Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:13:29.024Z Has data issue: false hasContentIssue false

13 - The Great Saturn Storm of 2010–2011

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

In December 2010, a major storm erupted in Saturn’s northern hemisphere near 37° planetographic latitude. This rather surprising event, occurring at an unexpected latitude and time, is the sixth “Great White Spot” (GWS) storm observed over the last century and a half. Such GWS events are extraordinary, planetary-scale atmospheric phenomena that dramatically change the typically bland appearance of the planet. Occurring while the Cassini mission was on orbit at Saturn, the Great Storm of 2010–2011 was well suited for intense scrutiny by the suite of sophisticated instruments onboard the Cassini spacecraft as well by modern instrumentation on ground-based telescopes and onboard the Hubble Space Telescope. This GWS erupted on 5 December close to the peak of a westward jet and generated a major dynamical disturbance that affected the whole latitude band from 25° to 48°N. At the upper cloud level, following the rapid growth of the bright outbreak spot, a blunt aerodynamic-shaped head formed due to interaction of the spot with the westward zonal jet, with the winds reaching velocities of 160 m s−1 along the periphery of the arc. Eastward of the head, the disturbance progressed in the following months forming a turbulent wake or tail with growing vortices, one of them a major enduring anticyclone (called AV) with a size of ~11,000 km. Lightning events were prominent and detected as outbursts and flashes at the head and along the disturbance at both optical and radio wavelengths. The activity of the head ceased after about seven months when AV reached it, leaving the cloud structure and ambient winds perturbed. The tops of the optically dense clouds of the head reached the 300-mbar altitude level (~50 km below tropopause), where a mixture of ices was detected, including (1) a component of water ice lofted over 200 km altitude from its 10-bar condensation level, (2) ammonia ice as the predominant component and (3) a component that might be ammonium hydrogen sulfide ice. The energetics of the frequency and power of lightning, as well as the estimated power generated by the latent heat released in the water-based convection to create the observed dynamical three-dimensional flows, both indicate that the power released for much of the 7-month lifetime of the storm (~1017 Watts) was a significant fraction of Saturn’s total radiated power (~2.2 1017 W). A post-storm depletion of ammonia vapour was also measured in the upper troposphere. The effects of the storm propagated into the stratosphere, forming two warm air masses at the ~0.5- to 5-mbar pressure level altitude that later merged into a so-called “beacon” because of its 80 K temperature excess relative to its surroundings. Related to the stratospheric disturbance, hydrocarbon composition excesses were found, in particular for ethylene (C2H4), in the high stratosphere at the ~0.1- to 0.5-mbar altitude level. Numerical models of the storm dynamics explain the major observed features that essentially result from two processes: (1) a huge and sustained, moist, convective storm at the water clouds (altitude level 10–12 bar, or ~250–275 km below the tropopause) and (2) the interaction of the updraft columns with the ambient winds that generates the turbulent wake consisting of vortices and waves. Model simulations of the GWS require a low vertical shear of the zonal winds and low static stability across the weather layer where the disturbance develops. Its upward propagation into the stratosphere involves Rossby waves and their breaking and energy deposition to form the beacon and induce chemical changes.

