Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T19:18:42.328Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 August 2018

Timothy L. Hubbard
Affiliation:
Arizona State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, A. E., & Wojciszke, B. (2007). Agency and communion from the perspective of self versus others. Journal of Personality and Social Psychology, 93, 751763.Google Scholar
Abrahamse, E., van Dijck, J. P., & Fias, W. (2016). How does working memory enable number-induced spatial biases? Frontiers in Psychology, 7, 977.Google Scholar
Abrams, J., Nizam, A., & Carrasco, M. (2012). Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry. Vision Research, 52(1), 7078.Google Scholar
Abrams, R. A., & Dobkin, R. S. (1994). Inhibition of return: Effects of attentional cuing on eye movement latencies. Journal of Experimental Psychology: Human Perception and Performance, 20, 467477.Google ScholarPubMed
Actis-Grosso, R., Bastianelli, A., & Stucchi, N. (2008). Direction of perceptual displacement of a moving target’s starting and vanishing points: The key role of velocity. Japanese Psychological Research, 50, 253263.Google Scholar
Actis-Grosso, R., & Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 675691.Google ScholarPubMed
Adamian, N., & Cavanagh, P. (2017). Fröhlich effect and delays of visual attention. Journal of Vision, 17, 114.CrossRefGoogle ScholarPubMed
Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17, 317331.CrossRefGoogle Scholar
Aglioti, S. M., DeSouza, J. F. X., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5, 679685.CrossRefGoogle Scholar
Aiello, M., Jacquin-Courtois, S., Merola, S., Ottaviani, T., Tomaiuolo, F., Bueti, D., et al. (2012). No inherent left and right side in human mental number line: Evidence from right brain damage. Brain, 135(8), 24922505.Google Scholar
Akutsu, H., McGraw, P. V., & Levi, D. M. (1992). Alignment of separated patches: Multiple location tags. Vision Research, 39, 789801.Google Scholar
Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology, 13, 5963.Google Scholar
Alais, D., & Burr, D. (2004a). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185194.CrossRefGoogle ScholarPubMed
Alais, D., & Burr, D. (2004b). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257262.Google Scholar
Alais, D., Newell, F., & Mamassian, P. (2010). Multisensory processing in review: From physiology to behavior. Seeing and Perceiving, 23, 338.Google Scholar
Albouy, P., Lévệque, Y., Hyde, K. L., Bouchet, P., Tillmann, B., & Caclin, A. (2015). Boosting pitch encoding with audiovisual interactions in congenital amusia. Neuropsychologia, 67, 111120.Google Scholar
Alink, A., Singer, W., & Muckli, L. (2008). Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex. Journal of Neuroscience, 28, 26902697.Google Scholar
Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. In Golledge, R. G. (Ed.), Wayfinding behavior: Cognitive mapping and other spatial processes (pp. 4680). Baltimore: Johns Hopkins University Press.Google Scholar
Allen, G. L., & Kirasic, K. C. (1985). Effects of the cognitive organization of route knowledge on judgements of macrospatial distance. Memory & Cognition, 13, 218227.Google Scholar
Allen, P. G., & Kolers, P. A. (1981). Sensory specificity of apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 7, 13181326.Google Scholar
Allport, G. W., 1954. The nature of prejudice. Reading, MA: Addison-Wesley.Google Scholar
Allred, S. R., Crawford, L. E., Duffy, S., & Smith, J. (2016). Working memory and spatial judgments: Cognitive load increases the central tendency bias. Psychonomic Bulletin & Review. Advance online publication. http://dx.doi.org/10.3758/s13423-016-1039-0Google Scholar
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122131.Google Scholar
Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences, 106(18), 73457350.CrossRefGoogle ScholarPubMed
Amedi, A., von Kriegstein, K., van Atteveldt, N. M., Beauchamp, M. S., & Naumer, M. J. (2004). Functional imaging of human crossmodal identification and object recognition. Experimental Brain Research, 166, 559571.Google Scholar
Amirshahi, S. A., Hayn-Leichsenring, G. U., Denzler, J., & Redies, C. (2014). Evaluating the rule of thirds in photographs and paintings. Art & Perception, 2, 163182.CrossRefGoogle Scholar
Amorapanth, P., Kranjec, A., Bromberger, B., Lehet, M., Widick, P., Woods, A. J., et al. (2012). Language, perception, and the schematic representation of spatial relations. Brain and Language, 120, 226236.CrossRefGoogle ScholarPubMed
Amorapanth, P. X., Widick, P., & Chatterjee, A. (2010). The neural basis for spatial relations. Journal of Cognitive Neuroscience, 22(8), 17391753.Google Scholar
Amorim, M. A., Lang, W., Lindinger, G., Mayer, D., Deecke, L., & Berthoz, A. (2000). Modulation of spatial orientation processing by mental imagery instructions: A MEG study of representational momentum. Journal of Cognitive Neuroscience, 12, 569582.CrossRefGoogle ScholarPubMed
Anderson, D. (2007). Consciousness and realism. Journal of Consciousness Studies, 14, 117.Google Scholar
Anderson, J. R. (2000). Learning and memory. New York: John Wiley.Google Scholar
Angelaki, D., McHenry, M., Dickman, J. D., Newlands, S., & Hess, B. (1999). Computation of inertial motion: Neural strategies to resolve ambiguous otolith information. Journal of Neuroscience, 19, 316327.Google Scholar
Angelaki, D. E., Shaikh, A. G., Green, A. M., & Dickman, J. D. (2004). Neurons compute internal models of the physical laws of motion. Nature, 430(6999), 560564.Google Scholar
Ansorge, U., Carbone, E., Becker, S. I., & Turatto, M. (2010). Attentional capture by motion onset is spatially imprecise. European Journal of Cognitive Psychology, 22, 62105.CrossRefGoogle Scholar
Anstis, S. (2007). The flash-lag effect during illusory chopstick motion. Perception, 36, 10431048.CrossRefGoogle Scholar
Anstis, S. (2010). Illusions of time, space, and motion: Flash-lag meets chopsticks and reversed phi. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 408421). New York: Cambridge University Press.Google Scholar
Antović, M., Bennett, A., & Turner, M. (2013). Running in circles or moving along lines: Conceptualization of musical elements in sighted and blind children. Musicae Scientiae, 17, 229245.CrossRefGoogle Scholar
Appelle, S. (1972). Perception and discrimination as a function of orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78, 266278.Google Scholar
Appleyard, D. (1969). Why buildings are known. Environment and Behavior, 1, 131156.CrossRefGoogle Scholar
Arduino, L. S., Previtali, P., & Girelli, L. (2010). The centre is not in the middle: Evidence from line and word bisection. Neuropsychologia, 48, 21402446.CrossRefGoogle Scholar
Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157162.Google Scholar
Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. Berkeley: University of California Press.CrossRefGoogle Scholar
Arnheim, R. (1982). The power of the center. Berkeley: University of California Press.Google Scholar
Arnheim, R. (1986). New essays on the psychology of art. Berkeley: University of California Press.Google Scholar
Arnheim, R. (1988). Visual dynamics. Scientific American, 76, 585591.Google Scholar
Arnheim, R. (2006). Film as art (50th anniversary edition). Berkeley: University of California Press.Google Scholar
Arnold, D. H., Clifford, C. W. G., & Wenderoth, P. (2001). Asynchronous processing in vision: Color leads motion. Current Biology, 11, 596600.Google Scholar
Arnold, D. H., Durant, S., & Johnston, A. (2003). Latency differences and the flash-lag effect. Vision Research, 43, 18291835.Google Scholar
Arnold, D. H., Ong, Y., & Roseboom, W. (2009). Simple differential latencies modulate, but do not cause the flash-lag effect. Journal of Vision, 9(5), 4.Google Scholar
Arrighi, R., Alais, D., & Burr, D. (2005). Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Research, 45, 29172925.Google Scholar
Arrighi, R., Marini, F., & Burr, D. (2009). Meaningful auditory information enhances perception of visual biological motion. Journal of Vision, 9, 25.Google Scholar
Arrington, C. M., Carr, T. H., Mayer, A. R., & Rao, S. M. (2000). Neural mechanisms of visual attention: Object-based selection of a region in space. Journal of Cognitive Neuroscience, 12(supplement 2), 106.Google Scholar
Arzy, S., Adi-Japha, E., & Blanke, O. (2009). The mental time line: An analogue of the mental number line in the mapping of life events. Consciousness and Cognition, 18, 781785.CrossRefGoogle ScholarPubMed
Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 25, 17091720.Google Scholar
Asher, M. F., Tolhurst, D. J., Troscianko, T., & Gilchrist, I. (2013). Regional effects of clutter on human target detection performance. Journal of Vision, 13(5): 115.Google Scholar
Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 15151524.CrossRefGoogle ScholarPubMed
Atmanspacher, H. (2007) Contextual emergence from physics to cognitive neuroscience. Journal of Consciousness Studies, 14, 1836.Google Scholar
Atmanspacher, H., & Kronz, F. (1998). Many realisms. Acta Polytechnica Scandinavica, 91, 3143.Google Scholar
Attneave, F. (1959). Comments: In defense of homunculi. In Rosenblith, W. A. (Ed.), Sensory communication: Contributions to the symposium on principels of sensoty comunication, July 19–August 1 (pp. 777781). Cambrdidge, MA: MIT Press.Google Scholar
Au, R. K. C., & Watanabe, K. (2013). Object motion continuity and the flash-lag effect. Vision Research, 92, 1925.Google Scholar
Aubert, H. (1861). Eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Archiv fur pathologische Anatomie und Physiologic und fur klinische Medizin, 20, 381393.Google Scholar
Auerbach, E., Beller, A. J., Henkes, H. E., & Goldhaber, G. (1961). Electric potentials of retina and cortex of cats evoked by monocular and binocular photic stimulation. Vision Research, 1(1–2), 166IN5182IN8.CrossRefGoogle Scholar
Avant, L. L. (1965). Vision in the Ganzfeld. Psychological Bulletin, 64, 246258.Google Scholar
Avery, G., & Day, R. (1969). Basis of the horizontal vertical illusion. Journal of Experimental Psychology, 81, 376380.Google Scholar
Avrahami, J., Argaman, T., & Weiss-Chasum, D. (2004). The mysteries of the diagonal: Gender-related perceptual asymmetries. Perception & Psychophysics, 66, 14051417.Google Scholar
Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention. Trends in Cognitive Science, 10, 124130.Google Scholar
Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834846.Google Scholar
Aznar-Casanova, J. A., Torrents, A., & Torro-Alves, N. T. (2008). The role of the vertical disparities in the Oblique Effect. Psychology & Neuroscience, 1(2), 8598.Google Scholar
Baars, B. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.Google Scholar
Bach, D. R., Buxtorf, K., Strik, W. K., Neuhoff, J. G., & Seifritz, E. (2011). Evidence for impaired sound intensity processing in schizophrenia. Schizophrenia Bulletin, 37(2), 426431.Google Scholar
Bach, D. R., Furl, N., Barnes, G., & Dolan, R. J. (2015). Sustained magnetic responses in temporal cortex reflect instantaneous significance of approaching and receding sounds. PLoS One, 10(7). doi:10.1371/journal.pone.0134060Google Scholar
Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology, 74(1), 2833.Google Scholar
Bach, D. R., Schachinger, H., Neuhoff, J. G., Esposito, F., Di Salle, F., Lehmann, C., … Seifritz, E. (2008). Rising sound intensity: An intrinsic warning cue activating the amygdala. Cerebral Cortex, 18(1), 145150.Google Scholar
Bachmann, T. (1984). The process of perceptual retouch: Nonspecific afferent activation dynamics in explaining visual masking. Perception & Psychophysics, 35, 6984.Google Scholar
Bachmann, T. (1999). Twelve spatiotemporal phenomena and one explanation. Advances in Psychology, 129, 173206.Google Scholar
Bachmann, T. (2007). Binding binding: Departure points for a different version of the perceptual retouch theory. Advances in Cognitive Psychology, 3, 4155.Google Scholar
Bachmann, T. (2010). Priming and retouch in flash-lag and other phenomena of the streaming perceptual input. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 536557). New York: Cambridge University Press.Google Scholar
Bachmann, T., & Kalev, K. (1997). Adjustment of collinearity of laterally moving, vertically separated lines reveals compression of subjective distance as a function of aperture size and speed of motion. Perception, 26, 119120.Google Scholar
Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: Evidence from flash-lag displays. Consciousness and Cognition, 12, 279297.Google Scholar
Bachmann, T., Murd, C., & Põder, E. (2012). Flash-lag effect: Complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect. Psychological Research, 76, 654666.Google Scholar
Bachmann, T., & Põder, E. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Research, 41, 11031106.CrossRefGoogle Scholar
Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731735.Google Scholar
Bahill, A. T., & Karnavas, W. J. (1993). The perceptual illusion of baseball’s rising fastball and breaking curveball. Journal of Experimental Psychology: Human Perception and Performance, 19(1), 314.Google Scholar
Baier, B., Zu Eulenburg, P., Best, C., Geber, C., Müller-Forell, W., Birklein, F., & Dieterich, M. (2013). Posterior insular cortex – a site of vestibular-somatosensory interaction? Brain and Behavior, 3(5), 519524.Google Scholar
Bailenson, J. N., Shum, M. S., & Uttal, D. H. (1998). Road climbing: Principles governing asymmetric route choices on maps. Journal of Environmental Psychology, 18(3), 251264.Google Scholar
Bailenson, J. N., Shum, M. S., & Uttal, D. H. (2000). The initial segment strategy: A heuristic for route selection. Memory & Cognition, 28(2), 306318.Google Scholar
Baird, J., Merrill, A., & Tannenbaum, J. (1979). Studies of the cognitive representation of spatial relations. II. A familiar environment. Journal of Experimental Psychology: General, 108, 9298.Google Scholar
Baird, J. C., Wagner, M., & Noma, E. (1982). Impossible cognitive spaces. Geographical Analysis, 14(3), 204216.Google Scholar
Bakan, D. (1966). The duality of human existence: An essay on psychology and religion. Chicago: Rand McNally.Google Scholar
Balcetis, E. (2016). Approach and avoidance as organizing structures for motivated distance perception. Emotion Review, 8(2), 115128.CrossRefGoogle Scholar
Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. Vision Research, 45, 26202630.Google Scholar
Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception, 31, 1730.Google Scholar
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature, 378, 565566.Google Scholar
Baldo, M. V. C., & Klein, S. A. (2008) Shifting attention to the flash-lag effect. Behavioral and Brain Sciences, 31(2), 198199.Google Scholar
Baldo, M. V. C., & Klein, S. A. (2010). Paying attention to the flash-lag effect. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 396407). New York: Cambridge University Press.CrossRefGoogle Scholar
Baldo, M. V. C., & Namba, J. (2002). The attentional modulation of the flash-lag effect. Brazilian Journal of Medical and Biological Research, 35, 969972.Google Scholar
Baldo, M. V. C., Ranvaud, R. D., & Morya, E. (2002). Flag errors in soccer games: The flash-lag effect brought to real life. Perception, 31, 12051210.Google Scholar
Ball, K., & Sekuler, R. (1980). Human vision favors centrifugal motion. Perception, 9(3), 317325.Google Scholar
Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion discrimination, Vision Research 27, 953965.Google Scholar
Ball, W., & Tronick, E. (1971). Infant responses to impending collision – optical and real. Science, 171(3973), 818820.Google Scholar
Banich, M. T., Heller, W., & Levy, J. (1989). Aesthetic preference and picture asymmetries. Cortex, 25, 187195.Google Scholar
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5, 617629.Google Scholar
Bar, M., & Neta, M. (2006). Humans prefer curved visual objects. Psychological Science, 17, 645648.Google Scholar
Bar, M., & Neta, M. (2007). Visual elements of subjective preference modulate amygdala activation. Neuropsychologia, 45, 21912200.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1980). Critical limiting factors in the design of the eye and visual cortex. Proceedings of the Royal Society B. doi: 10.1098/rspb.1981.0022.Google Scholar
Barnett-Cowan, M., Fleming, R. W., Singh, M., & Bülthoff, H. H. (2011). Perceived object stability depends on multisensory estimates of gravity. PLoS ONE 6(4), e19289.Google Scholar
Barra, J., Marquer, A., Joassin, R., Reymond, C., Metge, L., Chauvineau, V., & Pérennou, D. (2010). Humans use internal models to construct and update a sense of verticality. Brain, 133(Pt 12), 35523563.Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. The Behavioral and Brain Sciences, 22(4), 577609.Google Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645.Google Scholar
Barth, H., Lesser, E., Taggart, J., & Slusser, E. (2015). Spatial estimation: A non-Bayesian alternative. Developmental Science, 18(5), 853862.Google Scholar
Bartolomeo, P. (1987). Aspetti dell’emi-inattenzione spaziale nelle lesioni emisferiche: fattori che influenzano la bisezione di linee [Aspects of spatial hemi-inattention: factors influencing line bisection performance]. Unpublished MD thesis, Università Cattolica, Roma.Google Scholar
Bartolomeo, P. (1997). The novelty effect in recovered hemineglect. Cortex, 33(2), 323332.Google Scholar
Bartolomeo, P. (2000). Inhibitory processes and compensation for spatial bias after right hemisphere damage. Neuropsychological Rehabilitation, 10, 511526.Google Scholar
Bartolomeo, P. (2002). The relationship between visual perception and visual mental imagery: A reappraisal of the neuropsychological evidence. Cortex, 38(3), 357378.Google Scholar
Bartolomeo, P. (2006). A parieto-frontal network for spatial awareness in the right hemisphere of the human brain. Archives of Neurology, 63, 12381241.Google Scholar
Bartolomeo, P. (2007). Visual neglect. Current Opinion in Neurology, 20(4), 381386.Google Scholar
Bartolomeo, P. (2014). Attention disorders after right brain damage: Living in halved worlds. London: Springer-Verlag.CrossRefGoogle Scholar
Bartolomeo, P., Bachoud-Lévi, A.-C., Azouvi, P., & Chokron, S. (2005). Time to imagine space: A chronometric exploration of representational neglect. Neuropsychologia, 43(9), 12491257.Google Scholar
Bartolomeo, P., & Chokron, S. (1999). Left unilateral neglect or right hyperattention. Neurology, 53(9), 20232027.Google Scholar
Bartolomeo, P., Chokron, S., & Gainotti, G. (2001). Laterally directed arm movements and right unilateral neglect after left hemisphere damage. Neuropsychologia, 39, 10131021.Google Scholar
Bartolomeo, P., Chokron, S., & Siéroff, E. (1999). Facilitation instead of inhibition for repeated right-sided events in left neglect. NeuroReport, 10, 33533357.Google Scholar
Bartolomeo, P., D’Erme, P., & Gainotti, G. (1994). The relationship between visuospatial and representational neglect. Neurology, 44, 17101714.Google Scholar
Bartolomeo, P., Thiebaut de Schotten, M., & Chica, A. B. (2012). Brain networks of visuospatial attention and their disruption in visual neglect. Frontiers in Human Neuroscience, 6, 110.Google Scholar
Bartolomeo, P., Urbanski, M., Chokron, S., Chainay, H., Moroni, C., Siéroff, E., et al. (2004). Neglected attention in apparent spatial compression. Neuropsychologia, 42(1), 4961.Google Scholar
Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion–symptom mapping. Nature Neuroscience, 6(5), 448450.Google Scholar
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Science of the United States of America, 110, 1832718332.Google Scholar
Baumann, O., & Greenlee, M. W. (2007). Neural correlates of coherent audiovisual motion perception. Cerebral Cortex, 17, 14331443.Google Scholar
Bauer, W. (2011). An argument for the extrinsic grounding of mass, Erkenntnis, 74(1), 8199.Google Scholar
Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851854.Google Scholar
Beaumont, J. G. (1985). Lateral organization and aesthetic preference. Neuropychologia, 23, 103113.Google Scholar
Becker, B., & Mark, G. (1998, June). Social conventions in collaborative virtual environments. In Proceedings of Collaborative Virtual Environments (pp. 17–19).Google Scholar
Becker, S. I., Ansorge, U., & Turatto, M. (2009). Saccades reveal that allocentric coding of the moving object causes mislocalization in the flash-lag effect. Attention, Perception, & Psychophysics, 71, 13131324.Google Scholar
Beecham, R., Reeve, R. A., & Wilson, S. J. (2009). Spatial representations are specific to different domains of knowledge. PlosOne, 4, e5543.Google Scholar
Beis, J. M., Keller, C., Morin, N., Bartolomeo, P., Bernati, T., Chokron, S., et al. (2004). Right spatial neglect after left hemisphere stroke: Qualitative and quantitative study. Neurology, 63, 16001605.Google Scholar
