Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:11:02.979Z Has data issue: false hasContentIssue false

18 - Changing paradigms in biomedicine: implications for future research and clinical applications

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

A revolution is underway in the physical sciences, based on insights from nonlinear dynamics, which includes the areas popularly known as chaos and complexity studies. As described in the previous chapters, this revolution is beginning to affect greatly the biological and medical sciences as well. Prominent examples are the discovery of deterministic chaos in physiological time series data, of fractal properties of living processes, and of dynamical information processing in single cells and coupled cell signaling networks. The key feature of this work is the treatment of a living system as a dynamical system of nonlinearly interacting elements. As I have proposed in the Introduction to this book, the field of biodynamics might therefore be defined as the study of the complex web of nonlinear dynamical interactions between and among molecules, cells and tissues, which give rise to the emergent functions of a biological system as a whole.

This concluding chapter reviews major characteristics of this quickly developing research area and explores implications for basic research, clinical applications and biological thinking. Before highlighting selected findings that emphasize the nonlinear dynamical view, I first draw attention to the nonequilibrium foundations of living processes.

Life as a dynamical, nonequilibrium process

Many standard textbooks of cell biology or biochemistry still stress ideas that are based upon biochemical reaction-diffusion processes for equilibrium conditions in closed systems. Yet, we now know that the decay to biochemical equilibrium is a poor representation of living systems.

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 409 - 420
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×