The decades-long interval between storms is probably related to the insolation cycle and the long radiative time constant of Saturn’s atmosphere, and several theories for temporarily storing energy have been proposed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarreta, J. R. and A. Sánchez-Lavega, (1999), Vertical cloud structure in Saturn’s 1990 Equatorial storm. Icarus, 137, 2433. doi:10.1006/icar.1998.6034.Google Scholar
Achterberg, R. K., Gierasch, P. J., Conrath, B. J. et al. (2014), Changes to Saturn’s zonal mean tropospheric thermal structure after the 2010–2011 northern hemisphere storm. Astrophysical Journal, 786, 92, pp 8. doi:10.1088/0004-637X/786/2/92.Google Scholar
Atreya, S. K. and Wong, A.-S. (2005), Coupled clouds and chemistry of the giant planets: A case for multiprobes. Space Science Reviews, 116, 121136. doi:10.1007/s11214-005–1951-5.Google Scholar
Baines, K. H., Delitsky, M. L., Momary, T. et al. (2009), Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planetary and Space Sci. 57, 16501658. doi:10:1016/j.pss.2009.06.025Google Scholar
Baines, K., Momary, T., Fletcher, L., Showman, A., Brown, R., Buratti, B., Clark, R., Nicholson, P., Go, C. and Wesley, A. (2011), Saturn’s enigmatic “String of Pearls” and northern storm of 2010–2011: Manifestations of a common dynamical mechanism. EPSC abstracts, Vol 6., EPSC-DPS2011-1658, 2011.Google Scholar
Baines, K. H., Momary, T. W., Fletcher, L. N. et al. (2010), Saturn’s “String of Pearls” after five years: Still there, moving backwards faster in the Voyager system. Bulletin of the American Astronomical Society, 42, 1039.Google Scholar
Barnet, C. D., Westphal, J. A., Beebe, R. F. and Huber, L. F. (1992), Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Zonal winds and central meridian albedos. Icarus, 100, 499511. doi:10.1016/0019–1035(92)90113-L.Google Scholar
Beebe, R. F., Barnet, C., Sada, P. V. and Murrell, A. S. (1992), The onset and growth of the 1990 equatorial disturbance on Saturn, Icarus, 95, 163172. doi:10.1016/0019–1035(92)90035–6.Google Scholar
Bézard, B., Moses, J. I., Lacy, J. et al. (2001), Detection of ethylene (C2H4) on Jupiter and Saturn in non-auroral regions. Bulletin of the American Astronomical Society, 33, 1079.Google Scholar
Bjoraker, G., Hesman, B. E., Achterberg, R. K. and Romani, P. N. (2012), The evolution of hydrocarbons in Saturn’s northern storm region. Bulletin of the American Astronomical Society, 44, #403.05.Google Scholar
Brown, R. H., Baines, K. H., Bellucci, G. et al. (2004), The Cassini Visual and Infrared Mapping Spectrometer (VIMS) investigation. Space Science Reviews 115, 111168. doi:10.1007/s11214-004–1453-x.Google Scholar
Borucki, W. J., Bar-Nun, A., Scarf, F. L., Look, A. F. and Hunt, G. E. (1982), Lightning activity on Jupiter, Icarus, 52, 492502. doi:10.1016/0019–1035(82)90009–4.Google Scholar
Borucki, W. J. and McKay, C. P. (1987), Optical efficiencies of lightning in planetary atmospheres, Nature, 328, 509510. doi:10.1038/328509a0.Google Scholar
Cavalié, T., Dobrijévic, M., Fletcher, L. N. et al. (2015), The photochemical response to the variation of temperature in Saturn’s 2011–2012 stratospheric vortex. Astronomy & Sstrophysics, 580, A55.CrossRefGoogle Scholar
Charney, J. G. and Drazin, P. G. (1961), Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research, 66, 83109. doi:10.1029/JZ066i001p00083.Google Scholar
Choi, D. S., Showman, A. P. and Brown, R. H. (2009), Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. Journal of Geophysical Research, 114, E04007. doi:10.1029/2008JE003254.CrossRefGoogle Scholar
Clark, R. N. and 13 colleagues (2012), The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.Google Scholar
