Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T13:08:52.043Z Has data issue: false hasContentIssue false

4 - Strategic Gene Banking for Conservation

The Ins and Outs of a Living Bank

from Part I - Programs and Initiatives

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access

Summary

Genetic diversity, population connectivity, and demographic stability are essential components of self-sustaining populations. Experiences with population management of species in zoos have shown us that achieving these goals can be challenging. Zoo-based science has contributed immensely to our understanding of the intricate and varied physiologies and life-histories of wildlife species and have driven the incorporation of assisted reproductive technologies into population management plans. The inclusion of gene banking in these approaches, predominantly in the form of cryobanked gametes, means that these management strategies can be implemented across longer timescales and greater distances. Here, we provide a brief review and some examples of gene banking research geared toward the systematic and strategic collection of reproductive materials from species in the wild. We do not present here a stand-alone avenue for species conservation, but instead discuss gene banking as a tool that, when combined with adequate species prioritization and threat prediction and mitigation, can improve the effectiveness of strategies for species and ecosystem preservation.
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 112 - 146
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken-Palmer, C., Hou, R., Wildt, D. E., Ottinger, M. A., Spindler, R. E., & Howard, J. G. (2007). Giant panda sperm tolerate cryopreservation at rapid freezing and thawing rates. Biology of Reproduction, 77(Suppl. 1), 107108.Google Scholar
Bartels, P., Friedmann, Y., Lubbe, K., Mortimer, D., Rasmussen, L. A., & Godke, R. A. (2001). The live birth of an eland (Taurotragus oryx) calf following estrous synchronization and artificial insemination using frozen thawed epididymal sperm. Theriogenology, 55(1), 381.Google Scholar
Benirschke, K. (1984). The frozen zoo concept. Zoo Biology, 3(4), 325328.Google Scholar
Blanco, J. M., Long, J. A., Gee, G. F., Wildt, D. E., & Donoghue, A. M. (2012). Comparative cryopreservation of avian spermatozoa: Effects of freezing and thawing rates on turkey and sandhill crane sperm cryosurvival. Animal Reproduction Science, 131(1), 18.Google Scholar
Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, M., Livingstone, S. R., & Ram, M. (2013). The conservation status of the world’s reptiles. Biological Conservation, 157, 372385.Google Scholar
Brodie, J. F. (2009). Is research effort allocated efficiently for conservation? Felidae as a global case study. Biodiversity and Conservation, 18(11), 29272939.Google Scholar
Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453460.CrossRefGoogle ScholarPubMed
Browne, R. K., Li, H., Robertson, H., Uteshev, V. K., Shishova, N. V., McGinnity, D., Nofs, S., Figiel, C. R., Mansour, N., & Lloyd, R. E. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russian Journal of Herpatology, 18(3), 165174.Google Scholar
Caldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365365.Google Scholar
Carolsfeld, J., Godinho, H. P., Zaniboni Filho, E., & Harvey, B. J. (2003). Cryopreservation of sperm in Brazilian migratory fish conservation. Journal of Fish Biology, 63(2), 472489.Google Scholar
Cesar, H., Burke, L., & Pet-Soede, L. (2003). The Economics of Worldwide Coral Reef Degradation. Arnhem: Cesar Environmental Economics Consulting (CEEC).Google Scholar
Clark, J. A., & May, R. M. (2002). Taxonomic bias in conservation research. Science, 297(5579), 191192.CrossRefGoogle ScholarPubMed
