Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T18:15:11.567Z Has data issue: false hasContentIssue false

8 - Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

The use of magnetic fields as a tool for influencing biological processes, which historically began with attempts to treat human disease, has had a long but checkered record. For many centuries following the discovery of the naturally magnetic material, magnetite (Fe2O3), the purported effects associated with this material were surrounded by superstition. In the first century AD, Pliny the Elder wrote about the apparently magical powers of ‘lodestone’, as magnetite was called then, such as the ability to heal the sick. The credible, scientific study of the biological effects of magnetism, however, has begun only in this century, and only in the 1960s were the first surveys of the laboratory evidence published (Barnothy, 1964, 1969).

Beginning in the 1970s, it was established that several animal species such as pigeon, salmon and honey bee were sensitive to even weak magnetic fields such as that of the Earth (for an overview, see Kobayshi and Kirschvink, 1995). This represents a remarkable sensitivity, since the magnetic flux density (B) of the Earth's magnetic field measured in units of tesla (T) is only about 50 microtesla (μT). For comparison, the magnetic field associated with a small, 1-cm toy magnet would be 1000-fold greater, for example, B≃50 millitesla (mT). In elegantly designed studies, scientists revealed that pigeons, salmon and bees were capable of sensing geomagnetic field lines as a way to orient themselves in their environment. The discovery of small amounts of magnetite in the biological tissue of these animals pointed to the role of magnetite as a potential element of a biological ‘compass’ for magneto-orientation.

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 193 - 215
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×