Ben-Artzi, E., & Marks, L. E. (1995). Visual-auditory interaction in speeded classification: Role of stimulus difference. Perception & Psychophysics, 57, 11511162.Google Scholar
Benedikt, M. L. (1979). To take hold of space: Isovists and isovist fields. Environment and Planning B, 6, 4765.Google Scholar
Benjafield, J. G. (2010). The golden section and American psychology 1892–1938. Journal of the History of the Behavioral Sciences, 46, 5271.Google Scholar
Benson, A. J. (1988). Spatial disorientation – general aspects. In Ernsting, J. & King, P. (Eds.), Aviation medicine (pp. 277296). London: Butterworth.Google Scholar
Berlucchi, G. (2006). Inhibition of return: A phenomenon in search of a mechanism and a better name. Cognitive Neuropsychology, 23, 10651074.Google Scholar
Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-Crofts.Google Scholar
Bernstein, I. H., & Edelstein, B. A. (1971). Effects of some variations in auditory input upon visual choice reaction time. Journal of Experimental Psychology, 87, 241247.Google Scholar
Berry, M. J. II, Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature, 398, 334338.Google Scholar
Berryhill, M. E., Fendrich, R., & Olson, I. R. (2009). Impaired distance perception and size constancy following bilateral occipitoparietal damage. Experimental Brain Research, 194(3), 381393.Google Scholar
Bertamini, M. (1993). Memory for position and dynamic representations. Memory & Cognition, 21, 449457.Google Scholar
Bertamini, M., Bennett, K. M., & Bode, C. (2011). The anterior bias in visual art: The case of images of animals. Laterality, 16, 673689.Google Scholar
Bertamini, M., Bode, C., & Bruno, N. (2011). The effect of left-right reversal on film: Watching Kurosawa reversed. i-Perception, 2, 528540.Google Scholar
Bertamini, M., Jones, L. A., Spooner, A., & Hecht, H. (2005). Boundary extension: The role of magnification, object size, context, and binocular information. Journal of Experimental Psychology: Human Perception and Performance, 31, 12881307.Google Scholar
Bertamini, M., Latto, R., & Spooner, A. (2003). The Venus effect: People’s understanding of mirror reflections in paintings. Perception, 32, 593599.Google Scholar
Bertamini, M., Lawson, R., Jones, L., & Winters, M. (2010). The Venus effect in real life and in photographs. Attention, Perception, & Psychophysics, 72, 19481964.Google Scholar
Bertamini, M., Lawson, R., & Liu, D. (2008). Understanding 2D projections on mirrors and on windows. Spatial Vision, 21 (3–5), 273289.Google Scholar
Bertamini, M., & Parks, T. E. (2005). On what people know about images on mirrors. Cognition, 98, 85104.Google Scholar
Bertamini, M., Spooner, A., & Hecht, H. (2003). Naïve optics: Predicting and perceiving reflections in mirrors. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 9821002.Google Scholar
Bertamini, M., & Wynne, L. A. (2009). The tendency to overestimate what is visible in a planar mirror amongst adults and children. European Journal of Cognitive Psychology, 22, 516528.Google Scholar
Bertamini, M., Yang, T. L., & Proffitt, D. R. (1998). Relative size perception at a distance is best at eye level. Attention, Perception, & Psychophysics, 60, 673682.Google Scholar
Berthoz, A. (2000). The brain’s sense of movement. Cambridge, MA: Harvard University Press.Google Scholar
Berti, A., & Frassinetti, F. (2000). When far becomes near: Remapping of space by tool use. Journal of Cognitive Neuroscience, 12(3), 415420.Google Scholar
Beschin, N., Cubelli, R., Della, S., & Spinazzola, L. (1997). Left of what? The role of egocentric coordinates in neglect. Journal of Neurology, Neurosurgery, and Psychiatry, 63(4), 483489.Google Scholar
Bestmann, S., Ruff, C. C., Blakemore, C., Driver, J., & Thilo, K. V. (2007). Spatial attention changes excitability of human visual cortex to direct stimulation. Current Biology, 17, 134139.Google Scholar
Bex, P. J., & Makous, W. (1997). Radial motion looks faster. Vision Research, 37(23), 33993405.Google Scholar
Bhalla, M., & Proffitt, D. R. (1999). Visual-motor recalibration in geographical slant. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 10761096.Google Scholar
Bian, Z., & Andersen, G. J. (2010). The advantage of a ground surface in the representation of visual scenes. Journal of Vision, 10(8), 119.Google Scholar
Bian, Z., Braunstein, M. L., & Andersen, G. J. (2005). The ground dominance effect in the perception of 3-D layout. Attention, Perception, & Psychophysics, 67, 815828.Google Scholar
Bian, Z., Braunstein, M. L., & Andersen, G. J. (2006). The ground dominance effect in the perception of relative distance in 3-D scenes is mainly due to characteristics of the ground surface. Attention, Perception, & Psychophysics, 68, 12971309.Google Scholar
Bianchi, I., Bertamini, M., & Savardi, U. (2015). Differences between predictions of how a reflection behaves based on the behaviour of an object. Acta Psychologica, 161, 5463.Google Scholar
Bianchi, I., Burro, R., Torquati, S., & Savardi, U. (2013). The middle of the road: Perceiving intermediates. Acta Psychologica, 144(1), 121135.Google Scholar
Bianchi, I., Paradis, C, Burro, R., van de Weijer, J., Nyström, M., & Savardi, U. (2017). Identification of poles and intermediates by eye and by hand. Acta Psychologica, 180, 175189.CrossRefGoogle ScholarPubMed
Bianchi, I., & Savardi, U. (2008a) The perception of contraries. Rome, IT: Aracne.Google Scholar
Bianchi, I., & Savardi, U. (2008b). The relationship perceived between the real body and the mirror image. Perception, 5, 666687.Google Scholar
Bianchi, I., & Savardi, U. (2009). Contrariety in plane mirror reflections. In Savardi, U. (Ed.), The perception and cognition of contraries (pp. 113128). Milan: McGraw Hill.Google Scholar
Bianchi, I., & Savardi, U. (2012a). What fits in into a mirror: Naïve beliefs on the field of view of mirrors. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 11441158.Google Scholar
Bianchi, I., & Savardi, U. (2012b). The cognitive dimensions of contrariety. In Bezieau, J.-Y. & Payette, G. (Eds.), The square of opposition: A general framework for cognition (pp. 443470). New York: Peter Lang Publishing Group.Google Scholar
Bianchi, I., & Savardi, U. (2014). Grounding naive physics and optics in perception. The Baltic International Yearbook for Cognition Logic and Communication, 6, 115.Google Scholar
Bianchi, I., Savardi, U., & Burro, R. (2011). Perceptual ratings of opposite spatial properties: Do they lie on the same dimension? Acta Psychologica, 138(3), 405418.Google Scholar
Bianchi, I., Savardi, U., Burro, R., & Martelli, M.F. (2014). Doing the opposite to what another person is doing. Acta Psychologica, 151, 117133.Google Scholar
Bianchi, I., Savardi, U., & Kubovy, M. (2011). Dimensions and their poles: A metric and topological theory of opposites. Language and Cognitive Processes, 26(8), 12321265.Google Scholar
Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143177.Google Scholar
Billig, M., & Tajfel, H. (1973). Social categorization and similarity in intergroup behavior. European Journal of Social Psychology, 3, 2752.Google Scholar
Binetti, N., Hagura, N., Fadipe, C., Tomassini, A., Walsh, V., & Bestmann, S. (2015). Binding space and time through action. Proceedings of the Royal Society of London B: Biological Sciences, 282(1805), 20150381.Google Scholar
Bingham, G. P., Schmidt, R. C., & Rosenblum, L. D. (1995). Dynamics and the orientation of kinematic forms in visual event recognition. Journal of Experimental Psychology: Human Perception and Performance, 21, 14731493.Google Scholar
Bishop, R., & Atmanspacher, H. (2006) Contextual emergence in the description of properties. Foundations of Physics, 36, 17531777.Google Scholar
Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14(1), 129133.Google Scholar
Bisiach, E., Perani, D., Vallar, G., & Berti, A. (1986). Unilateral neglect: Personal and extra-personal. Neuropsychologia, 24, 759767.Google Scholar
Bisiach, E., Pizzamiglio, L., Nico, D., & Antonucci, G. (1996). Beyond unilateral neglect. Brain, 119, 851857.Google Scholar
Bisiach, E., Rusconi, M. L., Peretti, V. A., & Vallar, G. (1994). Challenging current accounts of unilateral neglect. Neuropsychologia, 32, 14311434.Google Scholar
Blakemore, C., Carpenter, R. H. S., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228, 3739.Google Scholar
Blaker, N. M., & van Vugt, M. (2014). The status-size hypothesis: How cues of physical size and social status influence each other. In Cheng, J. T., Tracy, J. L., & Anderson, C. (Eds.), The psychology of social status (pp. 119137). New York: Springer Science+Business Media.Google Scholar
Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37, 15691577.Google Scholar
Blättler, C., Ferrari, V., Didierjean, A., van Elslande, P., & Marmèche, E. (2010). Can expertise modulate representational momentum? Visual Cognition, 18, 12531273.Google Scholar
Bloesch, E. K., Davoli, C. C., Roth, N., Brockmole, J. R., & Abrams, R. A. (2012). Watch this! Observed tool use affects perceived distance. Psychonomic Bulletin & Review, 19(2), 177183.Google Scholar
Bloom, P., Peterson, M., Nadel, L., & Garrett, M. (1996). Language and space. Cambridge, MA: The MIT Press.Google Scholar
Blumenfeld, W. (1913). Untersuchungen über die scheinbare Grösse im Sehraume. Zeitschrift für Psychologie, 65, 241404.Google Scholar
Bocianski, D., Müsseler, J., & Erlhagen, W. (2008). Relative mislocalization of successively presented stimuli. Vision Research, 48, 22042212.Google Scholar
Bocianski, D., Müsseler, J., & Erlhagen, W. (2010). Effects of attention on a relative mislocalization with successively presented stimuli. Vision Research, 50, 17931802.Google Scholar
Bock, G. R., & Good, J. (1994) Higher-order processing in the visual system. Oxford: Wiley.Google Scholar
Bodenhausen, G. V., & Wyer, R. S. (1985). Effects of stereotypes in decision making and information-processing strategies. Journal of Personality and Social Psychology, 48(2), 267.Google Scholar
Boeschoten, M. A., Kemner, C., Kenemans, J. L., & Engeland, H. (2005). The relationship between local and global processing and the processing of high and low spatial frequencies studied by event-related potentials and source modeling. Cognitive Brain Research, 24, 228236.Google Scholar