Cloete, S. W. P., Brand, T. S., Hoffman, L., Brand, Z., Engelbrecht, A., Bonato, M., Glatz, P. C., & Malecki, I. A. (2012). The development of ratite production through continued research. World’s Poultry Science Journal, 68, 323334.Google Scholar
Clulow, J., & Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: Bringing the ARTs up to speed. Reproduction, Fertility and Development, 28(8), 11161132.CrossRefGoogle Scholar
CoA (1996a). Australia: State of the Environment 1996. Melbourne: CSIRO Publishing.Google Scholar
CoA (1996b). The National Strategy for the Conservation of Australia’s Biological Diversity. Canberra: Department of Environment, Sport and Territories.Google Scholar
Comizzoli, P. (2015). Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian Journal of Andrology, 17(4), 640.Google Scholar
Comizzoli, P., & Holt, W. V. (2014). Recent advances and prospects in germplasm preservation of rare and endangered species. In Reproductive Sciences in Animal Conservation (pp. 331356). New York: Springer.CrossRefGoogle Scholar
Comizzoli, P., Songsasen, N., Hagedorn, M., & Wildt, D. E. (2012). Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology, 78(8), 16661681.Google Scholar
Cooney, R. (2004). The Precautionary Principle in Biodiversity Conservation and Natural Resource Management: An Issues Paper for Policy-Makers, Researchers and Practitioners. Gland: IUCN.Google Scholar
Critser, J. K., & Russell, R. J. (2000). Genome resource banking of laboratory animal models. ILAR Journal, 41(4), 183186.Google Scholar
Doody, J. S., Green, B., Rhind, D., Castellano, C. M., Sims, R., & Robinson, T. (2009). Population‐level declines in Australian predators caused by an invasive species. Animal Conservation, 12(1), 4653.CrossRefGoogle Scholar
Dos Remedios, C. (2006). The Value of Fundamental Research. Sydney: University of Sydney.Google Scholar
Fahrig, B. M., Mitchell, M. A., Eilts, B. E., & Paccamonti, D. L. (2007). Characterization and cooled storage of semen from corn snakes (Elaphe guttata). Journal of Zoo and Wildlife Medicine, 38(1), 712.Google Scholar
Fickel, J., Wagener, A., & Ludwig, A. (2007). Semen cryopreservation and the conservation of endangered species. European Journal of Wildlife Research, 53(2), 8189.CrossRefGoogle Scholar
Fine, M., & Tchernov, D. (2007). Scleractinian coral species survive and recover from decalcification. Science, 315(5820), 18111811.CrossRefGoogle ScholarPubMed
Friedrich Ben-Nun, I., Montague, S., Houck, M., Tran, H., Garitaonandia, I., Leonardo, T., Wang, Y.-C., Charter, S., Laurent, L., Ryder, O., & Loring, J. (2011). Induced pluripotent stem cells from highly endangered species. Nature Methods, 8(10), 829831.Google Scholar
GBRMPA (2009). Great Barrier Reef Outlook Report 2009. Townsville: Great Barrier Reef Marine Park Authority.Google Scholar
González, F., Boué, S., & Belmonte, J. C. I. (2011). Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nature Reviews Genetics, 12(4), 231242.Google Scholar
Hagedorn, M., Carter, V. L., Henley, E. M., van Oppen, M. J. H., Hobbs, R., & Spindler, R. E., (2017). Producing coral offspring with cryopreserved sperm: A tool for coral reef restoration. Scientific Reports, 7, 14432. doi: 10.1038/s41598-017-14644-x.Google Scholar
Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E., Brittsan, M., Byers, M., & Henley, M. (2012). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One, 7(3), e33354.Google Scholar
Hagedorn, M., & Spindler, R. E. (2014). The reality, use and potential for cryopreservation of coral reefs. In Reproductive Sciences in Animal Conservation (pp. 317329). New York: Springer.Google Scholar
