle ScholarPubMed
Brasil-Neto, J. P., Cohen, L. G., Pascual-Leone, A., Jabir, F. K., Wall, R. T. & Hallett, M. (1992). Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology, 42: 1302–1306CrossRefGoogle ScholarPubMed
Buonomano, D. V. & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci., 21: 149–186CrossRefGoogle ScholarPubMed
Bütefisch, C. M., Davis, B. C., Wise, S. P.. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci., USA, 97: 3661–3665CrossRefGoogle ScholarPubMed
Castro-Alamancos, M. A., Donoghue, J. P. & Connors, B. W. (1995). Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J. Neurosci., 15: 5324–5333CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Classen, J., Liepert, J., Wise, S. P., Hallett, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123CrossRefGoogle ScholarPubMed
Creutzfeldt, O. D., Fromm, G. H. & Kapp, H. (1962). Influence of transcortical dc currents on cortical neuronal activity. Exp. Neurol., 5: 436–452CrossRefGoogle Scholar
Di Lazzaro, V., Restuccia, D., Oliviero, A.. (1998). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp. Brain Res., 119: 265–268CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Profice, P.. (2000). Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in human motor cortex. Exp. Brain Res. 135: 455–461CrossRefGoogle ScholarPubMed
Donoghue, J. P., Hess, G. & Sanes, J. N. (1996). Substrates and mechanisms for learning in motor cortex. In Acquisition of Motor Behavior in Vertebrates, ed. J. Bloedel, T. Ebner & S. P. Wise, pp. 363–386. Cambridge, MA: MIT Press
Enomoto, H., Ugawa, Y., Hanajima, R.. (2001). Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin. Neurophysiol., 112: 2154–2158CrossRefGoogle ScholarPubMed
Gerschlager, W., Siebner, H. R. & Rothwell, J. C. (2001). Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology, 57: 449–455CrossRefGoogle ScholarPubMed
Ghabra, M. B., Hallett, M. & Wassermann, E. M. (1999). Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology, 52: 768–770CrossRefGoogle Scholar
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neurosci., 1: 64–68CrossRefGoogle Scholar
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778CrossRefGoogle ScholarPubMed
Jaeger, D., Elbert, T., Lutzenberger, W. & Birbaumer, N. (1987). The effects of externally applied transcephalic weak direct currents on lateralization in choice reaction tasks. J. Psychophysiol., 1: 127–133Google Scholar
Jones, E. G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex, 3: 361–372CrossRefGoogle ScholarPubMed
Kaelin-Lang, A., Luft, A. R., Sawaki, L., Burstein, A. H., Sohn, Y. H. & Cohen, L. G. (2002). Modulation of human corticomotor excitability by somatosensory input. J. Physiol., 540: 623–633CrossRefGoogle ScholarPubMed
Karl, A., Birbaumer, N., Lutzenberger, W., Cohen, L. G. & Flor, H. (2001). Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci., 21: 3609–3618CrossRefGoogle ScholarPubMed
Kujirai, T., Caramia, M. D., Rothwell, J. C.. (1993). Corticocortical inhibition in human motor cortex. J. Physiol. (Lond.), 471: 501–519CrossRefGoogle ScholarPubMed
Lefaucheur, J. P., Drouot, X., Keravel, Y. & Nguyen, J. P. (2001a). Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport, 12: 2963–2965CrossRefGoogle Scholar
Lefaucheur, J. P., Drouot, X. & Nguyen, J. P. (2001b). Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex. Neurophysiol. Clin., 31: 247–252CrossRefGoogle Scholar
Levy, L. M., Ziemann, U., Chen, R. & Cohen, L. G. (2002). Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentiation. Ann. Neurol., 52: 755–761CrossRefGoogle Scholar
Liepert, J., Oreja-Guevara, C., Cohen, L. G., Tegenthoff, M., Hallett, M. & Malin, J-P. (1999). Plasticity of cortical hand muscle representation in patients with hemifacial spasm. Neurosci. Lett., 272: 33–36CrossRefGoogle ScholarPubMed
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol., 111: 800–805CrossRefGoogle ScholarPubMed
Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275: 213–215CrossRefGoogle ScholarPubMed
Migita, K., Uozumi, T., Arita, K. & Mondend, S. (1995). Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery, 36: 1037–1039; discussion 1039–1040CrossRefGoogle ScholarPubMed
Modugno, N., Nakamura, Y., MacKinnon, C. D.. (2001). Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp. Brain Res., 140: 453–459CrossRefGoogle ScholarPubMed