Bonato, M. (2012). Neglect and extinction depend greatly on task demands: A review. Frontiers in Human Neuroscience, 6, 195.Google Scholar
Bonato, M., & Cutini, S. (2015). Increased attentional load moves the left to the right. Journal of Clinical and Experimental Neuropsychology, 38, 158170.Google Scholar
Bonato, M., Saj, A., & Vuilleumier, P. (2016). Neural Plasticity, Volume 2016, Article ID 2716036.Google Scholar
Bonato, M., & Umiltà, C. (2014). Heterogeneous timescales are spatially represented. Frontiers in Psychology 5: 542.Google Scholar
Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience and Biobehavioural Reviews 36, 22572273.Google Scholar
Boring, E. G. (1950). A history of experimental psychology. New York: Appelton-Century-Crofts.Google Scholar
Boroditsky, L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition, 75, 128.Google Scholar
Boroditsky, L. (2011). How languages construct time (pp. 333-342). In Dehaene, S. & Brannon, E. (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought. London: Elsevier.Google Scholar
Bortolami, S. B., Pierobon, A., DiZio, P., & Lackner, J. R. (2006). Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Experimental Brain Research, 173, 364373.Google Scholar
Bosco, G., Delle Monache, S., Gravano, S., Indovina, I., La Scaleia, B., et al. (2015). Filling gaps in visual motion for target capture. Frontiers Integrative Neuroscience, 9:13.Google Scholar
Bosco, G., Delle Monache, S., & Lacquaniti, F.(2012). Catching What We Can?t See: Manual Interception of Occluded Fly-Ball Trajectories. PLoS ONE, 7(11), e49381.Google Scholar
Boselie, F. (1984). The aesthetic attractivity of the golden section. Psychological Research, 45, 367375.Google Scholar
Boselie, F. (1997). The golden section and shape of objects. Empirical Studies of the Arts, 15, 131141.Google Scholar
Bouleau, C. (2014). The painter’s secret geometry. Allegro Editions.Google Scholar
Bourgeois, A., Chica, A. B., Migliaccio, R., Bayle, D. J., Duret, C., Pradat-Diehl, P., et al. (2015). Inappropriate rightward saccades after right hemisphere damage: Oculomotor analysis and anatomical correlates. Neuropsychologia, 73, 111.Google Scholar
Bourgeois, A., Chica, A. B., Migliaccio, R., Thiebaut de Schotten, M., & Bartolomeo, P. (2012). Cortical control of inhibition of return: Evidence from patients with inferior parietal damage and visual neglect. Neuropsychologia, 50(5), 800809.Google Scholar
Bourlon, C., Duret, C., Pradat-Diehl, P., Azouvi, P., Loeper-Jeny, C., Merat-Blanchard, M., et al. (2011). Vocal response times to real and imagined stimuli in spatial neglect: A group study and single-case report. Cortex, 47(5), 536546.Google Scholar
Bourlon, C., Oliviero, B., Wattiez, N., Pouget, P., & Bartolomeo, P. (2011). Visual mental imagery: What the head’s eye tells the mind’s eye. Brain Research, 1367, 287297.Google Scholar
Bourlon, C., Pradat-Diehl, P., Duret, C., Azouvi, P., & Bartolomeo, P. (2008). Seeing and imagining the “same” objects in unilateral neglect. Neuropsychologia, 46(10), 26022606.Google Scholar
Bourne, V. J. (2006). The divided visual field paradigm: Methodological considerations. Laterality, 11(4), 373393.Google Scholar
Bower, T. G. R., Broughto, J. M., & Moore, M. K. (1971). Infant responses to approaching objects – indicator of response to distal variables. Perception & Psychophysics, 9(2B), 193199.Google Scholar
Bowerman, M., & Choi, S. (2001). Shaping meanings for language: Universal and language-specific in the acquisition of spatial semantic categories. In Bowerman, M. & Levinson, S. C. (Eds.), Language acquisition and conceptual development (pp. 475511). Cambridge: Cambridge University Press.Google Scholar
Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18, 491498.Google Scholar
Boyd, I. L. (1996). Temporal scales of foraging in a marine predator. Ecology, 77, 426434.Google Scholar
Braaten, R. (1993, November). Synesthetic correspondence between visual location and auditory pitch in infants. Paper presented at the Annual Meeting of the Psychonomic Society, Washington, DC.Google Scholar
Bradburn, N. M., Rips, L. J., & Shevell, S. K. (1987). Answering autobiographical questions: The impact of memory and inference on surveys. Science, 236, 158161.Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433436.Google Scholar
Branchini, E., Bianchi, I., Burro, R., Capitani, E., & Savardi, U. (2016). Can contraries prompt intuition in insight problem solving? Frontiers in Psychology, 7, 1962.Google Scholar
Branchini, E., Burro, R., Bianchi, I., & Savardi, U. (2015). Contraries as an effective strategy in geometrical problem solving. Thinking & Reasoning, 21(4), 397430.Google Scholar
Brandt, T., Dieterich, M., & Danek, A. (1994). Vestibular cortex lesions affect the perception of verticality. Annals of Neurology, 35(4), 403412.Google Scholar
Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology: Human Perception and Performance, 22, 480501.Google Scholar
Brendel, E., DeLucia, P. R., Hecht, H., Stacy, R. L., & Larsen, J. T. (2012). Threatening pictures induce shortened time-to-contact estimates. Attention Perception & Psychophysics, 74(5), 979987.Google Scholar
Brendel, E., Hecht, H., DeLucia, P. R., & Gamer, M. (2014). Emotional effects on time-to-contact judgments: Arousal, threat, and fear of spiders modulate the effect of pictorial content. Experimental Brain Research, 232(7), 23372347.Google Scholar
Brenner, E., van Beers, R. J., Rotman, G., & Smeets, J. B. J. (2006). The role of uncertainty in the systematic spatial mislocalization of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 32, 811825.Google Scholar
Brenner, E., & Smeets, J. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Research, 40, 16451648.Google Scholar
Brenner, E., Smeets, J. B. J. & Landy, M. S. (2001). How vertical disparities assist judgements of distance. Vision Research, 41, 34553465.Google Scholar
Brenner, E., van Beers, R. J., Rotman, G., & Smeets, J. B. J. (2006). The role of uncertainty in the systematic spatial mislocalization of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 32, 811825.Google Scholar
Bresciani, J-P., Dammeier, F., & Ernst, M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events. Journal of Vision, 6, 554564.Google Scholar
Bridgeman, B. (2006). Contributions of lateral inhibition to object substitution masking and attention. Vision Research, 46(24), 40754082.Google Scholar
Briggs, R. (1973) Urban cognitive distance. In Downs, R. & Stea, D. (Eds.), Image and environment (pp. 361388). Chicago: Aldine.Google Scholar
Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462465.Google Scholar
Brodersen, K. H. (2009). Decoding mental activity from neuroimaging data – the science behind mind-reading. New Collection Oxford, 4, 5061.Google Scholar
Brodie, E. E. (2010). Reflecting upon line bisection: Mirror reversal increases the magnitude of pseudoneglect. Neuropsychologia, 48, 15171520.Google Scholar
Bromberger, B., Sternschein, R. Widick, P, Smith, S. II, & Chatterjee, A. (2011). The right hemisphere in esthetic perception. Frontiers in Human Neuroscience, 5, 109; 18.Google Scholar
Brooks, A., van der Zwan, R., Billard, A., Petreska, B., Clarke, S., & Blanke, O. (2007). Auditory motion affects visual biological motion processing. Neuropsychologia, 45, 523530.Google Scholar
Brouwer, A. M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects. Journal of Vision, 4, 575584.Google Scholar
Brouwer, A. M., Thornton, I. M., & Franz, V. H. (2005). Forward displacement in grasping and judging pliers. Visual Cognition, 12, 800816.Google Scholar
Brown, C., Liebovitch, L., & Glendon, R. (2007). L’evy Flights in Dobe Ju/’hoansi Foraging Patterns. Human Ecology, 35(1), 129138.Google Scholar
Brown, L. (1979). The story of maps. New York: Dover.Google Scholar
Brown, N. R., Rips, L. J., & Shevell, S. K. (1985). The subjective dates of natural events in very-long-term memory. Cognitive Psychology, 17, 139177.Google Scholar
Brown, T. A., & Munger, M. P. (2010). Representational momentum, spatial layout, and viewpoint dependency. Visual Cognition, 18, 780800.Google Scholar
Brunetti, R., Indraccolo, A., Del Gatto, C., Spence, C., & Santangelo, V. (2018). Are crossmodal correspondences absolute or relative? Context effects on speeded classification. Attention, Perception, & Psychophysics, 80(2), 527534.Google Scholar
Bruner, J. S. (1992). Another look at New Look 1. American Psychologist, 47(6), 780783.Google Scholar
Bruner, J. S., & Goodman, C. C. (1947). Value and need as organizing factors in perception. Journal of Abnormal and Social Psychology, 42, 3344.Google Scholar
Brunyé, T. T., Andonova, E., Meneghetti, C., Noordzij, M. L., Francesca Pazzaglia, P., Wienemann, R., Mahoney, C. R., & Taylor, H. A (2012). Planning routes around the world: International evidence for southern route preferences. Journal of Environmental Psychology, 32, 297304.Google Scholar
Brunyé, T. T., Collier, Z. A., Cantelon, J., Holmes, A., Wood, M. D., Linkov, I., & Taylor, H. A. (2015). Strategies for selecting routes through real-world environments: relative topography, initial route straightness, and cardinal direction. PLoS ONE, 10(5), 116.Google Scholar
Brunyé, T. T., Mahoney, C. R., Gardony, A. L., & Taylor, H. A. (2010). North is up (hill): Route planning heuristics in real-world environments. Memory & Cognition, 38, 700712.Google Scholar
Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks in perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119139.Google Scholar
Buchanan-Smith, H. M., & Heeley, D. W. (1993). Anisotropic axes in orientation perception are not retinotopically mapped. Perception, 22, 13891402.Google Scholar
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 23222345.Google Scholar
Büechner, S. J., Hölscher, C., & Wiener, J. (2009). Search strategies and their success in a virtual maze. In Taatgen, N. A. & van Rijn, H. (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 10661071). Austin, TX: Cognitive Science Society.Google Scholar
Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 18311840.Google Scholar
Buetti, S., Lleras, A., & Moore, C. M. (2014). The flanker effect does not reflect the processing of “task-irrelevant” stimuli: Evidence from inattentional blindness. Psychological Bulletin & Review, 21, 12311237.Google Scholar
Buhlman, I., Umiltà, C., & Wascher, E. (2007). Response coding and visuomotor transformation in the Simon task: The role of action goals. Journal of Experimental Psychology: Human Perception and Performance, 33, 12691282.Google Scholar
