Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T04:28:30.943Z Has data issue: false hasContentIssue false

9 - Saturn’s Variable Thermosphere

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

Our knowledge of Saturn’s neutral thermosphere is far superior to that of the other giant planets due to Cassini Ultraviolet Imaging Spectrograph (UVIS) observations of 15 solar occultations and 26 stellar occultations analyzed to date. These measurements yield H2 as the dominant species, with an upper limit on the H mole fraction of 5%. Inferred temperatures near the lower boundary are ~150 K, rising to an asymptotic value of ~400 K at equatorial latitudes and increasing with latitude to polar values in the range of 550–600 K. The latter is consistent with a total estimated auroral power input of ~10 TW generating Joule and energetic particle heating of ~5–6 TW that is more than an order of magnitude greater than solar EUV/FUV heating. This auroral heating would be sufficient to solve the “energy crisis” of Saturn’s thermospheric heating if it can be efficiently redistributed to low latitudes. The inferred structure of the thermosphere yields poleward-directed pressure gradients on equipotential surfaces consistent with auroral heating and poleward increasing temperatures. A gradient wind balance aloft with these pressure gradients implies westward, retrograde winds ~500 m s−1 or Mach number ~0.3 at mid-latitudes. The occultations reveal an expansion of the thermosphere peaking at or slightly after equinox, anti-correlated with solar activity, and apparently driven by lower thermospheric heating of unknown cause. The He mole fraction remains unconstrained, as no Cassini UVIS He 58.4 nm airglow measurements have been published.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achilleos, N., Miller, S., Tennyson, J. et al. (1998), JIM: A time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res., 103, doi:10.1029/98JE00947.Google Scholar
Adriani, A., Dinelli, B. M., López-Puertas, M. et al. (2011), Distribution of HCN in Titan’s upper atmosphere from Cassini/VIMS observations at 3 µm. Icarus, 214, 584595, doi:10.1016/j.icarus.2011.04.016.Google Scholar
Anderson, J. D. and Schubert, G. (2007), Saturn’s gravitational field, internal rotation, and interior structure. Science, 317, 13841387, doi:10.1126/science.1144835.Google Scholar
Badman, S. V., Cowley, S. W. H., Gérard, J.-C. et al. (2006), A statistical analysis of the location and width of Saturn’s southern auroras, Ann. Geophys., 24, 35333545.Google Scholar
Baines, K. H. et al. (2005), The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119147, doi:10.1007/s11038-005–9058-2.Google Scholar
Ben-Jaffel, L. Ben, Kim, Y. J. and Clarke, J. (2007), The H Lyman-α emission line from the upper atmosphere of Jupiter: Parametric radiative transfer study and comparison with data. Icarus, 190, 504527, doi:10.1016/j.icarus.2007.03.013.CrossRefGoogle Scholar
Ben-Jaffel, L. Ben, Prangé, R., Sandel, B. R. et al. (1995), New Analysis of the Voyager UVS H Lyman-α Emission of Saturn. Icarus, 113, 91102, doi:10.1006/icar.1995.1007.Google Scholar
Bougher, S. W., Waite, J. H., Majeed, T. et al. (2005), Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res., 110, doi:10.1029/2003JE002230.Google Scholar
Broadfoot, A. L. et al. (1981), Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn, Science, 212, 206211, doi:10.1126/science.212.4491.206.Google Scholar
Broadfoot, A. L. (1986), Ultraviolet Spectrometer Observations of Uranus, Science, 233, 7479, doi:10.1126/science.233.4759.74.CrossRefGoogle ScholarPubMed
