Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2018
  • Online publication date: December 2018

13 - The Great Saturn Storm of 2010–2011

Summary

In December 2010, a major storm erupted in Saturn’s northern hemisphere near 37° planetographic latitude. This rather surprising event, occurring at an unexpected latitude and time, is the sixth “Great White Spot” (GWS) storm observed over the last century and a half. Such GWS events are extraordinary, planetary-scale atmospheric phenomena that dramatically change the typically bland appearance of the planet. Occurring while the Cassini mission was on orbit at Saturn, the Great Storm of 2010–2011 was well suited for intense scrutiny by the suite of sophisticated instruments onboard the Cassini spacecraft as well by modern instrumentation on ground-based telescopes and onboard the Hubble Space Telescope. This GWS erupted on 5 December close to the peak of a westward jet and generated a major dynamical disturbance that affected the whole latitude band from 25° to 48°N. At the upper cloud level, following the rapid growth of the bright outbreak spot, a blunt aerodynamic-shaped head formed due to interaction of the spot with the westward zonal jet, with the winds reaching velocities of 160 m s−1 along the periphery of the arc. Eastward of the head, the disturbance progressed in the following months forming a turbulent wake or tail with growing vortices, one of them a major enduring anticyclone (called AV) with a size of ~11,000 km. Lightning events were prominent and detected as outbursts and flashes at the head and along the disturbance at both optical and radio wavelengths. The activity of the head ceased after about seven months when AV reached it, leaving the cloud structure and ambient winds perturbed. The tops of the optically dense clouds of the head reached the 300-mbar altitude level (~50 km below tropopause), where a mixture of ices was detected, including (1) a component of water ice lofted over 200 km altitude from its 10-bar condensation level, (2) ammonia ice as the predominant component and (3) a component that might be ammonium hydrogen sulfide ice. The energetics of the frequency and power of lightning, as well as the estimated power generated by the latent heat released in the water-based convection to create the observed dynamical three-dimensional flows, both indicate that the power released for much of the 7-month lifetime of the storm (~1017 Watts) was a significant fraction of Saturn’s total radiated power (~2.2 1017 W). A post-storm depletion of ammonia vapour was also measured in the upper troposphere. The effects of the storm propagated into the stratosphere, forming two warm air masses at the ~0.5- to 5-mbar pressure level altitude that later merged into a so-called “beacon” because of its 80 K temperature excess relative to its surroundings. Related to the stratospheric disturbance, hydrocarbon composition excesses were found, in particular for ethylene (C2H4), in the high stratosphere at the ~0.1- to 0.5-mbar altitude level. Numerical models of the storm dynamics explain the major observed features that essentially result from two processes: (1) a huge and sustained, moist, convective storm at the water clouds (altitude level 10–12 bar, or ~250–275 km below the tropopause) and (2) the interaction of the updraft columns with the ambient winds that generates the turbulent wake consisting of vortices and waves. Model simulations of the GWS require a low vertical shear of the zonal winds and low static stability across the weather layer where the disturbance develops. Its upward propagation into the stratosphere involves Rossby waves and their breaking and energy deposition to form the beacon and induce chemical changes.

The decades-long interval between storms is probably related to the insolation cycle and the long radiative time constant of Saturn’s atmosphere, and several theories for temporarily storing energy have been proposed.

Acarreta, J. R. and A. Sánchez-Lavega, (1999), Vertical cloud structure in Saturn’s 1990 Equatorial storm. Icarus, 137, 2433. doi:10.1006/icar.1998.6034.
Achterberg, R. K., Gierasch, P. J., Conrath, B. J. et al. (2014), Changes to Saturn’s zonal mean tropospheric thermal structure after the 2010–2011 northern hemisphere storm. Astrophysical Journal, 786, 92, pp 8. doi:10.1088/0004-637X/786/2/92.
Atreya, S. K. and Wong, A.-S. (2005), Coupled clouds and chemistry of the giant planets: A case for multiprobes. Space Science Reviews, 116, 121136. doi:10.1007/s11214-005–1951-5.
Baines, K. H., Delitsky, M. L., Momary, T. et al. (2009), Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planetary and Space Sci. 57, 16501658. doi:10:1016/j.pss.2009.06.025
Baines, K., Momary, T., Fletcher, L., Showman, A., Brown, R., Buratti, B., Clark, R., Nicholson, P., Go, C. and Wesley, A. (2011), Saturn’s enigmatic “String of Pearls” and northern storm of 2010–2011: Manifestations of a common dynamical mechanism. EPSC abstracts, Vol 6., EPSC-DPS2011-1658, 2011.