Burbeck, C. A. (1987). On the locus of spatial frequency discrimination. Journal of the Ophthalmology Society of America A, 4, 18071813.Google Scholar
Burkitt, J. A., Saucier, D. M., Thomas, N. A., & Ehresman, C. (2006). When advertising turns “cheeky”! Laterality, 11(3), 277286.Google Scholar
Burlison, T. (2013). Columbia’s first victims. New York: Baen Publishing.Google Scholar
Burr, D. C., & Wijesundra, S. A. (1991) Orientation discrimination depends on spatial frequency. Vision Research, 31(7–8), 14491952.Google Scholar
Burris, C. T., & Branscombe, N. R. (2005). Distorted distance estimation induced by a self-relevant national boundary. Journal of Experimental Social Psychology, 41(3), 305312.Google Scholar
Buss, D. M. (1995). Psychological sex-differences – origins through sexual selection. American Psychologist, 50(3), 164168.Google Scholar
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 318.Google Scholar
Byrd-Craven, J., & Geary, D. C. (2007). Biological and evolutionary contributions to developmental sex differences. Reproductive Biomedicine Online, 15, 1222.Google Scholar
Byrne, R. W. (1979) Memory for urban geography. Quarterly Journal of Experimental Psychology, 31, 147154.Google Scholar
Byrne, R. M. J. (2005). The rational imagination: How people create alternatives to reality. Cambridge, MA: MIT Press.Google Scholar
Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M., & Schlag, J. (2000). Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 135, 275278.Google Scholar
Cai, R. H., & Schlag, J. (2001). Asynchronous feature binding and the flash-lag illusion. Investigative Ophthalmology & Visual Science, 42(4), S711Google Scholar
Calabria, M., Jacquin-Courtois, S., Miozzo, A., Rossetti, Y., Padovani, A., Cotelli, M., & Miniussi, C. (2011). Time perception in spatial neglect: A distorted representation? Neuropsychology, 25, 193200.Google Scholar
Calvert, G. A., Spence, C., & Stein, B. E. (Eds.). (2004). The handbook of multisensory processing. Cambridge, MA: MIT Press.Google Scholar
Campbell, F. W., & Kulikowski, J. J. (1966). Orientational selectivity of the human visual system. Journal of Physiology, 187, 437445.Google Scholar
Canal-Bruland, R., Pijpers, J. R., & Oudejans, R. R. (2010). The influence of anxiety on action-specific perception. Anxiety, Stress, & Coping, 23, 353361.Google Scholar
Canal-Bruland, R., Zhu, F. F., van der Kamp, J., & Masters, R. S. W. (2011). Target-directed visual attention is a prerequisite for action-specific perception. Acta Psychologica, 136, 285289.Google Scholar
Candel, I., Merckelbach, H., Houben, K., & Vandyck, I. (2004). How children remember neutral and emotional pictures: Boundary extension in children’s scene memories. American Journal of Psychology, 117, 249257.Google Scholar
Canevet, G., Scharf, B., Schlauch, R. S., Teghtsoonian, M., & Teghtsoonian, R. (1999). Perception of changes in loudness. Nature, 398(6729), 673.Google Scholar
Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 8391.Google Scholar
Cantor, C. R. L., & Schor, C. M. (2007). Stimulus dependence of the flash-lag effect. Vision Research, 47, 28412854.Google Scholar
Canzoneri, E., Magosso, E., & Serino, A. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE, 7(9). doi:10.1371/journal.pone.0044306Google Scholar
Cappe, C., Thelen, A., Romei, V., Thut, G., & Murray, M. M. (2012). Looming signals reveal synergistic principles of multisensory integration. Journal of Neuroscience, 32(4), 11711182.Google Scholar
Cappe, C., Thut, G., Romei, V., & Murraya, M. M. (2009). Selective integration of auditory-visual looming cues by humans. Neuropsychologia, 47(4), 10451052.Google Scholar
Carbon, C. C. (2010). The cycle of preference: Long-term dynamics of aesthetic appreciation. Acta Psychologica, 134, 233244.Google Scholar
Carbon, C. C. (2011). Cognitive mechanism for explaining dynamics of aesthetic appreciation. i-Perception, 2, 708719.Google Scholar
Carbone, E., & Ansorge, U. (2008). Investigating the contribution of metacontrast to the Fröhlich effect for size. Acta Psychologica, 128(2), 361367.Google Scholar
Carbone, E., & Pomplun, M. (2007). Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect. Psychological Research, 71(6), 709715.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.Google Scholar
Carlson, T. A., Hogendoorn, H., Fonteijn, H., & Verstraten, F. A. J. (2011). Spatial coding and invariance in object-selective cortex. Cortex, 47(1), 1422.Google Scholar
Carnaghi, A., Piccoli, V., Brambilla, M., & Bianchi, M. (2014). Gender hierarchy in the space: the role of gender status in shaping the spatial agency bias. The Journal of Social Psychology, 154(2), 105114.Google Scholar
Carnevale, M. J., & Harris, L. R. (2016). Which direction is up for a high pitch? Multisensory Research, 29, 113132.Google Scholar
Carney, D. R., Cuddy, A. J. C., & Yap, A. J. (2010). Power posing: Brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychological Science, 21, 13631368.Google Scholar
Carpenter, R. H. S., & Blakemore, C. (1973). Interaction between orientations in human vision. Experimental Brain Research, 18, 287303.Google Scholar
Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision, 15, 6175.Google Scholar
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of socioemotional selectivity. American Psychologist, 54, 165181.Google Scholar
Carter, L. F., & Schooler, K. (1949). Value, need, and other factors in perception. Psychological Review, 56(4), 200207.Google Scholar
Casasanto, D. (2014). Experiential origins of mental metaphors: Language, culture, and the body. In Landau, M., Robinson, M. D., & Meier, B. P. (Eds.), The power of metaphor: Examining its influence on social life (pp. 249268). Washington, DC: American Psychological Association.Google Scholar
Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106, 579593.Google Scholar
Casasanto, D., & Bottini, R. (2014). Mirror-reading can reverse the flow of time. Journal of Experimental Psychology: General, 143, 473479.Google Scholar
Casasola, M. (2008). The development of infants’ spatial categories. Current Directions in Psychological Science, 17, 2125.Google Scholar
Casasola, M., Cohen, L. B., & Chiarello, E. (2003). Six-month-old infants’ categorization of containment spatial relations. Child Development, 74, 679693.Google Scholar
Catteeuw, P., Gilis, B., Jaspers, A., Wagemans, J., & Helsen, W. (2010). Training of perceptual-cognitive skills in offside decision making. Journal of Sport & Exercise Psychology, 32, 845861.Google Scholar
Catteeuw, P., Gilis, B., Wagemans, J., & Helsen, W. (2010). Perceptual cognitive skills in offside decision making: Expertise and training effects. Journal of Sport & Exercise Psychology, 32, 828844.Google Scholar
Catteeuw, P., Helsen, W., Gilis, B., van Roie, E., & Wagemans, J. (2009). Visual scan patterns and decision-making skills of expert assistant referees in offside situations. Journal of Sport & Exercise Psychology, 31, 786797.Google Scholar
Cavanagh, P., & Anstis, S. (2013). The flash grab effect. Vision Research, 91, 820.Google Scholar
Cave, K. R., Bush, W. S., & Taylor, T. G. G. (2010). Split attention as part of a flexible attentional system for complex scenes: Comment on Jans, Peters, and De Weerd (2010). Psychological Review, 117, 685696.Google Scholar
Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental Brain Research, 234, 28492857.Google Scholar
Cesario, J., Plaks, J. E., Hagiwara, N., Navarrete, C. D., & Higgins, E. T. (2010). The ecology of automaticity how situational contingencies shape action semantics and social behavior. Psychological Science, 21, 13111319.Google Scholar
Cesqui, B., d’Avella, A., Portone, A., & Lacquaniti, F. (2012). Catching a ball at the right time and place: Individual factors matter. PLoS ONE, 7(2), e31770.Google Scholar
Chadwick, M. J., Mullally, S. L., & Maguire, E. A. (2013). The hippocampus extrapolates beyond the view in scenes: An fMRI study of boundary extension. Cortex, 49, 20672079.Google Scholar
Chambers, K. W., McBeath, M. K., Schiano, D. J., & Metz, E. (1999). Tops are more salient than bottoms. Perception & Psychophysics, 61(4), 625635.Google Scholar
Chambon, M. (2009). Embodied perception with others’ bodies in mind: Stereotype priming influence on the perception of spatial environment. Journal of Experimental Social Psychology, 45(1), 283287.Google Scholar
Champion, R. A., & Warren, P. A. (2008). Rapid size scaling in visual search. Visual Research, 48, 18201830.Google Scholar
Chang, D. H., Harris, L. R., & Troje, N. F. (2010). Frames of reference for biological motion and face perception. Journal of Vision, 10(6), 111.Google Scholar
Chang, D. H. F., & Troje, N. F. (2009). Acceleration carries the local inversion effect in biological motion perception. Journal of Vision, 9(1), 117.Google Scholar
Chang, S., & Cho, Y. S. (2015). Polarity correspondence effect between loudness and lateralized response set. Frontiers in Psychology, 6, 683.Google Scholar
Chapanis, A., & Mankin, D. A. (1967). The vertical-horizontal illusion in a visually-rich environment. Attention, Perception & Psychophysics, 2(6), 249255.Google Scholar
Chapman, B., & Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientations preferences in developing ferret area 17. Proceedings of the National Academy of Sciences, 95, 26092614.Google Scholar
Chapman, P., Ropar, D., Mitchell, P., & Ackroyd, K. (2005). Understanding boundary extension: Normalization and extension errors in picture memory among adults and boys with and without Asperger’s syndrome. Visual Cognition, 12, 12651290.Google Scholar
Chappell, M., & Hinchy, J. (2014). Turning the corner with the flash–lag illusion. Vision Research, 96, 3944.Google Scholar
Chappell, M., & Hine, T. J. (2004). Events before the flash do influence the flash-lag magnitude. Vision Research, 44, 235239.Google Scholar
Chappell, M., Hine, T. J., Acworth, C., & Hardwick, D. R. (2006). Attention “capture” by the flash-lag flash. Vision Research, 46, 32053213.Google Scholar
Chappell, M., & Mullen, K. T. (2010). The magnocellular visual pathway and the flash-lag illusion. Journal of Vision, 10(11), 24.Google Scholar
Charles, J., Sahraie, A., & McGeorge, P. (2007). Hemispatial asymmetries in judgement of stimulus size. Attention, Perception & Psychophysics, 69(5), 687698.Google Scholar
