Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T07:36:41.252Z Has data issue: false hasContentIssue false

17 - Terrestrial planets

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ariste, A. L., Leblanc, F., Casini, R.et al. (2012). Resonance scattering polarization in the magnetosphere of Mercury. Icarus, 220, 11041111.CrossRefGoogle Scholar
Bohren, C. and Huffman, D. (1998). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.CrossRefGoogle Scholar
Cantor, B. A., Wolff, M. J., James, P. B., and Higgs, E. (1998). Regression of Martian north polar cap: 1990–1997 Hubble Space Telescope observations. Icarus, 136, 175191.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108, 5098.CrossRefGoogle Scholar
Coffeen, D. L. (1979). Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. Journal of the Optical Society of America, 69, 10511064.CrossRefGoogle Scholar
Coffeen, D. and Hansen, J. (1974). Polarization studies of planetary atmospheres. In Planets, Stars, and Nebular Studies with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Dlugach, Z. and Petrova, E. (2003). Polarimetry of Mars in high-transparency periods: How reliable are the estimates of aerosol optical properties?Solar System Research, 37, 87100.CrossRefGoogle Scholar
Dollfus, A. and Auriere, M. (1974). Optical polarimetry of planet Mercury. Icarus, 23, 465482.CrossRefGoogle Scholar
Dollfus, A. and Focas, J. (1969). La planete Mars: La nature de sa surface et les proprietes de son atmosphere, d’apres la polarisation de sa lumiere. Observations. Astronomy and Astrophysics, 2, 6374.Google Scholar
Dollfus, A., Auriere, M., and Santer, R. (1979). Wavelength dependence of polarization. XXXVII. Regional observations of Venus. The Astronomical Journal, 84(9), 14191436.CrossRefGoogle Scholar
Dollfus, A., Deschaps, M., and Ksanfomality, L. (1983). The surface texture of the Martian soil from Soviet spacecraft Mars 5 photopolarimeter. Astronomy and Astrophysics, 123, 225237.Google Scholar
Dollfus, A., Bowell, E., and Ebisawa, S. (1984). The Martian dust storms of 1973: A polarimetric analysis. Astronomy and Astrophysics, 134, 343353.Google Scholar
Dollfus, A., Ebisawa, S., and Crussaire, D. (1996). Hoods, mists, frosts, and ice caps at the poles of Mars. Journal of Geophysical Research, 101(E4), 92079226.CrossRefGoogle Scholar
Ebisawa, S. and Dollfus, A. (1993). Dust in the Martian atmosphere: Polarimetric sensing. Astronomy and Astrophysics, 272, 671686.Google Scholar
Fox, G., Code, A., Anderson, C.et al. (1997). Solar system observations by the Wisconsin Ultraviolet Photopolarimeter experiment. I. The first ultraviolet linear spectropolarimetry of Mars. The Astronomical Journal, 113, 11521157.CrossRefGoogle Scholar
Gehrels, T., Gradie, J., Howes, M., and Vrba, F. (1979). Wavelength dependence of polarization. XXXIV. Observations of Venus. The Astronomical Journal, 84, 671682.CrossRefGoogle Scholar
Gehrels, T., Landau, R., and Coyne, G. V. (1987). Mercury: Wavelength and longitude dependence of polarization. Icarus, 71, 386396.CrossRefGoogle Scholar
Grinspoon, D., Polack, J., Sitton, B.et al. (1993). Probing Venus’s cloud structure with Galileo NIMS. Planetary and Space Science, 41(7), 515542.CrossRefGoogle Scholar
Hansen, J. E. and Arking, A. (1971). Clouds of Venus: Evidence for their nature. Science, 171, 669672.CrossRefGoogle ScholarPubMed
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
James, P. B., Clancy, R. T., Lee, S. W.et al. (1994). Monitoring Mars with the Hubble Space Telescope: 1990–1991 observations. Icarus, 109, 79101.CrossRefGoogle Scholar
Kawabata, K. and Hansen, J. (1975). Interpretation of the variation of polarization over the disk of Venus. Journal of the Atmospheric Sciences, 32, 11331139.2.0.CO;2>CrossRefGoogle Scholar
Kawabata, K., Coffeen, D., Hansen, J.et al. (1980). Cloud and haze properties from Pioneer Venus polarimetry. Journal of Geophysical Research, 85(AI3), 81298140.CrossRefGoogle Scholar
Kaydash, V., Kreslavsky, M., Shkuratov, Yu. et al. (2006). Measurements of winds on Mars with Hubble Space Telescope images in 2003 opposition. Icarus, 185, 97101.CrossRefGoogle Scholar
Kemp, G., Henson, G., Steiner, C., and Powell, E. (1987). The optical polarization of the Sun measured at a sensitivity of parts in ten million. Nature, 326(6110), 270273.CrossRefGoogle Scholar
Knibbe, W., de Haan, J., Hovenier, J., and Travis, L. (1997). A biwavelength analysis of Pioneer Venus polarization observations. Journal of Geophysical Research, 102(E5), 1094510957.CrossRefGoogle Scholar
Können, G., Schoenmaker, A., and Tinbergen, J. (1993). A polarimetric search for ice crystals in the upper atmosphere of Venus. Icarus, 102, 6275.CrossRefGoogle Scholar
Korablev, O., Fedorova, A., Bertaux, J.-L.et al. (2012). SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 65, 3857.CrossRefGoogle Scholar
Ksanfomality, L., Harmon, J., Petrova, E.et al. (2007). Earth-based visible and near-IR imaging of Mercury. Space Science Reviews, 132, 351397.CrossRefGoogle Scholar
Laven, P. (2004). Simulation of rainbows, coronas and glories using Mie theory and the Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 257269.CrossRefGoogle Scholar
Lee, P., Ebisawa, S., and Dollfus, A. (1990). Crystal clouds in the Martian atmosphere. Astronomy and Astrophysics, 240, 520532.Google Scholar