Cassidy, T. A. and Johnson, R. E. (2010), Collisional spreading of Enceladus’ neutral cloud. Icarus, 209, 696703, doi:10.1016/j.icarus.2010.04.010.CrossRefGoogle Scholar
Clarke, J. T., Hudson, M. and Yung, Y. L. (1987), The excitation of the far ultraviolet electroglow emissions on Uranus, Saturn, and Jupiter. J. Geophys. Res., 92, 15,139115, 147, doi:10.1029/JA092iA13p15139.CrossRefGoogle ScholarPubMed
Connerney, J. E. P. and Waite, J. H. (1984), New model of Saturn’s ionosphere with an influx of water from the rings. Nature, 312, 136138, doi:10.1038/312136a0.Google Scholar
Conrath, B. J. and Gautier, D. (2000), Saturn Helium Abundance: A Reanalysis of Voyager Measurements. Icarus, 144, 124134, doi:10.1006/icar.1999.6265.Google Scholar
Cowley, S. W. H., Bunce, E. J. and O’Rourke, J. M. (2004), A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. Space Phys., 109, doi:10.1029/2003JA010375.Google Scholar
Curdt, W. et al. (2001), The SUMER spectral atlas of solar-disk features. Astron. Astrophys., 375, 591613.Google Scholar
DavisJr., L. and Smith, E. J. (1990), A model of Saturn’s magnetic field based on all available data. J. Geophys. Res., 95, 1525715261, doi:10.1029/JA095iA09p15257.Google Scholar
Esposito, L. W. et al. (2004), The Cassini ultraviolet imaging spectrograph investigation. Space Sci. Rev., 115, 299361.CrossRefGoogle Scholar
Feldman, P. D., McGrath, M. A., Moos, H. W. et al. (1993), The spectrum of the Jovian dayglow observed at 3 A resolution with the Hopkins Ultraviolet Telescope, Astrophys. J., 406, 279284.Google Scholar
Festou, M. C. and Atreya, S. K. (1982), Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere. Geophys. Res. Lett., 9, 11471150, doi:10.1029/GL009i010p01147.Google Scholar
Feuchtgruber, H., Lellouch, E., de Graauw, T. et al. (1997), External supply of oxygen to the atmospheres of the giant planets. Nature, 389, 159162, doi:10.1038/38236.Google Scholar
Fletcher, L. N., Swinyard, B., Salji, C. et al. (2012), Sub-millimetre spectroscopy of Saturn’s trace gases from Herschel/SPIRE. Astron. Astrophys., 539, A44, doi:10.1051/0004–6361/201118415.Google Scholar
Fouchet, T., Moses, J. I. and Conrath, B. J. (2009), Saturn: Composition and Chemistry. In Saturn From Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W. and Krimigis, S. M., Springer, pp. 83112, doi:10.1007/978-1-4020-9217-6.Google Scholar
Friedson, A. J. and Moses, J. I. (2012), General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus, 218, 861875, doi:10.1016/j.icarus.2012.02.004.Google Scholar
Galand, M., Moore, L., Müller‐Wodarg, I. C. F. et al. (2011), Response of Saturn’s auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity. J. Geophys. Res., 116, A09306, doi:10.1029/2010JA016412.Google Scholar
García-Comas, M., López-Puertas, M., Funke, B. et al. (2011), Analysis of Titan CH4 3.3 µm upper atmospheric emission as measured by Cassini/VIMS. Icarus, 214, 571583, doi:10.1016/j.icarus.2011.03.020.Google Scholar
Gérard, J.-C., Bonfond, B., Gustin, J. et al. (2009), Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett., 36, doi:10.1029/2008GL036554.Google Scholar
Gérard, J.-C., Dols, V., Grodent, D. et al. (1995), Simultaneous observations of the Saturnian aurora and polar haze with the HST/FOC. Geophys. Res. Lett., 22, 26852688.Google Scholar
Gérard, J.‐C., Grodent, D., Gustin, J. A. et al. (2004), Characteristics of Saturn’s FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res., 109, A09207, doi:10.1029/2004JA010513.Google Scholar