Charras, P., Brod, G., & Lupianez, J. (2012). Is 26 + 26 smaller than 24 + 28? Estimating the approximate magnitude of repeated versus different numbers. Attention, Perception, & Psychophysics, 74(1), 163173.Google Scholar
Charras, P., & Lupianez, J. (2009). The relevance of symmetry in line length perception. Perception, 38(10), 14281438.Google Scholar
Charras, P., & Lupiáñez, J. (2010). Length perception of horizontal and vertical bisected lines. Psychological Research, 74(2), 196206.Google Scholar
Charras, P., Lupianez, J., & Bartolomeo, P. (2010). Assessing the weights of visual neglect: A new approach to dissociate defective symptoms from productive phenomena in length estimation. Neuropsychologia, 48(11), 33713375.Google Scholar
Charras, P., Lupianez, J., Migliaccio, R., Toba, M., Pradat-Diehl, P., Duret, C., & Bartolomeo, P. (2012). Dissecting the component deficits of perceptual imbalance in visual neglect: Evidence from horizontal-vertical length comparisons. Cortex, 48(5), 540552.Google Scholar
Charras, P., Molina, E., & Lupianez, J. (2014). Additions are biased by operands: Evidence from repeated versus different operands. Psychological Research, 78(2), 248265.Google Scholar
Chase, W. G. (1983). Spatial representations of taxi drivers. In Rogers, R. & Sloboda, J. A. (Eds.), Acquisition of symbolic skills (pp. 111136). New York: Plenum Press.Google Scholar
Chatterjee, A. (2001). Language and space: Some interactions. Trends in Cognitive Sciences, 5, 5561.Google Scholar
Chatterjee, A. (2002). Portrait profiles and the notion of agency. Empirical Studies of the Arts, 20, 3341.Google Scholar
Chatterjee, A. (2008). The neural organization of spatial thought and language. Seminars in Speech and Language, 29, 226238.Google Scholar
Chatterjee, A. (2012). Neuroaesthetics: Growing pains of a new disciple. In Shimamura, A. P. & Palmer, S. E. (Eds.), Aesthetic science: Connecting minds, brains, and experience (pp. 299317). Oxford: Oxford University Press.Google Scholar
Chatterjee, A. (2014). The aesthetic brain. New York: Oxford University Press.Google Scholar
Chauvel, G., Wulf, G., & Maquestiaux, F. (2015). Visual illusions can facilitate sport skill learning. Psychonomic Bulletin & Review, 22, 717721.Google Scholar
Cheal, M., Chastain, G., & Lyon, D. R. (1998). Inhibition of return in visual identification tasks. Visual Cognition, 5, 365388.Google Scholar
Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception, & Psychophysics, 75, 790811.Google Scholar
Chen, Y. C., & Scholl, B. J. (2014). Seeing and liking: Biased perception of ambiguous figures consistent with the “inward bias” in aesthetic preferences. Psychonomic Bulletin & Review, 21, 14441451.Google Scholar
Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A., & Henrich, J. (2013). Two ways to the top: Evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. Journal of Personality and Social Psychology, 104(1), 103125.Google Scholar
Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133(4), 625637.Google Scholar
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975979.Google Scholar
Cheung, B., Hofer, K., Brooks, C. J., & Gibbs, P. (2000). Underwater disorientation as induced by two helicopter ditching devices. Aviation, Space, and Environmental Medicine, 71(9), 879888.Google Scholar
Chiao, J. Y. (2010). Neural basis of social status hierarchy across species. Current Opinion in Neurobiology, 20(6), 803809.Google Scholar
Chiao, J. Y., Bordeaux, A. R., & Ambady, N. (2004). Mental representations of social status. Cognition, 93(2), B49B57.Google Scholar
Chiao, J. Y., Harada, T., Oby, E. R., Li, Z., Parrish, T., & Bridge, D. J. (2009). Neural representations of social status hierarchy in human inferior parietal cortex. Neuropsychologia, 47(2), 354363.Google Scholar
Chica, A. B., Bartolomeo, P., & Valero-Cabré, A. (2011). Dorsal and ventral parietal contributions to spatial orienting in the human brain. Journal of Neuroscience, 31(22), 81438149.Google Scholar
Chica, A. B., Taylor, T. L., Lupianez, Y., & Klein, R. M. (2010). Two mechanisms underlying inhibition of return. Experimental Brain Research, 201, 2535.Google Scholar
Chieffi, S. (1996). Effects of stimulus asymmetry on line bisection. Neurology, 47(4), 10041008.Google Scholar
Chien, S. E., Ono, F., & Watanabe, K. (2013). A transient auditory signal shifts the perceived offset position of a moving visual object. Frontiers in Psychology, 4, 70.Google Scholar
Chiou, R., & Rich, A. N. (2012). Cross-modality correspondence between pitch and spatial location modulates attentional orienting. Perception, 41, 339353.Google Scholar
Chiou, R., & Rich, A. N. (2015). Volitional mechanisms mediate the cuing effect of pitch on attention orienting: The influences of perceptual difficulty and response pressure. Perception, 44, 169182.Google Scholar
Cho, Y. S., Bae, G. Y., & Proctor, R. W. (2012). Referential coding contributes to the horizontal SMARC effect. Journal of Experimental Psychology: Human Perception and Performance, 38, 726734.Google Scholar
Cho, Y. S., & Proctor, R. W. (2003). Stimulus and response representations underlying orthogonal stimulus-response compatibility effects. Psychonomic Bulletin and Review 10, 4573.Google Scholar
Choi, H., & Scholl, B. J. (2006). Measuring causal perception: Connections to representational momentum? Acta Psychologica, 123, 91111.Google Scholar
Chokron, S., Bartolomeo, P., Perenin, M. T., Helft, G., & Imbert, M. (1998). Scanning direction and line bisection: A study of normal subjects and unilateral neglect patients with opposite reading habits. Cognitive Brain Research, 7(2), 173178.Google Scholar
Chokron, S., & de Agnostini, M. (2000). Reading habits influence aesthetic preference. Cognitive Brain Research, 10, 4549.Google Scholar
Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393404.Google Scholar
Chowdhury, S. A., Christiansen, D. L., Morgan, M. L., & DeAngelis, G. C. (2008). Effect of vertical disparities on depth representation in macaque monkeys: MT physiology and behavior. Journal of Neurophysiology, 99, 876887.Google Scholar
Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 15201537.Google Scholar
Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PLoS ONE, 9(11), e112544.Google Scholar
Christenfeld, N. (1995). Choices from identical options. Psychological Science, 6(1), 5055.Google Scholar
Christie, J., Hilchey, M. D., & Klein, R. M. (2013). Inhibition of return is at the midpoint of simultaneous cues. Attention, Perception, & Psychophysics, 75(8), 16101618.Google Scholar
Christman, S. D., & Niebauer, C. L. (1997). The relation between left–right and upper–lower visual field differences. In Christman, S. (Ed.), Cerebral asymmetries in sensory and perceptual processing (pp. 263298). Amsterdam: Elsevier.Google Scholar
Churchland, P. (1981). Eliminative materialism and the propositional attitudes. The Journal of Philosophy, 78, 6790.Google Scholar
Churchland, P. (1986). Neurophilosophy. Cambridge, MA: MIT Press.Google Scholar
Cipora, K., Hohol, M., Nuerk, H.-C., Willmes, K., Brożek, B., Kucharzyk, B., & Nęcka, E. (2016). Professional mathematicians differ from controls in their spatial-numerical associations. Psychological Research, 80, 710726.Google Scholar
Cipora, K., & Nuerk, H.-C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66(10), 19741991.Google Scholar
Cipora, K., Patro, K., & Nuerk, H.-C. (2015). Are spatial-numerical associations a cornerstone for arithmetic learning? The lack of genuine correlations suggests no. Mind, Brain, and Education, 9(4), 190206.Google Scholar
Clark, A. (2001). Mindware: An introduction to the philosophy of cognitive science. New York: Oxford University Press.Google Scholar
Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401431.Google Scholar
Clark, H. H. (1973). Space, time, semantics, and the child. In Moore, T. E. (Ed.), Cognitive development and the acquisition of language (pp. 2764). New York: Academic Press.Google Scholar
Clark, H. H., & Chase, W.G. (1972). On the process of comparing sentences against pictures. Cognitive Psychology, 3, 472517.Google Scholar
Clemens, I. A., De Vrijer, M., Selen, L. P., Van Gisbergen, J. A., & Medendorp, W. P. (2011). Multisensory processing in spatial orientation: an inverse probabilistic approach. Journal of Neuroscience, 31(14), 53655377.Google Scholar
Clément, G., & Reschke, M. F. (2008). Neuroscience in space. New York: Springer.Google Scholar
Clery, J., Guipponi, O., Odouard, S., Wardak, C., & Ben Hamed, S. (2015). Impact prediction by looming visual stimuli enhances tactile detection. Journal of Neuroscience, 35(10), 41794189.Google Scholar
Coey, C., Varlet, M., & Richardson, M. (2012). Coordination dynamics in a socially situated nervous system. Frontiers in Human Neuroscience, 6, 164.Google Scholar
Cohen, R., & Schuepfer, T. (1980). The representation of landmarks and routes. Child Development, 51(4), 10651071.Google Scholar
Cohen, W. (1957). Spatial and textural characteristics of the Ganzfeld. American Journal of Psychology, 70, 403410.Google Scholar
Colby, C. L. (1998). Action-oriented spatial reference frames in cortex. Neuron, 20(1), 1524.Google Scholar
Colby, C. L., & Duhamel, J. R. (1996). Spatial representations for action in parietal cortex. Brain Research Cognitive Brain Research, 5(1), 105115.Google Scholar
Collyer, C. E. (1977). Discrimination of spatial and temporal intervals defined by three light flashes: Effect of spacing on temporal judgments and of timing on spatial judgments. Perception & Psychophysics, 21, 357364.Google Scholar
Conners, F. A., Wyatt, B. S., & Dulaney, C. L. (1998). Cognitive representation of motion in individuals with mental retardation. American Journal on Mental Retardation, 102, 438450.Google Scholar
Cooper, A. D., Sterling, C. P., Bacon, M. P., & Bridgeman, B. (2012). Does action affect perception or memory? Vision Research, 62, 235240.Google Scholar
Cooper, L. A., & Munger, M. P. (1993). Extrapolations and remembering positions along cognitive trajectories: Uses and limitations of analogies to physical momentum. In Eilan, N., McCarthy, R., & Brewer, B. (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 112131). Cambridge, MA: Blackwell.Google Scholar
Coppola, D. M., White, L. E., Fitzpatrick, D., & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex. Proceedings of the National Academy of Sciences, 95(5), 26212623.Google Scholar