Hagedorn, M., van Oppen, M. J. H., Carter, V., Henley, M., Abrego, D., Puill-Stephan, E., Negri, A., Heyward, A., MacFarlane, D., & Spindler, R. E. (2012). First frozen repository for the Great Barrier Reef coral created. Cryobiology, 65(2), 157158.CrossRefGoogle ScholarPubMed
Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., & Pyecroft, S. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation, 131(2), 307324.Google Scholar
Heise, A. (2012). Artificial Insemination in Veterinary Science. London: INTECH Open Access Publisher.Google Scholar
Hermes, R., Göritz, F., Saragusty, J., Sós, E., Molnar, V., Reid, C. E., Schwarzenberger, F., & Hildebrandt, T. B. (2009). First successful artificial insemination with frozen–thawed semen in rhinoceros. Theriogenology, 71(3), 393399.CrossRefGoogle ScholarPubMed
Hermes, R., Saragusty, J., Göritz, F., Bartels, P., Potier, R., Baker, B., Streich, W. J., & Hildebrandt, T. B. (2013). Freezing African elephant semen as a new population management tool. PLoS One, 8(3), e57616.Google Scholar
Herrick, J. R., Bartels, P., & Krisher, R. L. (2004). Postthaw evaluation of in vitro function of epididymal spermatozoa from four species of free-ranging African bovids. Biology of Reproduction, 71(3), 948958.Google Scholar
Hollings, T., Jones, M. E., Mooney, N., & McCallum, H. (2014). Trophic cascades following the disease‐induced decline of an apex predator, the Tasmanian devil. Conservation Biology, 28(1), 6375.Google Scholar
Holt, W. V., Abaigar, T., Watson, P. F., & Wildt, D. E. (2003). Genetic resource banks for species conservation. In Holt, W. V., Pickard, A. R., Roger, J. C., & Wildt, D. E. (Eds.), Reproductive Science and Integrated Conservation (pp. 267280). Cambridge, UK: Cambridge University Press.Google Scholar
Holt, W. V., & Lloyd, R. E. (2010). Sperm storage in the vertebrate female reproductive tract: How does it work so well? Theriogenology, 73(6), 713722.CrossRefGoogle Scholar
Hopkins, B. (2014). Artifical Reproductive Techniques in Honey Bees: Sperm Cell Physiology, Semen Collection and Storage (PhD thesis). Pullman, WA: Washington State University.Google Scholar
Howard, J. G., Huang, Y., Wang, P. Y., DeSheng, L., Zhang, G., Hou, R., Zhang, Z., Durrant, B. S., Spindler, R. E., Zhang, H., & Zhang, A. (2006). Role and efficiency of artificial insemination and genome resource banking. In Giant Pandas: Biology, Veterinary Medicine and Management (pp. 469494). Cambridge, UK: Cambridge University Press.Google Scholar
Howard, J. G., Lynch, C., Santymire, R. M., Marinari, P. E., & Wildt, D. E. (2016). Recovery of gene diversity using long‐term cryopreserved spermatozoa and artificial insemination in the endangered black‐footed ferret. Animal Conservation, 19(2), 102111.Google Scholar
Huang, Y., Li, D., Zhou, Y., Zhou, Q., Li, R., Wang, C., Huang, Z., Hull, V. & Zhang, H. (2012). Factors affecting the outcome of artificial insemination using cryopreserved spermatozoa in the giant panda (Ailuropoda melanoleuca). Zoo Biology, 31(5), 561573.Google Scholar
Huang, Y., Wang, P., Zhang, G., Zhang, H., Li, D., Du, J., Wei, R. P., Tang, C., Spindler, R. E., & Wildt, D. E. (2002). Use of artificial insemination to enhance propagation of giant pandas at the Wolong Breeding Center. Paper presented at the Proceedings of the 2nd International Symposium on Assisted Reproductive Technology (ART) for the Conservation and Genetic Management of Wildlife.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., & Collins, S. (2014). Development of Breeding Techniques in the Crocodile Industry (Publication No. 13/097. Project No. PRJ-006157). Canberra: Rural Industries Research and Development Corporation.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L. & Kamau, K. (2014). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture, 422, 2535.Google Scholar
Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Brabazon, S., Walton, S., & Collins, S. N. (2014). Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture, 426, 213221.Google Scholar
Johnston, S. D., López-Fernández, C., Arroyo, F., Fernández, J. L., & Gosálvez, J. (2017). The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus). Reproduction, Fertility and Development, 29, 630636.CrossRefGoogle ScholarPubMed
Johnston, S. D., Qualischefski, E., Cooper, J., McLeod, R., Lever, J., Nixon, B., Anderson, A. L., Hobbs, R., Gosálvez, J., & López-Fernández, C. (2017). Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reproduction, Fertility and Development, 29, 22352244.CrossRefGoogle ScholarPubMed
Keeley, T., McGreevy, P. D., & O’Brien, J. K. (2012). Cryopreservation of epididymal sperm collected postmortem in the Tasmanian devil (Sarcophilus harrisii). Theriogenology, 78(2), 315325.Google Scholar
Kochin, B. F., & Levin, P. S. (2003). Lack of concern deepens the oceans’ problems. Nature, 424(6950), 723723.Google Scholar
Kusunoki, H., Daimaru, H., Minami, S., Nishimoto, S., Yamane, K.-I., & Fukumoto, Y. (2001). Birth of a chimpanzee (Pan troglodytes) after artificial insemination with cryopreserved epididymal spermatozoa collected postmortem. Zoo Biology, 20(3), 135143.Google Scholar
Letnic, M., Webb, J. K., & Shine, R. (2008). Invasive cane toads (Bufo marinus) cause mass mortality of freshwater crocodiles (Crocodylus johnstoni) in tropical Australia. Biological Conservation, 141(7), 17731782.Google Scholar
Licht, P. (1972). Environmental physiology of reptilian breeding cycles: Role of temperature. General and Comparative Endocrinology, 3, 477488.Google Scholar
Maiteny, P. (2000). The psychodynamics of meaning and action for a sustainable future. Futures, 32(3), 339360.Google Scholar
Mastromonaco, G. F., González-Grajales, L. A., Filice, M., & Comizzoli, P. (2014). Somatic cells, stem cells, and induced pluripotent stem cells: How do they now contribute to conservation? In Reproductive Sciences in Animal Conservation (pp. 385427). New York: Springer.Google Scholar
McCallum, H. (2008). Tasmanian devil facial tumour disease: Lessons for conservation biology. Trends in Ecology & Evolution, 23(11), 631637.Google Scholar
Merilan, C. P., Read, B. W., & Boever, W. J. (1982). Semen collection procedures for captive wild animals. International Zoo Yearbook, 22(1), 241244.Google Scholar
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215233.Google Scholar
Molinia, F. C., Bell, T., Norbury, G., Cree, A., & Gleeson, D. M. (2010). Assisted breeding of skinks or how to teach a lizard old tricks. Herpetological Conservation and Biology, 5, 311319.Google Scholar
Monfort, S. L. (2014). “Mayday Mayday Mayday,” the millennium ark is sinking! In Reproductive Sciences in Animal Conservation (pp. 1531). New York: Springer.Google Scholar
Morato, G., Wildt, D. E., & Spindler, R. E. (2003). Effects of short-term storage of jaguar sperm prior to cryopreservation. Theriogenology, 59.Google Scholar
Morowitz, H. J. (1991). Balancing species preservation and economic considerations. Science, 253(5021), 752755.Google Scholar
Morrell, J. M., Küderling, I., & Hodges, J. K. (1996). Influence of semen collection method on ejaculate characteristics in the common marmoset, Callithrix jacchus. Journal of Andrology, 17(2), 164172.Google Scholar
Morrell, J. M., Nowshari, M., Rosenbusch, J., Nayudu, P. L., & Hodges, J. K. (1997). Birth of offspring following artificial insemination in the common marmoset, Callithrix jacchus. American Journal of Primatology, 41(1), 37.Google Scholar
Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., & Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Paper presented at the Proceedings of the Royal Society B.Google Scholar