Mottaghy, F. M., Hungs, M., Brugmann, M.. (1999). Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology, 53: 1806–1812CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Boroojerdi, B. & Hallett, M. (2000). Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin. Neurophysiol., 111: 1002–1007CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644CrossRefGoogle ScholarPubMed
Münchau, A., Orth, M., Rothwell, J. C.. (2002). Intracortical inhibition is reduced in a patient with a lesion in the posterolateral thalamus. Mov. Disord., 17: 208–212CrossRefGoogle Scholar
Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol., 527: 633–639CrossRefGoogle ScholarPubMed
Nitsche, M. A. & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57: 1899–1901CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Houser, C. M., Reese, K.. (1993). Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol., 89: 120–130CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M. & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858CrossRefGoogle ScholarPubMed
Paus, T., Castro-Alamancos, M. A. & Petrides, M. (2001). Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur. J. Neurosci., 14: 1405–1411CrossRefGoogle ScholarPubMed
Peinemann, A., Lehner, C., Mentschel, C., Munchau, A., Conrad, B. & Siebner, H. R. (2000). Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition. Neurosci. Lett., 296: 21–24CrossRefGoogle ScholarPubMed
Ridding, M. C., Brouwer, B., Miles, T. S., Pitcher, J. B. & Thompson, P. D. (2000). Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp. Brain Res., 131: 135–143CrossRefGoogle ScholarPubMed
Ridding, M. C., Inzelberg, R. & Rothwell, J. C. (1995a). Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Ann. Neurol., 37: 181–188CrossRefGoogle Scholar
Ridding, M. C., McKay, D. R., Thompson, P. D. & Miles, T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol., 112: 1461–1469CrossRefGoogle ScholarPubMed
Ridding, M. C., Sheean, G., Rothwell, J. C., Inzelberg, R. & Kujirai, T. (1995b). Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J. Neurol. Neurosurg. Psychiatry, 59: 493–498CrossRefGoogle Scholar
Ridding, M. C. & Taylor, J. L. (2001). Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J. Physiol., 537: 623–631CrossRefGoogle ScholarPubMed
Rijntjes, M., Tegenthoff, M., Liepert, J.. (1994). Cortical reorganization in patients with facial palsy. Ann. Neurol., 41: 621–630CrossRefGoogle Scholar
Rollnik, J. D., Schubert, M. & Dengler, R. (2000). Subthreshold prefrontal repetitive transcranial magnetic stimulation reduces motor cortex excitability. Muscle Nerve, 23: 112–1143.0.CO;2-B>CrossRefGoogle ScholarPubMed
Rosen, I. & Asanuma, H. (1972). Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input-output relations. Exp. Brain Res., 14: 257–273CrossRefGoogle ScholarPubMed
Rosenkranz, K., Nitsche, M. A., Tergau, F. & Paulus, W. (2000). Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci. Lett., 296: 61–63CrossRefGoogle ScholarPubMed
Rossi, S., Pasqualetti, P., Rossini, P. M.. (2000). Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb. Cortex, 10: 802–808CrossRefGoogle ScholarPubMed
Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J. Neurosci. Methods, 74: 113–122CrossRefGoogle ScholarPubMed
Sandbrink, F., Stefan, K., Wolters, A., Kunesch, E., Benecke, R. & Classen, J. (2001). Induktion von Longterm-Depression im menschlichen Motorkortex durch assoziative Paarstimulation [abstract]. Klin. Neurophysiol., 32: 194Google Scholar
Sanes, J. N. & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annu. Rev. Neurosci., 23: 393–415CrossRefGoogle ScholarPubMed
Shimamoto, H., Takasaki, K., Shigemori, M., Imaizumi, T., Ayabe, M. & Shoji, H. (2001). Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson's disease. J. Neurol., 248: III48–52CrossRefGoogle ScholarPubMed
Siebner, H. R., Mentschel, C., Auer, C. & Conrad, B. (1999a). Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport, 10: 589–594CrossRefGoogle Scholar
Siebner, H. R., Peller, M., Takano, B. & Conrad, B. (2001). Neue Einblicke in die Hirnfunktion durch Kombination von transkranieller magnetischer Kortexstimulation und funktioneller zerebraler Bildgebung. Nervenarzt, 72: 320–326CrossRefGoogle Scholar