Baines, K. H., Momary, T. W., Fletcher, L. N. et al. (2010), Saturn’s “String of Pearls” after five years: Still there, moving backwards faster in the Voyager system. Bulletin of the American Astronomical Society, 42, 1039.
Barnet, C. D., Westphal, J. A., Beebe, R. F. and Huber, L. F. (1992), Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Zonal winds and central meridian albedos. Icarus, 100, 499511. doi:10.1016/0019–1035(92)90113-L.
Beebe, R. F., Barnet, C., Sada, P. V. and Murrell, A. S. (1992), The onset and growth of the 1990 equatorial disturbance on Saturn, Icarus, 95, 163172. doi:10.1016/0019–1035(92)90035–6.
Bézard, B., Moses, J. I., Lacy, J. et al. (2001), Detection of ethylene (C2H4) on Jupiter and Saturn in non-auroral regions. Bulletin of the American Astronomical Society, 33, 1079.
Bjoraker, G., Hesman, B. E., Achterberg, R. K. and Romani, P. N. (2012), The evolution of hydrocarbons in Saturn’s northern storm region. Bulletin of the American Astronomical Society, 44, #403.05.
Brown, R. H., Baines, K. H., Bellucci, G. et al. (2004), The Cassini Visual and Infrared Mapping Spectrometer (VIMS) investigation. Space Science Reviews 115, 111168. doi:10.1007/s11214-004–1453-x.
Borucki, W. J., Bar-Nun, A., Scarf, F. L., Look, A. F. and Hunt, G. E. (1982), Lightning activity on Jupiter, Icarus, 52, 492502. doi:10.1016/0019–1035(82)90009–4.
Borucki, W. J. and McKay, C. P. (1987), Optical efficiencies of lightning in planetary atmospheres, Nature, 328, 509510. doi:10.1038/328509a0.
Cavalié, T., Dobrijévic, M., Fletcher, L. N. et al. (2015), The photochemical response to the variation of temperature in Saturn’s 2011–2012 stratospheric vortex. Astronomy & Sstrophysics, 580, A55.
Charney, J. G. and Drazin, P. G. (1961), Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research, 66, 83109. doi:10.1029/JZ066i001p00083.
Choi, D. S., Showman, A. P. and Brown, R. H. (2009), Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. Journal of Geophysical Research, 114, E04007. doi:10.1029/2008JE003254.
Clark, R. N. and 13 colleagues (2012), The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.
Conrath, B. J. and Gautier, D. (2000), Saturn helium abundance: A reanalysis of Voyager measurements, Icarus, 144, 124134. doi:10.1006/icar.1999.6265.
Dollfus, A. (1963), Mouvements dans l’atmosphère de Saturne en 1960. Observations coordonnées par l’Union Astronomique Internationale. Icarus, 2, 109114. doi:10.1016/0019–1035(63)90010–1.
del Río-Gaztelurrutia, T., Legarreta, J., Hueso, R., Pérez-Hoyos, S. and Sánchez-lavega, A. (2010), A long-lived cyclone in Saturn’s atmosphere: Observations and models, Icarus, 209, 665681. doi:10.1016/j.icarus.2010.04.002
Dowling, T. E., Fischer, A. S., Gierasch, P. J., Harrington, J., Lebeau, R. P. and Santori, C. M. (1998), The Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model. Icarus, 132, 221238. doi:10.1006/icar.1998.5917.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2007), Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus, 190, 545555. doi:10.1016/j.icarus.2007.03.035.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. (2010), Detection of visible lightning on Saturn. Geophysical Research Letters, 37, L09205. doi:10.1029/2010GL043188.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Porco, C. C., Fischer, G. and Yair, Y. (2013), Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms. Icarus, 226, 10201037. doi:10.106/j.Icarus.2013.07.013.
Elachi, C., Allison, M. D., Borgarelli, L. et al. (2004), Radar: The Cassini Titan Radar Mapper. Space Science Reviews, 115, 71110. doi:10.1007/s11214-004–1438-9.
Encrenaz, T., Combes, M., Zeau, Y., Vapillon, L. and Berezne, J. (1975), A tentative identification of C2H4 in the spectrum of Saturn. Astronomy & Astrophysics, 42, 355356.
Fischer, G., Desch, M. D., Zarka, P. et al. (2006), Saturn lightning recorded by Cassini/RPWS in 2004. Icarus, 183, 135152, doi:10.106/j.icarus.2006.02.010.