Gérard, J.-C., Gustin, J., Pryor, W. R. et al. (2013), Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations. Icarus, 223, 211221, doi:10.1016/j.icarus.2012.11.033.Google Scholar
Grodent, D., Waite, J. H. Jr. and Gérard, J.-C. (2001), A self‐consistent model of Jovian auroral thermal structure, J. Geophys. Res., 106, 12,933–912, 952, doi:10.1029/2000JA900129.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B. et al. (2009), Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus, 203, 214232, doi:10.1016/j.icarus.2009.04.002.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B. (2011), Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. J. Geophys. Res. Lett., 38, L09201, doi:10.1029/2011GL047192.Google Scholar
Gustin, J., Gérard, J.-C. et al. (2013), Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations. Icarus, 223, 211221, doi:10.1016/j.icarus.2010.06.031.Google Scholar
Gustin, J., Gérard, J.-C., Pryor, W. et al. (2009), Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra, Icarus, 200, 176187, doi:10.1016/j.icarus.2008.11.013.CrossRefGoogle Scholar
Gustin, J., Stewart, I., Gérard, J.-C. et al. (2010), Characteristics of Saturn’s FUV airglow from limb-viewing spectra obtained by Cassini-UVIS. Icarus, 210, 270283, doi:10.1016/j.icarus.2010.06.031.CrossRefGoogle Scholar
Hallett, J. T., Shemansky, D. and Liu, X. (2005), A rotational-level hydrogen physical chemistry model for general astrophysical application. Astrophys. J., 624, 448461, doi:10.1086/428935.Google Scholar
Hanley, H. J., McCarthy, R. D. and Interman, H. (1970), The viscosity and thermal conductivity of dilute hydrogen from 150 to 5000 K. J. Res. Natl. Bur. Stds. A74, 331353.Google Scholar
Hill, T. W. (1979), Inertial limit on corotation. J. Geophys. Res., 84, doi:10.1029/JA084iA11p06554.Google Scholar
Hubbard, W. B., Porco, C. C., Hunten, D. M. et al. (1997), Structure of Saturn’s mesosphere from the 28 Sgr occultations. Icarus, 130, 404425, doi:10.1006/icar.1997.5839.Google Scholar
Hunten, D. M. (1973), The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 14811494.Google Scholar
Jacobson, R. A., Antreasian, P. G., Bordi, J. J. et al. (2006), The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J., 132, 25202526, doi:10.1086/508812.Google Scholar
Jia, X., Hansen, K. C., Gombosi, T. I. et al. (2012), Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. J. Geophys. Res., 117, doi:10.1029/2012JA017575.CrossRefGoogle Scholar
Kim, S. J., Sim, C. K., Lee, D. W. et al. (2012), The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process. Plan. Space Sci., 65, 122129, doi:10.1016/j.pss.2012.02.013.Google Scholar
Kim, Y. H., Fox, J. L., Black, J. H. et al. (2014), Hydrocarbon ions in the lower ionosphere of Saturn. J. Geophys. Res. Space Phys., 119, 384395, doi:10.1002/2013JA019022.Google Scholar
Kliore, A. J., Nagy, A. F., Marouf, E. A. et al. (2009), Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J. Geophys. Res., 114, A04315, doi:10.1029/2008JA013900.Google Scholar
Koskinen, T. T., Sandel, B. R., Yelle, R. V. et al. (2013), The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus, 226, 13181330, doi:10.1016/j.icarus.2013.07.037.Google Scholar
Koskinen, T. T., Sandel, B. R., Yelle, R. V. (2014a), The variability of Saturn’s thermosphere from Cassini/UVIS occultations. 46th DPS Meeting, Tucson, AZ, 511.08.Google Scholar
Koskinen, T. T., Sandel, B. R., Yelle, R. V. (2015), Saturn’s variable thermosphere from Cassini/UVIS occultations, Icarus, doi:10.1016/j.icarus.2015.07.008.Google Scholar
Koskinen, T. T., Yelle, R. V., Lavvas, P. et al. (2014b), Electrodynamics on extrasolar giant planets. Astrophys. J., 796, 16, doi:10.1088/0004-637X/796/1/16.Google Scholar