O’Brien, J. K., Oehler, D. A., Malowski, S. P., & Roth, T. L. (1999). Semen collection, characterization, and cryopreservation in a Magellanic penguin (Spheniscus magellanicus). Zoo Biology, 18(3), 199214.Google Scholar
O’Brien, J. K., & Roth, T. L. (2000). Post-coital sperm recovery and cryopreservation in the Sumatran rhinoceros (Dicerorhinus sumatrensis) and application to gamete rescue in the African black rhinoceros (Diceros bicornis). Journal of Reproduction and Fertility, 118(2), 263271.Google Scholar
O’Brien, J. K., Steinman, K. J., Montano, G. A., Dubach, J. M., & Robeck, T. R. (2016). Chicks produced in the Magellanic penguin (Spheniscus magellanicus) after cloacal insemination of frozen-thawed semen. Zoo Biology, 35(4), 326338.Google Scholar
O’Brien, J. K., Steinman, K. J., Schmitt, T., & Robeck, T. R. (2008). Semen collection, characterisation and artificial insemination in the beluga (Delphinapterus leucas) using liquid-stored spermatozoa. Reproduction, Fertility and Development, 20(7), 770783.Google Scholar
Ombelet, W., & Van Robays, J. (2015). Artificial insemination history: Hurdles and milestones. Facts, Views & Vision Issues in Obsetrics, Gynaecology and Reproductive Health, 7(2), 137143.Google Scholar
Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F., & Meiri, S. (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography, 19(3), 386396.Google Scholar
Pukazhenthi, B. S., & Wildt, D. E. (2004). Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reproduction, Fertility, and Development, 16(1–2), 33.CrossRefGoogle ScholarPubMed
Pyecroft, S. B., Pearse, A.-M., Loh, R., Swift, K., Belov, K., Fox, N., Noonan, E., Hayes, D., Hyatt, A. & Wang, L. (2007). Towards a case definition for devil facial tumour disease: What is it? EcoHealth, 4(3), 346.Google Scholar
Quinn, H., Blasedel, T., & Platz, C. C. (1989). Successful artificial insemination in the checkered garter snake Thamnophis marcianus. International Zoo Yearbook, 28(1), 177183.Google Scholar
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230237.Google Scholar
Rickards, P. A., & Nicol, D. C. (2012). What Australia offers as a source of world leading genetics and genetic technologies. Paper presented at International Beef Cattle Genetics Conference, 19.Google Scholar
Riegl, B., Bruckner, A., Coles, S. L., Renaud, P., & Dodge, R. E. (2009). Coral reefs. Annals of the New York Academy of Sciences, 1162(1), 136186.Google Scholar
Robeck, T. R., Montano, G. A., Steinman, K. J., Smolensky, P., Sweeney, J., Osborn, S., & O’Brien, J. K. (2013). Development and evaluation of deep intra-uterine artificial insemination using cryopreserved sexed spermatozoa in bottlenose dolphins (Tursiops truncatus). Animal Reproduction Science, 139(1–4), 168.Google Scholar
Robeck, T. R., Steinman, K., Gearhart, S., Reidarson, T., McBain, J., & Monfort, S. (2004). Reproductive physiology and development of artificial insemination technology in killer whales (Orcinus Orca). Biology of Reproduction, 71(2), 650660.Google Scholar
Rosauer, D. F., Blom, M. P. K., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P. M., Potter, S., & Pratt, R. C. (2016). Phylogeography, hotspots and conservation priorities: An example from the Top End of Australia. Biological Conservation, 204, 8393.Google Scholar
Roth, T. L., Bush, L. M., Wildt, D. E., & Weiss, R. B. (1999). Scimitar-horned oryx (Oryx dammah) spermatozoa are functionally competent in a heterologous bovine in vitro fertilization system after cryopreservation on dry ice, in a dry shipper, or over liquid nitrogen vapor. Biology of Reproduction, 60(2), 493498.Google Scholar
Roth, T. L., Stoops, M. A., Robeck, T. R., & O’ Brien, S. J. (2016). Factors impacting the success of post-mortem sperm rescue in the rhinoceros. Animal Reproduction Science, 167, 2230.Google Scholar
