Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T04:59:00.403Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  04 December 2009

Benedict Leimkuhler
Affiliation:
University of Leicester
Sebastian Reich
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

About geometric integration

This book is about simulating dynamical systems, especially conservative systems such as arise in celestial mechanics and molecular models. We think of the integrator as the beating heart of any dynamical simulation, the scheme which replaces a differential equation in continuous time by a difference equation defining approximate snapshots of the solution at discrete timesteps. As computers grow in power, approximate solutions are computed over ever-longer time intervals, and the integrator may be iterated many millions or even billions of times; in such cases, the qualitative properties of the integrator itself can become critical to the success of a simulation. Geometric integrators are methods that exactly (i.e. up to rounding errors) conserve qualitative properties associated to the solutions of the dynamical system under study.

The increase in the use of simulation in applications has mirrored rising interest in the theory of dynamical systems. Many of the recent developments in mathematics have followed from the appreciation of the fundamentally chaotic nature of physical systems, a consequence of nonlinearities present in even the simplest useful models. In a chaotic system the individual trajectories are by definition inherently unpredictable in the exact sense: solutions depend sensitively on the initial data. In some ways, this observation has limited the scope and usefulness of results obtainable from mathematical theory. Most of the common techniques rely on local approximation and perturbation expansions, methods best suited for understanding problems which are “almost linear,” while the new mathematics that would be needed to answer even the most basic questions regarding chaotic systems is still in its infancy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Benedict Leimkuhler, University of Leicester, Sebastian Reich, Imperial College of Science, Technology and Medicine, London
  • Book: Simulating Hamiltonian Dynamics
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614118.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Benedict Leimkuhler, University of Leicester, Sebastian Reich, Imperial College of Science, Technology and Medicine, London
  • Book: Simulating Hamiltonian Dynamics
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614118.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Benedict Leimkuhler, University of Leicester, Sebastian Reich, Imperial College of Science, Technology and Medicine, London
  • Book: Simulating Hamiltonian Dynamics
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614118.001
Available formats
×