Fischer, G., Dyudina, U. A., Kurth, W. S. et al. (2011c), Overview of Saturn lightning observations. Pages 135144 in: Rucker, H. O., Kurth, W. S., Louarn, P. and Fischer, G. (eds.), Planetary Radio Emissions VII. Vienna: Austrian Academy of Sciences Press.
Fischer, G., Gurnett, D. A., Kurth, W. S. et al. (2008), Atmospheric electricity at Saturn, Space Science Review, 137, 271285, doi:10.1007/s11214-008–9370-z.
Fischer, G., Gurnett, D. A., Lecacheux, A., Macher, W. and Kurth, W. S. (2007b), Polarization measurements of Saturn electrostatic discharges with Cassini/RPWS below a frequency of 2 MHz, Journal of Geophysical Research, 112, A12308, doi:10.1029/2007JA012592.
Fischer, G., Gurnett, D. A., Zarka, P., Moore, L. and Dyudina, U. A. (2011b), Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning. Journal of Geophysical Research, 116, A04315, doi:10.1029/2010JA016187.
Fischer, G., Kurth, W. S., Dyudina, U. A. et al. (2007a), Analysis of a giant lightning storm. Icarus, 190, 528544, doi:10.1016/j.icarus.2007.04.002.
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011a), A giant thunderstorm on Saturn. Nature, 475, 7577. doi:10.1038/nature10205.
Fischer, G., Ye, S.-Y., Groene, J. B. et al. (2014), A possible influence of the Great White Spot on Saturn kilometric radiation periodicity. Annales Geophysicae, 32, 14631476. doi:10.5194/angeo-32–1463-2014.
Flasar, F. M., Kunde, V. G., Abbas, M. M. et al. (2004), Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Science Reviews, 115, 169297. doi:10.1007/s11214-004–1454-9.
Fletcher, L. N., Greathouse, T. K., Orton, G. W. et al. (2014), The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus, 238, 170190. doi:10.1016/j.icarus.2014.05.007.
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus, 221, 560586. doi:10.1016/j.icarus.2012.08.024.
Fletcher, L. N., Hesman, B. E., Irwin, P. G. et al. (2011), Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science, 332, 14131417. doi:10.1126/science.1204774.
García-Melendo, E., Hueso, R., Sánchez-Lavega, A. et al. (2013), Atmospheric dynamics of Saturn’s 2010 giant storm, Nature Geoscience, 6, 525529. doi:10.1038/NGEO1860.
García-Melendo, E., Pérez-Hoyos, S., Sánchez-Lavega, A. and Hueso, R. (2011), Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 215, 6274. doi:10.1016/j.icarus.2011.07.005.
García-Melendo, E. and Sánchez-Lavega, A. (2017), Shallow water simulations of Saturn’s giant storms at different latitudes. Icarus, 286, 241260. doi:10.1016/j.icarus.2016.10.006.
García-Melendo, E., Sánchez-Lavega, A. and Hueso, R. (2007), Numerical models of Saturn’s long-lived anticyclones. Icarus, 191, 665677. doi:10.1016/j.icarus.2007.05.02
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238, 110124. doi:10.1016/j.icarus.2014.05.010.
Guillot, T. (1995), Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. Science, 269, 16971699. doi:10.1126/science.7569896.
Gurnett, D. A., Kurth, W. S., Kirchner, D. L. et al. (2004), The Cassini radio and plasma wave science investigation. Space Science Reviews, 114, 395463. doi:10.1007/s11214-004–1434-0.
Harvey, V. L. and Hitchman, M. H. (1996), A climatology of the Aleutian high. Journal of Atmospheric Sciences, 53, 20882102.
Harvey, V. L., Pierce, R. B., Hitchman, M. H., Randall, C. E. and Fairlie, T. D. (2004), On the distribution of ozone in stratospheric anticyclones. Journal of Geophysical Research (Atmospheres), 109, 24308. doi:10.1029/2004JD004992.
Hesman, B. E., Bjoraker, G. L., Achterberg, R. K. et al. (2013), The Evolution of Hydrocarbon Compounds in Saturn’s Stratosphere During the 2010 Northern Storm. AGU Fall Meeting Abstracts, Dec. 2013, C2205.
Hesman, B. E., Bjoraker, G. L., Sada, P. V. et al. (2012), Elusive ethylene detected in Saturn’s northern storm region. The Astrophysical Journal, 760, 2430. doi:10.1088/0004-637X/760/1/24.