Corballis, M. C. (2000). Much about mirrors. Psychonomic Bullettin and Review, 7(1), 163169.Google Scholar
Corballis, M. C., & Roldan, C. E. (1975). Detection of symmetry as a function of angular orientation. Journal of Experimental Psychology: Human Perception and Performance, 1(3), 221230.Google Scholar
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292297.Google Scholar
Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 8(11), 16031610.Google Scholar
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306324.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215.Google Scholar
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Reviews Neuroscience, 34, 569599.Google Scholar
Coren, S., & Girgus, J. S. (1978). Seeing is deceiving: The psychology of visual illusions. Hillsdale, NJ: Erlbaum.Google Scholar
Coren, S., & Girgus, J. S. (1980). Principles of perceptual organization and spatial distortion: The gestalt illusions. Journal of Experimental Psychology: Human Perception and Performance, 6, 404412.Google Scholar
Coren, S., Ward, L. M., Porac, C., & Fraser, R. (1978). The effect of optical blur on visuo-geometric illusions. Bulletin of the Psychonomic Society, 11, 390392.Google Scholar
Coslett, H. B. (1997). Neglect in vision and visual imagery: A double dissociation. Brain, 120, 11631171.Google Scholar
Coslett, H. B., Bowers, D., Fitzpatrick, E., Haws, B., & Heilman, K. M. (1990). Directional hypokinesia and hemispatial inattention in neglect. Brain, 113(2), 475486.Google Scholar
Costello, M. C., Bloesch, E. K., Davoli, C. C., Panting, N. D., Abrams, R. A., & Brockmole, J. R. (2015). Spatial representations in older adults are not modified by action: Evidence from tool use. Psychology and Aging, 30(3), 656668.Google Scholar
Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987) Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7, 99122.Google Scholar
Coull, J. T., Frackowiak, R. S., & Frith, C. D. (1998). Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia, 36, 13251334.Google Scholar
Courtney, J. R., & Hubbard, T. L. (2008). Spatial memory and explicit knowledge: An effect of instruction on representational momentum. The Quarterly Journal of Experimental Psychology, 61, 17781784.Google Scholar
Courtney, J. R., Motes, M. A., & Hubbard, T. L. (2007). Multi- and unisensory visual flash illusions, 36, 516–524.Google Scholar
Cowey, A., Small, M., & Ellis, S. (1994). Left visuo-spatial neglect can be worse in far than in near space. Neuropsychologia, 32(9), 10591066.Google Scholar
Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500505.Google Scholar
Cravo, A. M., & Baldo, M. V. C. (2008). A psychophysical and computational analysis of the spatio-temporal mechanisms underlying the flash-lag effect. Perception, 37, 18501866.Google Scholar
Crawford, L. E., & Duffy, S. (2010). Sequence effects in estimating spatial location. Psychonomic Bulletin & Review, 17(5), 725730.Google Scholar
Crawford, L. E., Huttenlocher, J., & Engebretson, P. H. (2000). Category effects on estimates of stimuli: Perception or reconstruction? Psychological Science, 11(4), 280284.Google Scholar
Crawford, L. E., & Jones, E. L. (2011). The flexible use of inductive and geometric spatial categories. Memory & Cognition, 39(6), 10551067.Google Scholar
Crawford, L. E., Landy, D., & Salthouse, T. A. (2016). Spatial working memory capacity predicts bias in estimates of location. Journal of Experimental Psychology: Learning, Memory, and Cognition. http://dx.doi.org/10.1037/xlm0000228Google Scholar
Crawford, L. E., Margolies, S. M., Drake, J. T., & Murphy, M. E. (2006). Affect biases memory of location: Evidence for the spatial representation of affect. Cognition and Emotion, 20, 11531169.Google Scholar
Crawford, L. E., Regier, T., & Huttenlocher, J. (2000). Linguistic and non-linguistic spatial categorization. Cognition, 75(3), 209235.Google Scholar
Crisinel, A.-S., & Spence, C. (2009). Implicit association between basic tastes and pitch. Neuroscience Letters, 464, 3942.Google Scholar
Crisinel, A.-S., & Spence, C. (2012). A fruity note: Crossmodal associations between odors and musical notes. Chemical Senses, 37, 151158.Google Scholar
Crisp, R. J., & Hewstone, M. (2007). Multiple social categorization. Advances in experimental social psychology, 39, 163254.Google Scholar
Croft, W., & Cruse, D. A. (2004). Cognitive linguistics. Cambridge: Cambridge University Press.Google Scholar
Crollen, V., Dormal, G., Seron, X., Lepore, F., & Collignon, O. (2013). Embodied numbers: The role of vision in the development of number–space interactions. Cortex, 49, 276283.Google Scholar
Croucher, C. J., Bertamini, M., & Hecht, H. (2002). Naive optics: Understanding the geometry of mirror reflections. Journal of Experimental Psychology: Human Perception and Performance, 28(3), 546562.Google Scholar
Cruse, D. A., & Pagona, T. (1995). Towards a cognitive model of antonymy. Lexicology, 1, 113141.Google Scholar
Crystal Jiang, L., & Hancock, J. T. (2013). Absence makes the communication grow fonder: Geographic separation, interpersonal media, and intimacy in dating relationships. Journal of Communication, 63(3), 556577.Google Scholar
Cuddy, A. J., Norton, M. I., & Fiske, S. T. (2005). This old stereotype: The pervasiveness and persistence of the elderly stereotype. Journal of Social Issues, 61(2), 267285.Google Scholar
Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631648.Google Scholar
Cuijpers, R. H., Kappers, A. M. L., & Koenderink, J. J. (2000a). Investigation of visual space using an exocentric pointing task. Attention, Perception, & Psychophysics, 62, 15561571.Google Scholar
Cuijpers, R. H., Kappers, A. M. L. & Koenderink, J. J. (2000b). Large systematic deviations in visual parallelism. Perception, 29(12), 14671482Google Scholar
Cuijpers, R. H., Kappers, A. M. L. & Koenderink, J. J. (2002). Visual perception of collinearity. Perception, 64(3), 392404.Google Scholar
Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. Journal of Comparative Neurology, 300, 525.Google Scholar
Cutsuridis, V., Hussain, A., & Taylor, J. G. (2011). Perception-action cycle: Models, architectures, and hardware. New York: Springer-Verlag.Google Scholar
Cutting, J. E. (1986). Perception with an eye for motion. Cambridge, MA: MIT Press.Google Scholar
Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Epstein, W. & Rogers, S. (Eds.), Perception of space and motion (Vol. 5 of Handbook of perception and cognition, pp. 69117). San Diego, CA: Academic Press.Google Scholar
Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: Comparison of three psychophysical methods. American Journal of Psychology, 98(1), 119144.Google Scholar
Dackermann, T., Huber, S., Bahnmueller, J., Nuerk, H.-C., & Moeller, K. (2015). An integration of competing accounts on children’s number line estimation. Frontiers in Psychology, 6, 884.Google Scholar
Dahl, C. D., & Adachi, I. (2013). Conceptual metaphorical mapping in chimpanzees (Pan troglodytes). eLife, 2013(2), 17.Google Scholar
Daini, R., Angelelli, P., Antonucci, G., Cappa, S. F., & Vallar, G. (2002). Exploring the syndrome of spatial unilateral neglect through an illusion of length. Experimental Brain Research, 144, 224237.Google Scholar
Dakin, S. C. (2001). Information limit on the spatial integration of local orientation signals. Journal of the Optometry Society of America A, 18, 10161026.Google Scholar
Dakin, S. C., Tibber, M. S., Greenwood, J. A., Kingdom, F. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. PNAS, 108(49), 1955219557.Google Scholar
Dalton, R. C. (2003). The secret is to follow your nose: Route path selection and angularity. Environment and Behavior, 35(1), 107131.Google Scholar
Damasio, H., Grabowski, T. J., Tranel, D., Ponto, L. L., Hichwa, R. D., & Damasio, A. R. (2001). Neural correlates of naming actions and of naming spatial relations. Neuroimage, 13(6 Pt 1), 10531064.Google Scholar
Dannemaier, W. D., & Thumin, F. J. (1964). Authority status as a factor in perceptual distortion of size. The Journal of Social Psychology, 63, 361365.Google Scholar
Das, A., & Gilbert, C. D. (1997). Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594598.Google Scholar
Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In Proceedings of Computer Vision-ECCV 2006, Graz, Austria, pp. 288301.Google Scholar
Davis, S. T., & Jahnke, J. C. (1991). Unity and the golden section: Rules for aesthetic choice? American Journal of Psychology, 104, 257277.Google Scholar
Day, R. H. (1988). Reduction and elimination of the Poggendorff misalignment effect by minor changes at intersections: Implications for the perceptual-compromise explanation. Psychological Research, 50(1), 711.Google Scholar
Day, R. H., & Dickenson, R. G. (1976). The components of the Poggendorff illusion. British Journal of Psychology, 67, 537552.Google Scholar
de Hevia, M. D., Girelli, L., Bricolo, E., & Vallar, G. (2008b). The representational space of numerical magnitude: Illusions of length. The Quarterly Journal of Experimental Psychology, 61(10), 14961514.Google Scholar
de Hevia, M. D., Girelli, L., & Vallar, G. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168(1–2), 254264.Google Scholar
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 48094813.Google Scholar
de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198207.Google Scholar
de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660.Google Scholar
de Hevia, M. D., Vallar, G., & Girelli, L. (2008a). Visualizing numbers in the mind’s eye: The role of visuo-spatial processes in numerical abilities. Neuroscience & Biobehavioral Reviews, 32(8), 13611372.Google Scholar
De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731750.Google Scholar
de la Fuente, J., Santiago, J., Román, A., Dumitrache, C., & Casasanto, D. ( 2014). When you think about it, your past is in front of you: How culture shapes spatial conceptions of time. Psychological Science, 25, 16821690.Google Scholar
de la Malla, C., & López-Moliner, J. (2015). Predictive plus online visual information optimizes temporal precision in interception. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1271.Google Scholar
De Renzi, E., Colombo, A., Faglioni, P., & Gibertoni, M. (1982). Conjugate gaze paresis in stroke patients with unilateral damage: An unexpected instance of hemispheric asymmetry. Archives of Neurology, 39, 482486.Google Scholar