Russell, W. C., Thorne, E. T., Oakleaf, R., & Ballou, J. D. (1994). The genetic basis of black‐footed ferret reintroduction. Conservation Biology, 8(1), 263266.Google Scholar
Ryder, O. A., McLaren, A., Brenner, S., Zhang, Y.-P., & Benirschke, K. (2000). DNA banks for endangered animal species. Science, 288(5464), 275277.Google Scholar
Samour, J. H. (2004). Semen collection, spermatozoa cryopreservation, and artificial insemination in nondomestic birds. Journal of Avian Medicine and Surgery, 18(4), 219223.Google Scholar
Santiago-Moreno, J., Toledano-Díaz, A., Pulido-Pastor, A., Gómez-Brunet, A., & López-Sebastián, A. (2006). Birth of live Spanish ibex (Capra pyrenaica hispanica) derived from artificial insemination with epididymal spermatozoa retrieved after death. Theriogenology, 66(2), 283291.Google Scholar
Santymire, R. (2016). Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development. Epub ahead of print. doi: 10.1071/RD15461.Google Scholar
Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 119.Google Scholar
Schaffer, N., Cranfield, M., Meehan, T., & Kempske, S. (1989). Semen collection and analysis in the conservation of endangered nonhuman primates. Zoo Biology, 8(S1), 4760.Google Scholar
Schmitt, D. L., & Hildebrandt, T. B. (1998). Manual collection and characterization of semen from Asian elephants (Elephas maximus). Animal Reproduction Science, 53(1), 309314.Google Scholar
Secher, J. O., Liu, Y., Petkov, S., Luo, Y., Li, D., Hall, V. J., Schmidt, M., Callesen, H., Bentzon, J. F., Sørensen, C. B., Freude, K. K., & Hyttel, P. (2017). Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals. Animal Reproduction Science, 178, 4049.Google Scholar
Shearer, T. L., Porto, I., & Zubillaga, A. L. (2009). Restoration of coral populations in light of genetic diversity estimates. Coral Reefs, 28(3), 727733.Google Scholar
Shine, R., & Wiens, J. J. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. The Quarterly Review of Biology, 85(3), 253291.Google Scholar
Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., & Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences, 104(41), 1622116226.Google Scholar
Silva, K. B., Zogno, M. A., Camillo, A. B., Pereira, R. J. G., & Almeida-Santos, S. M. (2015). Annual changes in seminal variables of golden lanchead pitvipers (Bothrops insularis) maintained in captivity. Animal Reproduction Science, 163, 144150.Google Scholar
Small, E. (2011). The new Noah’s Ark: Beautiful and useful species only. Part 1. Biodiversity conservation issues and priorities. Biodiversity, 12(4), 232247.Google Scholar
Smith, J. G., & Phillips, B. L. (2006). Toxic tucker: The potential impact of cane toads on Australian reptiles. Pacific Conservation Biology, 12(1), 4049.Google Scholar
Soler, A. J., García, A. J., Fernández‐Santos, M. R., Esteso, M. C., & Garde, J. J. (2003). Effects of thawing procedure on postthawed in vitro viability and in vivo fertility of red deer epididymal spermatozoa cryopreserved at −196°C. Journal of Andrology, 24(5), 746756.Google Scholar
Stanley, G. D., & Fautin, D. G. (2001). The origins of modern corals. Science, 291(5510), 19131914.Google Scholar
Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature? AMBIO: A Journal of the Human Environment, 36(8), 614621.Google Scholar
Stoops, M. A., Bond, J. B., Bateman, H. L., Campbell, M. K., Levens, G. P., Bowsher, T. R., Ferrell, S. T., & Swanson, W. F. (2007). Comparison of different sperm cryopreservation procedures on post-thaw quality and heterologous in vitro fertilisation success in the ocelot (Leopardus pardalis). Reproduction, Fertility and Development, 19(5), 685694.Google Scholar