Hueso, R., Legarreta, J., Pérez-Hoyos, S., Rojas, J. F., Sánchez-Lavega, A. and Morgado, A. (2010), The international outer planets watch atmospheres node database of giant-planet images. Planetary and Space Science, 58, 11521159. doi:10.1016/j.pss.2010.04.006.
Hueso, R., and Sánchez-Lavega, A. (2001), A three-dimensional model of moist convection for the giant planets: The Jupiter case. Icarus, 151, 257274. doi:10.1006/icar.2000.6606.
Hueso, R., and Sánchez-Lavega, A. (2004), A three-dimensional model of moist convection for the giant planets II: Saturn’s water and ammonia moist convective storms. Icarus, 172, 255271. doi:10.1016/j.icarus.2004.06.010.
Hurley, J., Irwin, P. G. J., Fletcher, L. N. et al. (2012), Observations of upper tropospheric acetylene on Saturn: No apparent correlation with 2000 km-sized thunderstorms. Planetary and Space Science, 65, 2137. doi:10.1016/j.pss.2011.12.026.
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. and Hunt, G. E. (1984), Structure and dynamics of Saturn’s atmosphere. In: Gehrels, T. and Matthews, M. S. (eds.), Saturn. Tucson, AZ: University of Arizona Press, 195238.
Janssen, M. A., Ingersoll, A. P., Allison, M. D. et al. (2013), Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226, 522535. doi:10.1016/j.icarus.2013.06.008.
Kaiser, M. L., Desch, M. D. and Connerney, J. E. P. (1984), Saturn’s ionosphere: Inferred electron densities. Journal of Geophysical Research, 89, A4, 23712376. doi:10.1029/JA089iA04p02371.
Karkoschka, E. and Tomasko, M. G. (1993), Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope. Icarus, 106, 428441. doi:10.1006/icar.1993.1183.
Karkoschka, E. and Tomasko, M. G. (2005), Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus 179, 195221. doi:10.1016/j.icarus.2005.05.016.
Konovalenko, A. A., Kalinichenko, N. N., Rucker, H. O. et al. (2013), Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006, Icarus, 224, 1423. doi:10.1016/j.icarus.2012.07.024.
Laraia, A. L., Ingersoll, A. P., Janssen, M. A., Gulkis, S., Oyafuso, F. and Allison, M. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor. Icarus, 226, 641654. DOI:10.1016/j.icarus.2013.06.017.
Larsen, H. R. and Stansbury, E. J. (1974), Association of lightning flashes with precipitation cores extending to height 7 km. Journal of Atmospheric and Terrestrial Physics, 36, 1547–1533.
Lebeau, R. P. and Dowling, T. E. (1998), EPIC simulations of time-dependent, three-dimensional vortices with application to Neptune’s great dark spot. Icarus, 132, 239265. doi:10.1006/icar.1998.5918.
Legarreta, J. And Sánchez-Lavega, A. (2008), Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices, Icarus, 196, 184201. doi:10.1016/j.icarus.2008.02.018.
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nat. Geoscience, 8, 398403. doi:10.1038/ngeo2405
Li, L., Jiang, X., Trammell, H. J., Pan, Y., Hernandez, J., Conrath, B. J., Gierasch, P. J., Achterberg, R. K., Nixon, C. A., Flasar, F. M., Pérez-Hoyos, S., West, R. A., Baines, K. H. and Knowles, B. (2015), Saturn’s giant storm and global radiant energy. Geophys. Res. Lett., 42, 21442148. doi:10.1002/2015GL063763.
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astronomical Journal, 90, 1136–114. doi:10.1086/113820.
Manney, G. L., Froidevaux, L., Waters, J. W. et al. (1995), Formation of low-ozone pockets in the middle stratospheric anticyclone during winter. Journal of Geophysical Research-Atmospheres, 100, 1393913950. doi:10.1029/95JD00372.
Miller, E. A., Klein, G., Juergens, D. W. et al. (1996), The visual and infrared mapping spectrometer for Cassini. In: L. Horn (ed.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2803, 206220.
Momary, T. W. and Baines, K. H. (2014), The anticyclonic eye of the storm. Evolution of Saturn’s Great Storm region and associated anticyclone as seen by Cassini/VIMS. Abstract 422.11. Proceedings of the 46th Annual Meeting of the Division of Planetary Sciences.