Conrath, B. J. and Gautier, D. (2000), Saturn helium abundance: A reanalysis of Voyager measurements, Icarus, 144, 124134. doi:10.1006/icar.1999.6265.Google Scholar
Dollfus, A. (1963), Mouvements dans l’atmosphère de Saturne en 1960. Observations coordonnées par l’Union Astronomique Internationale. Icarus, 2, 109114. doi:10.1016/0019–1035(63)90010–1.Google Scholar
del Río-Gaztelurrutia, T., Legarreta, J., Hueso, R., Pérez-Hoyos, S. and Sánchez-lavega, A. (2010), A long-lived cyclone in Saturn’s atmosphere: Observations and models, Icarus, 209, 665681. doi:10.1016/j.icarus.2010.04.002Google Scholar
Dowling, T. E., Fischer, A. S., Gierasch, P. J., Harrington, J., Lebeau, R. P. and Santori, C. M. (1998), The Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model. Icarus, 132, 221238. doi:10.1006/icar.1998.5917.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2007), Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus, 190, 545555. doi:10.1016/j.icarus.2007.03.035.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. (2010), Detection of visible lightning on Saturn. Geophysical Research Letters, 37, L09205. doi:10.1029/2010GL043188.CrossRefGoogle Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Porco, C. C., Fischer, G. and Yair, Y. (2013), Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms. Icarus, 226, 10201037. doi:10.106/j.Icarus.2013.07.013.Google Scholar
Elachi, C., Allison, M. D., Borgarelli, L. et al. (2004), Radar: The Cassini Titan Radar Mapper. Space Science Reviews, 115, 71110. doi:10.1007/s11214-004–1438-9.Google Scholar
Encrenaz, T., Combes, M., Zeau, Y., Vapillon, L. and Berezne, J. (1975), A tentative identification of C2H4 in the spectrum of Saturn. Astronomy & Astrophysics, 42, 355356.Google Scholar
Fischer, G., Desch, M. D., Zarka, P. et al. (2006), Saturn lightning recorded by Cassini/RPWS in 2004. Icarus, 183, 135152, doi:10.106/j.icarus.2006.02.010.Google Scholar
Fischer, G., Dyudina, U. A., Kurth, W. S. et al. (2011c), Overview of Saturn lightning observations. Pages 135144 in: Rucker, H. O., Kurth, W. S., Louarn, P. and Fischer, G. (eds.), Planetary Radio Emissions VII. Vienna: Austrian Academy of Sciences Press.Google Scholar
Fischer, G., Gurnett, D. A., Kurth, W. S. et al. (2008), Atmospheric electricity at Saturn, Space Science Review, 137, 271285, doi:10.1007/s11214-008–9370-z.Google Scholar
Fischer, G., Gurnett, D. A., Lecacheux, A., Macher, W. and Kurth, W. S. (2007b), Polarization measurements of Saturn electrostatic discharges with Cassini/RPWS below a frequency of 2 MHz, Journal of Geophysical Research, 112, A12308, doi:10.1029/2007JA012592.CrossRefGoogle Scholar
Fischer, G., Gurnett, D. A., Zarka, P., Moore, L. and Dyudina, U. A. (2011b), Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning. Journal of Geophysical Research, 116, A04315, doi:10.1029/2010JA016187.Google Scholar
Fischer, G., Kurth, W. S., Dyudina, U. A. et al. (2007a), Analysis of a giant lightning storm. Icarus, 190, 528544, doi:10.1016/j.icarus.2007.04.002.Google Scholar
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011a), A giant thunderstorm on Saturn. Nature, 475, 7577. doi:10.1038/nature10205.Google Scholar
Fischer, G., Ye, S.-Y., Groene, J. B. et al. (2014), A possible influence of the Great White Spot on Saturn kilometric radiation periodicity. Annales Geophysicae, 32, 14631476. doi:10.5194/angeo-32–1463-2014.Google Scholar
Flasar, F. M., Kunde, V. G., Abbas, M. M. et al. (2004), Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Science Reviews, 115, 169297. doi:10.1007/s11214-004–1454-9.CrossRefGoogle Scholar
Fletcher, L. N., Greathouse, T. K., Orton, G. W. et al. (2014), The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus, 238, 170190. doi:10.1016/j.icarus.2014.05.007.Google Scholar