Limaye, S. (1984). Morphology and movements of polarization features on Venus as seen in the Pioneer Orbiter Cloud Photopolarimeter data. Icarus, 57, 362385.CrossRefGoogle Scholar
Lupishko, D. and Kiselev, N. (2004). Disk-integrated polarimetry of Mercury in 2000–2002. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 385392.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l’Observatoire de Paris, section de Meudon, 8, 1161.Google Scholar
Marov, M. Y., Lystsev, V. T., Lebedev, V. N., Lukashevich, N. L., and Shari, V. P. (1980). The structure and microphysical properties of the Venus clouds: Venera 9, 10, and 11 data. Icarus, 44, 608639.CrossRefGoogle Scholar
Mishchenko, M., Lacis, A., Carlson, B., and Travis, L. (1995). Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophysical Research Letters, 22, 10771080.CrossRefGoogle Scholar
Mishchenko, M., Dlugach, J., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal Letters, 705, L118L122.CrossRefGoogle Scholar
Ovcharenko, A., Shkuratov, Y., Pinet, P., Cord, A., and Daydou, Y. (2002). Additional characterization of Martian regolith analogs used for spectral imaging by the facility of observatory Midi-Pyrenees. Microsymposium Vernadsky-Brown, 36, MS075.Google Scholar
Petrova, E. V. (1999). Mars aerosol optical thickness retrieved from measurements of the polarization inversion angle and the shape of dust particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 667676.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45(4), 304322.CrossRefGoogle Scholar
Petrova, E., Shalygina, O., Markiewicz, W., and Almeida, M. (2013). VMC/VEX photometry at small phase angles: Glory and the properties of particles in the upper cloud layer of Venus. European Geosciences Union, General Assembly (EGU2013-7839).Google Scholar
Ragent, B. and Blamont, J. (1980). The structure of the clouds of Venus: Results of the Pioneer Venus nephelometer experiment. Journal of Geophysical Research, 85(A13), 80898105.CrossRefGoogle Scholar
Ragent, B., Esposito, L., Tomasko, M.et al. (1985). Particulate matter in the Venus atmosphere. Advances in Space Research, 5, 85115.CrossRefGoogle Scholar
Roggemann, M. C. and Welsh, B. M. (1996). Imaging Through Turbulence. Boca Raton: CRC Press.Google Scholar
Rossi, L., Montmessin, F., Marcq, M.et al. (2013). Study of Venus’ cloud layers by polarimetry with SPICAV/Vex. European Planetary Science Congress 2013, 8, EPSC2013–504.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1985). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 1. White clouds and dust veils. Astronomy and Astrophysics, 150, 217228.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1986). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 2. Limb and terminator measurements. Astronomy and Astrophysics, 158, 247258.Google Scholar
Sato, M., Travis, L. D., and Kawabata, K. (1996). Photopolarimetry analysis of the Venus atmosphere in polar regions. Icarus, 124, 569585.CrossRefGoogle Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13, 182183.Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Yu. and Zubko, E. (2008). Comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by E. V. Petrova, V. P. Tishkovets, K. Jockers, 2007 [Icarus, 188, 233–245]. Icarus, 194, 850852.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y., Kreslavsky, M., Kaydash, V.et al. (2005). Hubble Space Telescope imaging polarimetry of Mars during the 2003 opposition. Icarus, 176, 111.CrossRefGoogle Scholar
Shkuratov, Y., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Sparks, W., Hough, J., and Bergeron, L. (2005). A search for chiral signatures on Mars. Astrobiology, 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W., Hough, J., Geremer, T., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planetary and Space Science, 72, 111115.CrossRefGoogle Scholar
Starodubtseva, O. M. (1987). Temporal variations of polarized light on Venus. Astronomicheskii Tsirkulyar, 1511, 3 [in Russian].Google Scholar
Starodubtseva, O. M. (1991). Variability of polarized light of Venus from ground-based observations. In 22nd Lunar Planetary Science Conference. Houston: LPI, p. 1315.Google Scholar
Taylor, F. (2006). Venus before Venus Express. Planetary and Space Science, 54, 12491262.CrossRefGoogle Scholar
Tishkovets, V. P. and Shkuratov, Y. G. (1982). Polarization properties of the surface and atmosphere of Mars. Soviet Astronomy, 26, 599601.Google Scholar
Travis, L. D., Coffeen, D. L., Hansen, J. E.et al. (1979). Orbiter cloud photopolarimeter investigation. Science, 203, 781785.CrossRefGoogle ScholarPubMed
Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. D. (1988). Photometry and polarimetry of Mercury. In Vilas, F., Chapman, C. R., and Matthews, M. S., eds., Mercury. Tucson: University of Arizona Press, pp. 3758.Google Scholar
Wolff, M. and Clancy, R. (2003). Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. Journal of Geophysical Research, 108, 5097.CrossRefGoogle Scholar
Wolff, M. J., BellIII, J. F., James, P. B., Clancy, R. T., and Lee, S. W. (1999). Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Mars Pathfinder mission: Seasonal and interannual variations. Journal of Geophysical Research, 104(E4), 90279041.CrossRefGoogle Scholar
Young, A. (1973). Are the clouds of Venus sulfuric acid?Icarus, 18, 564582.CrossRefGoogle Scholar
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×