Moses, J. I., Armstrong, E. S., Fletcher, L. N., Irwin, P. G. J., Hesman, B. E. and Romani, P. N. (2015), Evolution of stratospheric chemistry in the Saturn storm beacon. Icarus 261, 149168
Muñoz, O., Moreno, F., Molina, A., Grodent, D., Gérard, J. C. and Dols, V. (2004), Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images. Icarus, 169, 413428. doi:10.1016/j.icarus.2003.12.018.
Orton, G. S., Fletcher, L. N., Fouchet, T. et al. (2013), Ground-based observations of the aftermath of the 2010–2011 Great Northern Springtime Storm in Saturn (Invited), AGU Fall Meeting Abstracts, Dec., A6.
Pedlosky, J. (1979), Geophysical Fluid Dynamics, Springer-Verlag, New York, pp. 624.
Pérez-Hoyos, S. and Sánchez-Lavega, A. (2006), Solar flux in Saturn’s atmosphere: maximum penetration and heating rates in the aerosol and cloud layers, Icarus, 180, 368378.
Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G. and Rojas, J. F. (2005), Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 176, 155174. doi:10.1016/j.icarus.2005.01.014
Pierce, A. D. and Coroniti, S. C. (1966), A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature, 210, 12091210. doi:10.1038/2101209a0.
Porco, C. C., Baker, E., Barbara, J. et al. (2005), Cassini Imaging Science: Initial results on Saturn’s atmosphere, Science, 307, 12431247. doi:10.1126/science.1107691.
Porco, C. C., West, R. A., Squyres, S. et al. (2004), Cassini Imaging Science: Instrument characteristics and anticipated scientific investigations at Saturn, Space Sci. Rev., 115, 363497.
Sánchez-Lavega, A. (1982), Motions in Saturn’s atmosphere: Observations before Voyager encounters. Icarus, 49, 116. doi:10.1016/0019–1035(82)90052–5.
Sánchez-Lavega, A. (1994), Saturn’s Great White Spots, Chaos, 4, 341353. doi:10.1063/1.166012.
Sánchez-Lavega, A. (2011) An Introduction to Planetary Atmospheres, Boca Raton, FL: Taylor-Francis, CRC Press, pp. 629.
Sánchez-Lavega, A. and Battaner, E. (1987), The nature of Saturn’s Great White Spots. Astronomy & Astrophysics, 185, 315326.
Sánchez Lavega, A., Colas, F., Lecacheux, J., Laques, P., Miyazaki, I. and Parker, D. (1991), The Great White Spot and disturbances in Saturn’s equatorial atmosphere during 1990, Nature, 353, 397401. doi:10.1038/353397a0.
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Delcroix, M. et al. (2012), Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus, 220, 561576, doi:10.1016/j.icarus.2012.05.033.
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Hueso, R. et al. (2011) Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature, 475, 7174. doi:10.1038/nature10203.
Sánchez-Lavega, A. and Gómez, J. M. (1996a), The south equatorial belt of Jupiter. I: Its life cycle. Icarus, 121, 117. doi:10.1006/icar.1996.0067.
Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S., Rojas, J. F. and French, R. G. (2004) Saturn’s cloud morphology and zonal winds before the Cassini encounter. Icarus, 170, 519523. doi:10.1016/j.icarus.2004.05.002.
Sánchez Lavega, A., Lecacheux, J., Colas, F. and Laques, P. (1993), Temporal behavior of cloud morphologies and motions in Saturn’s atmosphere. Journal of Geophysical Research, 98, 1885718872. doi:10.1029/93JE01777.
Sánchez Lavega, A., Lecacheux, J., Colas, F. and Laques, P. (1994), Photometry of Saturn’s 1990 equatorial disturbance. Icarus, 108, 158168. doi:10.1006/icar.1994.1048.
Sánchez Lavega, A., Lecacheux, J., Gómez, J. M. et al. (1996b), Large-scale storms in Saturn’s atmosphere during 1994, Science, 271, 631634. doi:10.1126/science.271.5249.631.
Sánchez-Lavega, A., Orton, G. S., Hueso, R. et al. (2008), Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms, Nature, 451, 437440. doi:10.1038/nature06533.
Sánchez-Lavega, A., Pérez-Hoyos, S., Rojas, J. F., Hueso, R. and French, R. G. (2003), A strong decrease in Saturn’s equatorial jet at cloud level. Nature, 423, 623625. doi:10.1038/nature01653.