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus, 221, 560586. doi:10.1016/j.icarus.2012.08.024.Google Scholar
Fletcher, L. N., Hesman, B. E., Irwin, P. G. et al. (2011), Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science, 332, 14131417. doi:10.1126/science.1204774.Google Scholar
García-Melendo, E., Hueso, R., Sánchez-Lavega, A. et al. (2013), Atmospheric dynamics of Saturn’s 2010 giant storm, Nature Geoscience, 6, 525529. doi:10.1038/NGEO1860.Google Scholar
García-Melendo, E., Pérez-Hoyos, S., Sánchez-Lavega, A. and Hueso, R. (2011), Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 215, 6274. doi:10.1016/j.icarus.2011.07.005.Google Scholar
García-Melendo, E. and Sánchez-Lavega, A. (2017), Shallow water simulations of Saturn’s giant storms at different latitudes. Icarus, 286, 241260. doi:10.1016/j.icarus.2016.10.006.Google Scholar
García-Melendo, E., Sánchez-Lavega, A. and Hueso, R. (2007), Numerical models of Saturn’s long-lived anticyclones. Icarus, 191, 665677. doi:10.1016/j.icarus.2007.05.02Google Scholar
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238, 110124. doi:10.1016/j.icarus.2014.05.010.Google Scholar
Guillot, T. (1995), Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. Science, 269, 16971699. doi:10.1126/science.7569896.Google Scholar
Gurnett, D. A., Kurth, W. S., Kirchner, D. L. et al. (2004), The Cassini radio and plasma wave science investigation. Space Science Reviews, 114, 395463. doi:10.1007/s11214-004–1434-0.Google Scholar
Harvey, V. L. and Hitchman, M. H. (1996), A climatology of the Aleutian high. Journal of Atmospheric Sciences, 53, 20882102.Google Scholar
Harvey, V. L., Pierce, R. B., Hitchman, M. H., Randall, C. E. and Fairlie, T. D. (2004), On the distribution of ozone in stratospheric anticyclones. Journal of Geophysical Research (Atmospheres), 109, 24308. doi:10.1029/2004JD004992.Google Scholar
Hesman, B. E., Bjoraker, G. L., Achterberg, R. K. et al. (2013), The Evolution of Hydrocarbon Compounds in Saturn’s Stratosphere During the 2010 Northern Storm. AGU Fall Meeting Abstracts, Dec. 2013, C2205.Google Scholar
Hesman, B. E., Bjoraker, G. L., Sada, P. V. et al. (2012), Elusive ethylene detected in Saturn’s northern storm region. The Astrophysical Journal, 760, 2430. doi:10.1088/0004-637X/760/1/24.Google Scholar
Hueso, R., Legarreta, J., Pérez-Hoyos, S., Rojas, J. F., Sánchez-Lavega, A. and Morgado, A. (2010), The international outer planets watch atmospheres node database of giant-planet images. Planetary and Space Science, 58, 11521159. doi:10.1016/j.pss.2010.04.006.Google Scholar
Hueso, R., and Sánchez-Lavega, A. (2001), A three-dimensional model of moist convection for the giant planets: The Jupiter case. Icarus, 151, 257274. doi:10.1006/icar.2000.6606.Google Scholar
Hueso, R., and Sánchez-Lavega, A. (2004), A three-dimensional model of moist convection for the giant planets II: Saturn’s water and ammonia moist convective storms. Icarus, 172, 255271. doi:10.1016/j.icarus.2004.06.010.Google Scholar
Hurley, J., Irwin, P. G. J., Fletcher, L. N. et al. (2012), Observations of upper tropospheric acetylene on Saturn: No apparent correlation with 2000 km-sized thunderstorms. Planetary and Space Science, 65, 2137. doi:10.1016/j.pss.2011.12.026.Google Scholar
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. and Hunt, G. E. (1984), Structure and dynamics of Saturn’s atmosphere. In: Gehrels, T. and Matthews, M. S. (eds.), Saturn. Tucson, AZ: University of Arizona Press, 195238.Google Scholar
Janssen, M. A., Ingersoll, A. P., Allison, M. D. et al. (2013), Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226, 522535. doi:10.1016/j.icarus.2013.06.008.Google Scholar