Koskinen, T. T., Yelle, R. V., Snowden, D. S. et al. (2011), The mesosphere and thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus, 216, 507534.Google Scholar
Kundu, P. K. (1990), Fluid Mechanics, San Diego, CA: Academic Press, 638 pp., pp. 580582.Google Scholar
Kurth, W. S., Bunce, E. J., Clarke, J. T. et al. (2009), Auroral processes, in: Saturn from Cassini‐Huygens, Dougherty, M., Esposito, L. W, and Krimigis, S. M., Eds, Chapter 12, pp. 333374, New York, NY: Springer, doi:10.1007/978-1-4020-9217-6.CrossRefGoogle Scholar
Lamy, L., Cecconi, B., Prangé, R. et al. (2009), An auroral oval at the footprint of Saturn’s kilometric radio sources, colocated with the UV aurorae. J. Geophys. Res., 114, doi:10.1029/2009JA014401.Google Scholar
Lamy, L., Prangé, R., Pryor, W. et al. (2013), Multispectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation, J. Geophys. Res., 118, 48174843, DOI :10.1002/jgra.50404.Google Scholar
Lee, J. S. and Meier, R. R. (1980), Angle-dependent frequency redistribution in a plane-parallel medium – External source case. Astrophys. J. 240, 185195, doi:10.1086/158222.Google Scholar
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astron. J., 90, 11361146, doi:10.1086/113820.Google Scholar
Liu, W. and Dalgarno, A. (1996), The Ultraviolet Spectrum of the Jovian Dayglow. Astrophys. J., 462, 502518, doi:10.1086/177168.Google Scholar
Matcheva, K. I. and Strobel, D. F. (1999), Heating of Jupiter’s thermosphere by dissipation of gravity waves due to molecular viscosity and heat conduction, Icarus, 140, 328340, doi:10.1006/icar.1999.6151.Google Scholar
McGrath, M. A. and Clarke, J. T. (1992), H I Lyman alpha emission from Saturn (1980–1990). J. Geophys. Res. 97, 1369113703, doi:10.1029/92JA00143.Google Scholar
Melin, H., Miller, S., Stallard, T. et al. (2007), Variability in the H3+ emission of Saturn: Consequences for ionisation rates and temperature. Icarus, 186, 234241, doi:10.1016/j.icarus.2006.08.014.Google Scholar
Melin, H., Stallard, T., Miller, S. et al. (2011), Simultaneous Cassini VIMS and UVIS observations of Saturn’s southern aurora: Comparing emissions from H, H2, and H3+ at high spatial resolution. Geophys. Res. Lett., 38, L15203, doi:10.1029/2011GL048457.Google Scholar
Moore, L. E., Mendillo, M., Müller-Wodarg, I. C. F. et al. (2004), Modeling of global variations and ring shadowing in Saturn’s ionosphere. Icarus, 172, doi:10.1016/j.icarus.2004.07.007.Google Scholar
Moore, L., Müller-Wodarg, I. C. F., Galand, M. et al. (2010), Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons. J. Geophys. Res., 115, A11317, doi:10.1029/2010JA015692.Google Scholar
Moses, J. I. and Bass, S. F. (2000), The effects of external material on the chemistry and structure of Saturn’s ionosphere. J. Geophys. Res., 105, 70137052, doi:10.1029/1999JE001172.Google Scholar
Moses, J. I., Fouchet, T., Bézard, B. et al. (2005), Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res., 110, E08001, doi:10.1029/2005JE002411.CrossRefGoogle Scholar
Müller-Wodarg, I. C. F., Mendillo, M., Yelle, R. V. et al. (2006), A global circulation model of Saturn’s thermosphere. Icarus, 180, 147160, doi:10.1016/j.icarus.2005.09.002.Google Scholar
Müller-Wodarg, I. C. F., Moore, L., Galand, M. et al. (2012), Magnetosphere-atmosphere coupling at Saturn: 1 – Response of thermosphere and ionosphere to steady state polar forcing. Icarus, 221, 481494, doi:10.1016/j.icarus.2012.08.034.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V., Mendillo, M. J. et al. (2003), On the global distribution of neutral gases in Titan’s upper atmosphere and its effect on the thermal structure. J. Geophys. Res., 108, 1453, doi:10.1029/2003JA010054Google Scholar