Siebner, H. R., Rossmeier, C., Mentschel, C., Peinemann, A. & Conrad, B. (2000). Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson's disease. J. Neurol. Sci., 178: 91–94CrossRefGoogle ScholarPubMed
Siebner, H. R., Tormos, J. M., Ceballos-Baumann, A. O.. (1999b). Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology, 52: 529–537CrossRefGoogle Scholar
Sommer, M., Tergau, F., Wischer, S. & Paulus, W. (2001). Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex. Exp. Brain Res., 139: 465–472CrossRefGoogle ScholarPubMed
Stefan, K., Binkofski, F., Shah, N. J., Seitz, R. & Classen, J. (2001). Rekrutierung neuer neuronaler Elemente im menschlichen Motorkortex nach Induktion von LTP. Eine kombinierte fMRI- und TMS-Studie [abstract]. Klin. Neurophysiol., 32: 198Google Scholar
Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G. & Classen, J. (2002). Mechanisms of enhancement of human motor cortical excitability induced by interventional paired associative stimulation. J. Physiol., 543: 699–708CrossRefGoogle ScholarPubMed
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123: 572–584CrossRefGoogle ScholarPubMed
Strafella, A. P., Paus, T., Barrett, J. & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci., 21: RC157CrossRefGoogle ScholarPubMed
Struppler, A., Jakob, C., Müller-Barna, P.. (1996). New method for ealry rehabilitation in extremities palsies of central origin by magnetic stimulation. Z. EEG–EMG, 27: 151–157Google Scholar
Tergau, F., Naumann, U., Paulus, W. & Steinhoff, B. J. (1999a). Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy [letter]. Lancet 353: 2209CrossRefGoogle Scholar
Tergau, F., Wassermann, E. M., Paulus, W. & Ziemann, U. (1999b). Lack of clinical improvement in patients with Parkinson's disease after low and high frequency repetitive transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Suppl., 51: 281–288Google Scholar
Tokimura, H., Di Lazzaro, V., Tokimura, Y.. (2000). Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J. Physiol., 523: 503–513CrossRefGoogle Scholar
Touge, T., Gerschlager, W., Brown, P. & Rothwell, J. C. (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?Clin. Neurophysiol., 112: 2138–2145CrossRefGoogle ScholarPubMed
Rossum, M. C., Bi, G. Q. & Turrigiano, G. G. (2000). Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci., 20: 8812–8821CrossRefGoogle Scholar
Wassermann, E. M., Grafman, J., Berry, C.. (1996). Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol., 101: 412–417CrossRefGoogle ScholarPubMed
Wassermann, E. M., Wedegaertner, F. R., Ziemann, U., George, M. S. & Chen, R. (1998). Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neurosci. Lett., 250: 141–144CrossRefGoogle ScholarPubMed
Wedegaertner, F., Garvey, M., Cohen, L. G., Hallett, M. & Wassermann, E. M. (1997). Low frequency repetitive transcranial magnetic stimulation can reduce action myoclonus [abstract]. Neurology, 48: A119Google Scholar
Wong, B. Y., Coulter, D. A., Choi, D. W. & Prince, D. A. (1988). Dextrorphan and dextromethorphan, common antitussives, are antiepileptic and antagonize N-methyl-d-aspartate in brain slices. Neurosci. Lett., 85: 261–266CrossRefGoogle ScholarPubMed
Wu, T., Sommer, M., Tergau, F. & Paulus, W. (2000). Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci. Lett., 287: 37–40CrossRefGoogle ScholarPubMed
Ziemann, U. (1999). Intracortical inhibition and facilitation in the conventional paired TMS paradigm. Electroencephalogr. Clin. Neurophysiol. Suppl., 51: 127–136Google ScholarPubMed
Ziemann, U., Lönnecker, S., Steinhoff, B. J. & Paulus, W. (1996a). Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann. Neurol., 40: 367–378CrossRefGoogle Scholar
Ziemann, U., Rothwell, J. C. & Ridding, M. C. (1996b). Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.), 496: 873–881CrossRefGoogle Scholar
Ziemann, U., Corwell, B. & Cohen, L. G. (1998a). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci., 18: 1115–1123CrossRefGoogle Scholar
Ziemann, U., Hallett, M. & Cohen, L. G. (1998b). Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci., 18: 7000–7007CrossRefGoogle Scholar
Ziemann, V., Wittenberg, G. F. & Cohen, L. G. (2002). Stimulation-induced within-representation and across-representation plasticity in human motor cortex. J. Neurosci., 22: 5563–5571CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×