Stoops, M. A., Campbell, M. K., DeChant, C. J., Hauser, J., Kottwitz, J., Pairan, R. D., Pairan, R. D., Shaffstall, W., Volle, K., & Roth, T. L. (2016). Enhancing captive Indian rhinoceros genetics via artificial insemination of cryopreserved sperm. Animal Reproduction Science, 172, 6075.Google Scholar
Stoops, M. A., O’Brien, J. K., & Roth, T. L. (2011). Gamete rescue in the African black rhinoceros (Diceros bicornis). Theriogenology, 76(7), 12581265.Google Scholar
Stott, C. (2015). Virtus Health and Monash IVF are making money from making babies, Australian Financial Review. Retrieved from www.afr.com/personal-finance/virtus-health-and-monash-ivf-are-making-money-from-making-babies-20151108-gktz4i#ixzz4gATOJ7dFGoogle Scholar
Stroud, J. T., Rehm, E., Ladd, M., Olivas, P., & Feeley, K. J. (2014). Is conservation research money being spent wisely? Changing trends in conservation research priorities. Journal for Nature Conservation, 22(5), 471473.Google Scholar
Swanson, W. F. (2012). Laparoscopic oviductal embryo transfer and artificial insemination in felids – Challenges, strategies and successes. Reproduction in Domestic Animals, 47(Suppl. 6), 136140.Google Scholar
Swanson, W. F., Stoops, M. A., Magarey, G. M., & Herrick, J. R. (2007). Sperm cryopreservation in endangered felids: Developing linkage of in situ–ex situ populations. Society of Reproduction and Fertility supplement, 65, 417.Google Scholar
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371(6492), 6566.Google Scholar
Ujvari, B., & Madsen, T. (2009). Increased mortality of naive varanid lizards after the invasion of non-native can toads (Bufo marinus). Herpetological Conservation and Biology, 4(2), 248251.Google Scholar
Ujvari, B., Casewell, N. R., Sunagar, K., Arbuckle, K., Wüster, W., Lo, N., O’Meally, D., Beckmann, C., King, G.F., Deplazes, E., & Madsen, T. (2015). Widespread convergence in toxin resistance by predictable molecular evolution. PNAS 112(38) 1191111916.Google Scholar
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571573.Google Scholar
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences, 112(8), 23072313.Google Scholar
Watson, P. F. (1978). A review of techniques of semen collection in mammals. Paper presented at the Symposium of the Zoological Society of London.Google Scholar
Watson, P. F., & Holt, W. V. (2001). Cryobanking the Genetic Resource: Wildlife Conservation for the Future? Boca Raton, FL: CRC Press.Google Scholar
Wiedemann, C., Zahmel, J., & Jewgenow, K. (2013). Short-term culture of ovarian cortex pieces to assess the cryopreservation outcome in wild felids for genome conservation. BMC Veterinary Research, 9, 37.Google Scholar
Wildt, D. E. (1992). Genetic resource banks for conserving wildlife species: Justification, examples and becoming organized on a global basis. Animal Reproduction Science, 28(1–4), 247257.Google Scholar
Wildt, D. E., Ballou, J. D., Miller, P., Traylor-Holzer, K., & David, V. (2002). Report of genetic management for giant pandas ex situ workshop. Smithsonian National Zoological Park, Chinese Association of Zoological Gardens, and China Wildlife Conservation Association Chengdu, China.Google Scholar
Yulnawati, Y., Maheshwari, H., Rizal, M., & Boediono, A. (2013). The success rate of artificial insemination using post-thawed spotted buffaloes epididymal sperm. Media Peternakan, 36(2), 101105.Google Scholar
Zacariotti, R. L., Grego, K. F., Fernandes, W., Sant’Anna, S. S., & de Barros Vaz Guimarães, M. A. (2007). Semen collection and evaluation in free‐ranging Brazilian rattlesnakes (Crotalus durissus terrificus). Zoo Biology, 26(2), 155160.Google Scholar
Zimmerman, D. M., Mitchell, M. A., & Perry, B. H. (2013). Collection and characterization of semen from green iguanas (Iguana iguana). American Journal of Veterinary Research, 74(12), 15361541.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×