Nagy, A. F., Kliore, A. J., Marouf, E. et al. (2006), First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. J. Geophys. Res., 111, A06310, doi:10.1029/2005JA011519.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low-latitude ionosphere by ring rain. Nature, 496, 193195, doi:10.1038/nature12049.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. (2014), Conjugate observations of Saturn’s northern and southern H3+ aurorae, Icarus, 229, 214220, doi:10.1016/j.icarus.2013.11.009.Google Scholar
Parkinson, C. D. (2002), Photochemistry and Radiative Transfer Studies in the Atmospheres of Jupiter and Saturn. Unpublished Ph. D. thesis, York University, North York, Ontario, Canada, 193 pp.Google Scholar
Parkinson, C. D., Griffioen, E., McConnell, J. C. et al. (1998), He 584 Å Dayglow at Saturn: A Reassessment, Icarus, 133, 210220, doi:10.1006/icar.1998.5926.Google Scholar
Parkinson, C. D., McConnell, J. C., Ben Jaffel, L. et al. (2006), Deuterium chemistry and airglow in the jovian thermosphere, Icarus, 183, 451470, doi:10.1016/j.icarus.2005.09.02.Google Scholar
Read, P. L., Dowling, T. E. and Schubert, G. (2009), Saturn’s rotation period from its atmospheric planetary wave configuration. Nature, 460, 608610.Google Scholar
Richmond, A. D. (1995), Modeling equatorial ionospheric electric fields. J. Atmos. Terr. Phys., 57, 11031115, doi:10.1016/0021–9169(94)00126–9.Google Scholar
Richmond, A. D., Ridley, E. C. and Roble, R. G. (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett., 19, 601604, doi:10.1029/92GL00401.Google Scholar
Richmond, A. D. and Thayer, J. P. (2000), Ionospheric electrodynamics: A tutorial. Magnetospheric current systems, Geophysical monograph, 118, 131146 (Americal Geophysical Union), doi:10.1029/GM118p0131.CrossRefGoogle Scholar
Samson, J. A. R. and Haddad, G. N. (1994), Total photoabsorption cross section of H2 from 18 to 113 eV. J. Opt. Soc. Am. B, 11, 277279, doi:10.1364/JOSAB.11.000277.Google Scholar
Sandel, B. R. et al. (1982), Extreme Ultraviolet Observations from Voyager 2 Encounter with Saturn, Science, 215, 548553, doi:10.1126/science.215.4532.548.Google Scholar
Schoeberl, M. R. and Lindzen, R. S. (1982), A note on the limits of Rossby wave amplitudes, J. Atmos. Sci., 39, 11711174.Google Scholar
Schubert, G., Hickey, M. P. and Walterscheid, R. L. (2003), Heating of Jupiter’s thermosphere by the dissipation of upward propagating acoustic waves, Icarus, 163, 398413, doi:10.1016/S0019-1035(03)00078-2.Google Scholar
Shemansky, D. E. (1985), An explanation for the H Ly α longitudinal asymmetry in the equatorial spectrum of Jupiter: An outcrop of paradoxical energy deposition in the exosphere. J. Geophys. Res. 90, 26732694, doi:10.1029/JA090iA03p02673.Google Scholar
Shemansky, D. E. and Ajello, J. M. (1983), The Saturn spectrum in the EUV: Electron excited hydrogen. J. Geophys. Res., 88, 459464, doi:10.1029/JA088iA01p00459.Google Scholar
Shemansky, D. E. and Liu, X. (2012), Saturn upper atmosphere structure from Cassini EUV and FUV occultations. Can. J. Phys., 90, 817831, doi:10.1139/p2012-036.Google Scholar
Shemansky, D. E., Liu, X. and Melin, H. (2009), The Saturn hydrogen plume. Planetary Space Sci., 57, 16591670, doi:10.1016/j.pss.2009.05.002.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2013), Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini/CIRS. Icarus, 225, 257271, doi:10.1016/j.icarus.2013.03.011.Google Scholar