Sánchez-Lavega, A., Rojas, J. F. and Sada, P. V. (2000), Saturn’s zonal winds at cloud level, Icarus, 147, 405420.
Sanz-Requena, J. F., Pérez-Hoyos, S., Sánchez-Lavega, A. et al. (2012), Cloud structure of Saturn’s 2010 storm from ground-based imaging. Icarus, 219, 142149. doi:10.1016/j.icarus.2012.02.023.
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P. et al. (2013), Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus, 223, 460478. doi:10.1016/j.icarus.2012.12.013.
Sayanagi, K. S., Dyudina, U. A., Ewald, S. P., Muro, G. D. and Ingersoll, A. P. (2014), Cassini ISS observation of Saturn’s String of Pearls. Icarus, 229, 170180. doi:10.1016/j.icarus.2013.10.032.
Sayanagi, K. M., Morales-Juberias, R. and Ingersoll, A. P. (2010), Saturn’s northern hemisphere ribbon: Simulations and comparison with the meandering gulf stream. Journal of the Atmospheric Sciences, 67, 26582678. doi:10.1175/2010JAS3315.1.
Shemansky, D. and Liu, X. (2012), Saturn upper atmospheric structure from Cassini EUV and FUV occultations. Canadian Journal of Physics, 90, 817831. doi:10.1139/p2012-036.
Showman, A. (2007) Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. Journal of the Atmospheric Sciences, 64, 31323157. doi:10.1175/JAS4007.1.
Simon-Miller, A. A., Chanover, N. J., Orton, G. S., Sussman, M., Tsavaris, I. G. and Karkoschka, E. (2006), Jupiter’s White Oval turns red. Icarus, 185, 558562. doi:10.1016/j.icarus.2006.08.002.
Sromovsky, L. A., Baines, K. H. and Fry, P. (2013), Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 226, 402418. doi:10.1016/j.icarus.2013.05.043.
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2014), Vertical structure of Saturn lightning storms and storm-related dark ovals. American Astronomical Society, #46, #511.09.
Sugiyama, K., Nakajima, K., Odaka, M., Ishiwatari, M., Kuramoto, K., Morikawa, Y., Nishizawa, S., Takahashi, Y. O. and Hayashi, Y.-Y. (2011), Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett., 38, L13201; doi:10.1029/2011GL047878.Unlinked
Sugiyama, K., Nakajima, K., Odaka, M., Kuramoto, K. and Hayashi, Y.-Y. (2014), Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states, Icarus, 229, 7191. doi:10.1016/j.icarus.2013.10.016.
Tomasko, M. G. and Doose, L. R. (1984), Polarimetry and photometry of Saturn from Pioneer 11 Observations and constraints on the distribution and properties of cloud and aerosol particles, Icarus, 58, 134. doi:10.1016/0019–1035(84)90096–4.
Vallis, G. K. (2006), Atmospheric and Ocean Fluid Dynamics, Cambridge: Cambridge University Press, 745.
Vasavada, A. R., Hörst, S. M., Kennedy, M. R. et al. (2005), Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research. 111, E05004. doi:10.1029/2005JE002563.
Vasavada, A. R. and Showman, A. P. (2005), Jovian atmospheric dynamics: an update after Galileo and Cassini, Reports on Progress in Physics, 68, 1935–1996. doi:10.1088/0034–4885/68/8/R06.
Warwick, J. W., Pearce, J. B., Evans, D. R. et al. (1981), Planetary radio astronomy observations from Voyager 1 near Saturn. Science, 212, 239243. doi:10.1126/science.212.4491.239.
West, R. A., Baines, K. H., Karkoschka, E. and Sánchez-Lavega, A. (2009), Clouds and aerosols in Saturn’s atmosphere. Pages 113159 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini–Huygens. New York, NY: Springer.
Westphal, J. A., Baum, W. A., Ingersoll, A. P. et al. (1992), Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Images, albedos and limb darkening. Icarus, 100, 485498. doi:10.1016/0019–1035(92)90112-K.
Zakharenko, V., Mylostna, C., Konovalenko, A. et al. (2012), Ground-based and spacecraft observations of lightning activity on Saturn. Planetary and Space Science, 61, 5359. doi:10.1016/j.pss.2011.07.021.
Zarka, P., Cecconi, B., Denis, L. et al. (2006), Physical properties and detection of Saturn’s lightning radio bursts. Pages 111122 in: Planetary Radio Emissions VI, Rucker, H. O., Kurth, W. S. and Mann, G. (eds.), Vienna: Austrian Academy of Sciences Press.