Kaiser, M. L., Desch, M. D. and Connerney, J. E. P. (1984), Saturn’s ionosphere: Inferred electron densities. Journal of Geophysical Research, 89, A4, 23712376. doi:10.1029/JA089iA04p02371.Google Scholar
Karkoschka, E. and Tomasko, M. G. (1993), Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope. Icarus, 106, 428441. doi:10.1006/icar.1993.1183.Google Scholar
Karkoschka, E. and Tomasko, M. G. (2005), Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus 179, 195221. doi:10.1016/j.icarus.2005.05.016.Google Scholar
Konovalenko, A. A., Kalinichenko, N. N., Rucker, H. O. et al. (2013), Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006, Icarus, 224, 1423. doi:10.1016/j.icarus.2012.07.024.Google Scholar
Laraia, A. L., Ingersoll, A. P., Janssen, M. A., Gulkis, S., Oyafuso, F. and Allison, M. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor. Icarus, 226, 641654. DOI:10.1016/j.icarus.2013.06.017.Google Scholar
Larsen, H. R. and Stansbury, E. J. (1974), Association of lightning flashes with precipitation cores extending to height 7 km. Journal of Atmospheric and Terrestrial Physics, 36, 1547–1533.Google Scholar
Lebeau, R. P. and Dowling, T. E. (1998), EPIC simulations of time-dependent, three-dimensional vortices with application to Neptune’s great dark spot. Icarus, 132, 239265. doi:10.1006/icar.1998.5918.Google Scholar
Legarreta, J. And Sánchez-Lavega, A. (2008), Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices, Icarus, 196, 184201. doi:10.1016/j.icarus.2008.02.018.Google Scholar
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nat. Geoscience, 8, 398403. doi:10.1038/ngeo2405Google Scholar
Li, L., Jiang, X., Trammell, H. J., Pan, Y., Hernandez, J., Conrath, B. J., Gierasch, P. J., Achterberg, R. K., Nixon, C. A., Flasar, F. M., Pérez-Hoyos, S., West, R. A., Baines, K. H. and Knowles, B. (2015), Saturn’s giant storm and global radiant energy. Geophys. Res. Lett., 42, 21442148. doi:10.1002/2015GL063763.Google Scholar
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astronomical Journal, 90, 1136–114. doi:10.1086/113820.Google Scholar
Manney, G. L., Froidevaux, L., Waters, J. W. et al. (1995), Formation of low-ozone pockets in the middle stratospheric anticyclone during winter. Journal of Geophysical Research-Atmospheres, 100, 1393913950. doi:10.1029/95JD00372.Google Scholar
Miller, E. A., Klein, G., Juergens, D. W. et al. (1996), The visual and infrared mapping spectrometer for Cassini. In: L. Horn (ed.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2803, 206220.Google Scholar
Momary, T. W. and Baines, K. H. (2014), The anticyclonic eye of the storm. Evolution of Saturn’s Great Storm region and associated anticyclone as seen by Cassini/VIMS. Abstract 422.11. Proceedings of the 46th Annual Meeting of the Division of Planetary Sciences.Google Scholar
Moses, J. I., Armstrong, E. S., Fletcher, L. N., Irwin, P. G. J., Hesman, B. E. and Romani, P. N. (2015), Evolution of stratospheric chemistry in the Saturn storm beacon. Icarus 261, 149168Google Scholar
Muñoz, O., Moreno, F., Molina, A., Grodent, D., Gérard, J. C. and Dols, V. (2004), Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images. Icarus, 169, 413428. doi:10.1016/j.icarus.2003.12.018.Google Scholar
Orton, G. S., Fletcher, L. N., Fouchet, T. et al. (2013), Ground-based observations of the aftermath of the 2010–2011 Great Northern Springtime Storm in Saturn (Invited), AGU Fall Meeting Abstracts, Dec., A6.Google Scholar
Pedlosky, J. (1979), Geophysical Fluid Dynamics, Springer-Verlag, New York, pp. 624.Google Scholar
Pérez-Hoyos, S. and Sánchez-Lavega, A. (2006), Solar flux in Saturn’s atmosphere: maximum penetration and heating rates in the aerosol and cloud layers, Icarus, 180, 368378.Google Scholar
Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G. and Rojas, J. F. (2005), Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 176, 155174. doi:10.1016/j.icarus.2005.01.014Google Scholar
Pierce, A. D. and Coroniti, S. C. (1966), A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature, 210, 12091210. doi:10.1038/2101209a0.Google Scholar
Porco, C. C., Baker, E., Barbara, J. et al. (2005), Cassini Imaging Science: Initial results on Saturn’s atmosphere, Science, 307, 12431247. doi:10.1126/science.1107691.Google Scholar
Porco, C. C., West, R. A., Squyres, S. et al. (2004), Cassini Imaging Science: Instrument characteristics and anticipated scientific investigations at Saturn, Space Sci. Rev., 115, 363497.Google Scholar
Sánchez-Lavega, A. (1982), Motions in Saturn’s atmosphere: Observations before Voyager encounters. Icarus, 49, 116. doi:10.1016/0019–1035(82)90052–5.CrossRefGoogle Scholar
Sánchez-Lavega, A. (1994), Saturn’s Great White Spots, Chaos, 4, 341353. doi:10.1063/1.166012.Google Scholar
Sánchez-Lavega, A. (2011) An Introduction to Planetary Atmospheres, Boca Raton, FL: Taylor-Francis, CRC Press, pp. 629.Google Scholar
Sánchez-Lavega, A. and Battaner, E. (1987), The nature of Saturn’s Great White Spots. Astronomy & Astrophysics, 185, 315326.Google Scholar
Sánchez Lavega, A., Colas, F., Lecacheux, J., Laques, P., Miyazaki, I. and Parker, D. (1991), The Great White Spot and disturbances in Saturn’s equatorial atmosphere during 1990, Nature, 353, 397401. doi:10.1038/353397a0.Google Scholar
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Delcroix, M. et al. (2012), Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus, 220, 561576, doi:10.1016/j.icarus.2012.05.033.Google Scholar
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Hueso, R. et al. (2011) Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature, 475, 7174. doi:10.1038/nature10203.Google Scholar
Sánchez-Lavega, A. and Gómez, J. M. (1996a), The south equatorial belt of Jupiter. I: Its life cycle. Icarus, 121, 117. doi:10.1006/icar.1996.0067.Google Scholar
Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S., Rojas, J. F. and French, R. G. (2004) Saturn’s cloud morphology and zonal winds before the Cassini encounter. Icarus, 170, 519523. doi:10.1016/j.icarus.2004.05.002.Google Scholar
Sánchez Lavega, A., Lecacheux, J., Colas, F. and Laques, P. (1993), Temporal behavior of cloud morphologies and motions in Saturn’s atmosphere. Journal of Geophysical Research, 98, 1885718872. doi:10.1029/93JE01777.CrossRefGoogle Scholar
Sánchez Lavega, A., Lecacheux, J., Colas, F. and Laques, P. (1994), Photometry of Saturn’s 1990 equatorial disturbance. Icarus, 108, 158168. doi:10.1006/icar.1994.1048.Google Scholar
Sánchez Lavega, A., Lecacheux, J., Gómez, J. M. et al. (1996b), Large-scale storms in Saturn’s atmosphere during 1994, Science, 271, 631634. doi:10.1126/science.271.5249.631.Google Scholar
Sánchez-Lavega, A., Orton, G. S., Hueso, R. et al. (2008), Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms, Nature, 451, 437440. doi:10.1038/nature06533.Google Scholar
Sánchez-Lavega, A., Pérez-Hoyos, S., Rojas, J. F., Hueso, R. and French, R. G. (2003), A strong decrease in Saturn’s equatorial jet at cloud level. Nature, 423, 623625. doi:10.1038/nature01653.Google Scholar
Sánchez-Lavega, A., Rojas, J. F. and Sada, P. V. (2000), Saturn’s zonal winds at cloud level, Icarus, 147, 405420.Google Scholar
Sanz-Requena, J. F., Pérez-Hoyos, S., Sánchez-Lavega, A. et al. (2012), Cloud structure of Saturn’s 2010 storm from ground-based imaging. Icarus, 219, 142149. doi:10.1016/j.icarus.2012.02.023.Google Scholar
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P. et al. (2013), Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus, 223, 460478. doi:10.1016/j.icarus.2012.12.013.Google Scholar