Smith, C. G. A. (2013), Electrodynamic coupling of Jupiter’s thermosphere and stratosphere: A new source of thermospheric heating. Icarus, 226, 923944, doi:10.1016/j.icarus.2013.07.001.Google Scholar
Smith, G. R., Shemansky, D. E., Holberg, J. B. et al. (1983), Saturn’s upper atmosphere from the Voyager 2 EUV solar and stellar occultations. J. Geophys. Res., 88, 86678678, doi:10.1029/JA088iA11p08667.Google Scholar
Snowden, D. S., Yelle, R. V., Cui, J. et al. (2013), The thermal structure of Titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus, 226, 552582.Google Scholar
Stallard, T. S., Melin, H., Miller, S. et al. (2012), Peak emission altitude of Saturn’s H3+ aurora. Geophys. Res. Lett., 39, L15103, doi:10.1029/2012GL052806.Google Scholar
Stallard, T., Miller, S., Melin, H. et al. (2007), Saturn’s auroral/polar H3+ infrared emission, I. General morphology and ion velocity structure. Icarus, 189, 113, doi:10.1016/j.icarus.2006.12.027Google Scholar
Stevens, M. H., Strobel, D. F. and Herbert, F. (1993), An analysis of the Voyager 2 ultraviolet spectrometer occultation data at Uranus: Inferring heat sources and model atmospheres, Icarus, 100, 4563, doi:10.1006/icar.1993.1005.Google Scholar
Strobel, D. F. (2002), Aeronomic Systems on Planets, Moons, and Comets. In Atmospheres in the Solar System: Comparative Aeronomy, eds. Mendillo, M., Nagy, A., and Waite, H.. Washington, DC: American Geophysical Union, Geophysical Monograph Series, pp. 722.CrossRefGoogle Scholar
Strobel, D. F. and Smith, G. R. (1973), On the Temperature of the Jovian Thermosphere, J. Atmos. Sci., 30, 718725.Google Scholar
Strobel, D. F., Yelle, R. V., Shemansky, D. E. et al. (1991), The Upper Atmosphere. In Uranus, eds. Bergstrahl, J. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 65109.Google Scholar
Tao, C., Miyoshi, Y., Achilleos, N. et al. (2014), Response of the Jovian thermosphere to variations in solar EUV flux. J. Geophys. Res. Space Phys., 119, doi:10.1002/2013JA019411.Google Scholar
Vasyliūnas, V. M. and Song, P. (2005), Meaning of ionospheric Joule heating. Journal of Geophysical Research, 110(A), doi:10.1029/2004JA010615.Google Scholar
VervackJr., R. J. and Moses, J. I. (2015), Saturn’s upper atmosphere during the Voyager era: Reanalysis and modeling of the UVS occultations. Icarus, 258,135163, doi:10.1016/j.icarus.2015.06.007.Google Scholar
VervackJr., R. J., Sandel, B. R. and Strobel, D. F. (2004), New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations, Icarus, 170, 91112, doi:10.1016/j.icarus.2004.03.005CrossRefGoogle Scholar
Waite, J. H., Cravens, T. E., Kozyra, J. et al. (1983), Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere, J. Geophys. Res., 88, 21562202, doi:10.1029/JA088iA08p06143.Google Scholar
Yelle, R. V. (1988), H2 emissions from the outer planets. Geophys. Res. Lett., 15, 11451148, doi:10.1029/GL015i010p01145.Google Scholar
Yelle, R. V., Cui, J. and Müller-Wodarg, I. C. F. (2008), Methane escape from Titan’s atmosphere. J. Geophys. Res., 113, E10003.Google Scholar
Yelle, R. V., Young, L. A., Vervack, R. J. et al. (1996), Structure of Jupiter’s upper atmosphere: Predictions for Galileo. J. Geophys. Res., 101, 21492161.Google Scholar
Zhang, X., Nixon, C. A., Shia, R. L. et al. (2013), Radiative forcing of the stratosphere of Jupiter, Part I: Atmospheric cooling rates from Voyager to Cassini. Planet. Space Sci., 88, 325.Google Scholar
Zharkov, V. N. and Trubitsyn, V. P. (1970), Theory of the figure of rotating planets in hydrostatic equilibrium – a third approximation. Sov. Phys. Astron., 13, 981988.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×