Sayanagi, K. S., Dyudina, U. A., Ewald, S. P., Muro, G. D. and Ingersoll, A. P. (2014), Cassini ISS observation of Saturn’s String of Pearls. Icarus, 229, 170180. doi:10.1016/j.icarus.2013.10.032.Google Scholar
Sayanagi, K. M., Morales-Juberias, R. and Ingersoll, A. P. (2010), Saturn’s northern hemisphere ribbon: Simulations and comparison with the meandering gulf stream. Journal of the Atmospheric Sciences, 67, 26582678. doi:10.1175/2010JAS3315.1.Google Scholar
Shemansky, D. and Liu, X. (2012), Saturn upper atmospheric structure from Cassini EUV and FUV occultations. Canadian Journal of Physics, 90, 817831. doi:10.1139/p2012-036.Google Scholar
Showman, A. (2007) Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. Journal of the Atmospheric Sciences, 64, 31323157. doi:10.1175/JAS4007.1.Google Scholar
Simon-Miller, A. A., Chanover, N. J., Orton, G. S., Sussman, M., Tsavaris, I. G. and Karkoschka, E. (2006), Jupiter’s White Oval turns red. Icarus, 185, 558562. doi:10.1016/j.icarus.2006.08.002.Google Scholar
Sromovsky, L. A., Baines, K. H. and Fry, P. (2013), Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 226, 402418. doi:10.1016/j.icarus.2013.05.043.Google Scholar
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2014), Vertical structure of Saturn lightning storms and storm-related dark ovals. American Astronomical Society, #46, #511.09.Google Scholar
Sugiyama, K., Nakajima, K., Odaka, M., Ishiwatari, M., Kuramoto, K., Morikawa, Y., Nishizawa, S., Takahashi, Y. O. and Hayashi, Y.-Y. (2011), Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett., 38, L13201; doi:10.1029/2011GL047878.UnlinkedGoogle Scholar
Sugiyama, K., Nakajima, K., Odaka, M., Kuramoto, K. and Hayashi, Y.-Y. (2014), Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states, Icarus, 229, 7191. doi:10.1016/j.icarus.2013.10.016.Google Scholar
Tomasko, M. G. and Doose, L. R. (1984), Polarimetry and photometry of Saturn from Pioneer 11 Observations and constraints on the distribution and properties of cloud and aerosol particles, Icarus, 58, 134. doi:10.1016/0019–1035(84)90096–4.Google Scholar
Vallis, G. K. (2006), Atmospheric and Ocean Fluid Dynamics, Cambridge: Cambridge University Press, 745.Google Scholar
Vasavada, A. R., Hörst, S. M., Kennedy, M. R. et al. (2005), Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research. 111, E05004. doi:10.1029/2005JE002563.Google Scholar
Vasavada, A. R. and Showman, A. P. (2005), Jovian atmospheric dynamics: an update after Galileo and Cassini, Reports on Progress in Physics, 68, 1935–1996. doi:10.1088/0034–4885/68/8/R06.Google Scholar
Warwick, J. W., Pearce, J. B., Evans, D. R. et al. (1981), Planetary radio astronomy observations from Voyager 1 near Saturn. Science, 212, 239243. doi:10.1126/science.212.4491.239.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E. and Sánchez-Lavega, A. (2009), Clouds and aerosols in Saturn’s atmosphere. Pages 113159 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini–Huygens. New York, NY: Springer.Google Scholar
Westphal, J. A., Baum, W. A., Ingersoll, A. P. et al. (1992), Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Images, albedos and limb darkening. Icarus, 100, 485498. doi:10.1016/0019–1035(92)90112-K.Google Scholar
Zakharenko, V., Mylostna, C., Konovalenko, A. et al. (2012), Ground-based and spacecraft observations of lightning activity on Saturn. Planetary and Space Science, 61, 5359. doi:10.1016/j.pss.2011.07.021.Google Scholar
Zarka, P., Cecconi, B., Denis, L. et al. (2006), Physical properties and detection of Saturn’s lightning radio bursts. Pages 111122 in: Planetary Radio Emissions VI, Rucker, H. O., Kurth, W. S. and Mann, G. (eds.), Vienna: Austrian Academy of Sciences Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×