de sá Teixeira, N. (2014). Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 105, 177188.Google Scholar
de sá Teixeira, N. A. (2016). How fast do objects fall in visual memory? Uncovering the temporal and spatial features of representational gravity. PLoS ONE, 11(2), e0148953. doi:10.1371/journal.pone.0148953Google Scholar
de sá Teixeira, N., & Hecht, H. (2014). Can representational trajectory reveal the nature of an internal model of gravity? Attention, Perception, & Psychophysics, 76(4), 11061120.Google Scholar
de sá Teixeira, N. A, & Hecht, H. (2014). The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. Journal of Vestibular Research, 24(4), 267279.Google Scholar
de sá Teixeira, N., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 16901699.Google Scholar
de sá Teixeira, N., & Oliveira, A. M. (2011). Disambiguating the effects of target travelled distance and target vanishing point upon representational momentum. Journal of Cognitive Psychology, 23, 650658.Google Scholar
de sá Teixeira, N., Oliveira, A. M., & Amorim, M. A. (2010). Combined effects of mass and velocity on forward displacement and phenomenological ratings: A functional measurement approach to the momentum metaphor. Psicologica, 31, 659676.Google Scholar
de sá Teixeira, N., Oliveira, A. M., & Viegas, R. (2008). Functional approach to the integration of kinematic and dynamic variables in causal perception: Is there a link between phenomenology and behavioral responses. Japanese Psychological Research, 50, 232241.Google Scholar
de sá Teixeira, N., Pimenta, S., & Raposo, V. (2013). A null effect of target’s velocity in the visual representation of motion with schizophrenic patients. Journal of Abnormal Psychology, 122, 223230.Google Scholar
De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31, 16191626.Google Scholar
De Valois, R. L., Yund, E. W., & Hepler, N. (1982). The orientation and direction selectivity of cells in macaque visual cortex. Vision Research, 22, 531544.Google Scholar
De Vrijer, M., Medendorp, W. P., & Van Gisbergen, J. A. M. (2008). Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision. Journal of Neurophysiology. 99, 915930.Google Scholar
de Winkel, K. N., Clément, G., Groen, E. L., & Werkhoven, P. J. (2012). The perception of verticality in lunar and Martian gravity conditions. Neuroscience Letters, 529, 711.Google Scholar
Deacon, T. (1997). The symbolic species. New York: Norton.Google Scholar
Dean, L. M., Willis, F. N., & Hewitt, J. (1975). Initial interaction distance among individuals equal and unequal in military rank. Journal of Personality and Social Psychology, 32(2), 294299.Google Scholar
Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371396.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487506.Google Scholar
Dehmelt, H. (1989). Triton, … Electron, … Cosmon …: An infinite regression?, Proceedings of the National Academy of Sciences, 86, 86188619.Google Scholar
Deininger, R. L., & Fitts, P. M. (1955). Stimulus–response compatibility, information theory, and perceptual-motor performance. In Quastler, H. (Ed.), Information theory in psychology: Problems and methods (pp. 316341). Glencoe, IL: Free Press.Google Scholar
Della Sala, S., Foley, J. A., Beschin, N., Allerhand, M., & Logie, R. H. (2010). Assessing dual-task performance using a paper-and-pencil test: Normative data. Archives of Clinical Neuropsychology, 25(5), 410419.Google Scholar
DeLucia, P. R. (1991). Pictorial and motion-based information for depth-perception. Journal of Experimental Psychology-Human Perception and Performance, 17(3), 738748.Google Scholar
DeLucia, P. R. (2004). Multiple sources of information influence time-to-contact judgments: Do heuristics accommodate limits in sensory and cognitive processes? In Hecht, H. & Savelsbergh, G. J. P. (Eds.), Time-to-contact (pp. 243286). Amsterdam: Elsevier Science Publishers.Google Scholar
DeLucia, P. R., & Maldia, M. M. (2006). Visual memory for moving scenes. The Quarterly Journal of Experimental Psychology, 59, 340360.Google Scholar
DeLucia, P. R., Preddy, D., & Oberfeld, D. (2015). Audiovisual integration of time-to-contact information for approaching objects. Multisensory Research. doi:10.1163/22134808-00002520Google Scholar
Denis, M., Pazzaglia, F., Cornoldi, C., & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology, 13(2), 145174.Google Scholar
Dennett, D. C. (1971). Intentional systems. The Journal of Philosophy, 68(4), 87106.Google Scholar
Deregowski, J. B., & Parker, D. M. (1988). On a changing perspective illusion within Vermeer’s “The Music Lesson”. Perception, 17, 1321.Google Scholar
Deroy, O., Fasiello, I., Hayward, V., & Auvray, M. (2016). Differentiated audio-tactile correspondences in sighted and blind individuals. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 12041214.Google Scholar
Deroy, O., & Spence, C. (2013). Weakening the case for “weak synaesthesia”: Why crossmodal correspondences are not synaesthetic. Psychonomic Bulletin & Review, 20, 643664.Google Scholar
Deroy, O., & Spence, C. (2016). Crossmodal correspondences: Four challenges. Multisensory Research, 30, 2948.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193222.Google Scholar
Dewey, J. (1986). The reflex arc concept in psychology, Psychological Review, 3, 357.Google Scholar
Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129(4), 481507.Google Scholar
Di Luca, S., & Pesenti, M. (2011). Finger numeral representations: More than just another symbolic code. Frontiers in Psychology, 2, 272.Google Scholar
Dickinson, C. A., & Intraub, H. (2008). Transsaccadic representation of layout: what is the time course of boundary extension? Journal of Experimental Psychology: Human Perception and Performance, 34, 543555.Google Scholar
Dickinson, C. A., & Intraub, H. (2009). Spatial asymmetries in viewing and remembering scenes: Consequences of an attentional bias? Attention, Perception, & Psychophysics, 71(6), 12511262.Google Scholar
DiGiovanni, J. J., & Schlauch, R. S. (2007). Mechanisms responsible for differences in perceived duration for rising-intensity and falling-intensity sounds. Ecological Psychology, 19(3), 239264.Google Scholar
Dodds, C. M., van Belle, J., Peers, P. V., Dove, A., Cusack, R., Duncan, J., et al. (2008). The effects of time-on-task and concurrent cognitive load on normal visuospatial bias. Neuropsychology, 22(4), 545552.Google Scholar
Dolgov, I., Birchfield, D. A., McBeath, M. K., Thornburg, H., & Todd, C. G.. (2009a). Amelioration of axis-aligned motion bias for active versus stationary judgments of bilaterally symmetric shapes’ final destinations. Attention, Perception, & Psychophysics, 71(3), 523529.Google Scholar
Dolgov, I., Birchfield, D. A., McBeath, M. K., Thornburg, H., & Todd, C. G. (2009b). Perception of approaching and retreating shapes in a large, immersive, multimedia learning environment. Perceptual & Motor Skills, 108(2), 623630.Google Scholar
Dolgov, I., McBeath, M. K., & Sugar, T. G. (2009) Evidence for axis-aligned motion bias: Football axis-trajectory misalignment causes systematic error in projected final destinations of thrown American footballs. Perception, 38(3), 399410.Google Scholar
Dolscheid, S., & Casasanto, D. (2015). Spatial congruity effects reveal metaphorical thinking, not polarity correspondence. Frontiers in Psychology, 6: 1836.Google Scholar
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychological Science, 25, 12561261.Google Scholar
Domhas, F., Zamarian, L., & Delazer, M. (2008). Sound arithmetic: Auditory cues in the rehabilitation of impaired fact retrieval. Neuropsychological Rehabilitation 18, 160181.Google Scholar
Donders, F. C. (1868/1969). On the speed of mental processes. In Koster, W. G. (Ed.), Acta Psychologica, 30, Attention and Performance II (pp. 412431). Amsterdam: North-Holland.Google Scholar
Doppler, C. (1842). Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels: Versuch einer das Bradley’sche Aberrations-Theorem als integrirenden Theil in sich schliessenden allgemeineren Theorie. Prague: K. Bohnm, Association of Science.Google Scholar
Doricchi, F., & Galati, G. (2000). Implicit semantic evaluation of object symmetry and contralesional visual denial in a case of left unilateral neglect with damage of the dorsal paraventricular white matter. Cortex, 36(3), 337350.Google Scholar
Doricchi, F., Guariglia, P., Gasparini, M., & Tomaiuolo, F. (2005). Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nature Neuroscience, 8(12), 16631665.Google Scholar
Doricchi, F., Merola, S., Aiello, M., Guariglia, P., Bruschini, M., Gevers, W., et al. (2009). Spatial orienting biases in the decimal numeral system. Current Biology, 19(8), 682687.Google Scholar
Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., & Bartolomeo, P. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex, 44, 983995.Google Scholar
Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10, 915921.Google Scholar
Doumen, M. J., Kappers, A. M., & Koenderink, J. J (2006). Horizontal-vertical anisotropy in visual space. Acta Psychologica, 123, 219239.Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience, 3, 277283.Google Scholar
Driver, J., & Husain, M. (2002). The role of spatial working memory deficits in pathological search by neglect patients. In Karnath, H.-O., Milner, A. D. & Vallar, G. (Eds.), The cognitive and neural bases of spatial neglect (pp. 351364). Oxford: Oxford University Press.Google Scholar
Driver, J., & Pouget, A. (2000). Object-centered visual neglect, or relative egocentric neglect? Journal of Cognitive Neuroscience, 12(3), 542545.Google Scholar
Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79, 3988.Google Scholar
Du, F., & Abrams, R. A. (2010). Visual field asymmetry in attentional capture. Brain and Cognition, 72, 310316.Google Scholar
Duffy, S., & Crawford, L. E. (2008). Primacy or recency effects in forming inductive categories. Memory & Cognition, 36(3), 567577.Google Scholar
Duffy, S., Huttenlocher, J., & Crawford, L. E. (2006). Children use categories to maximize accuracy in estimation. Developmental Science, 9(6), 597603.Google Scholar
Duffy, S., Huttenlocher, J., Hedges, L. V., & Crawford, L. E. (2010). Category effects on stimulus estimation: Shifting and skewed frequency distributions. Psychonomic Bulletin & Review, 17(2), 224230.Google Scholar
Duguid, M. M., & Goncalo, J. A. (2012). Living large the powerful overestimate their own height. Psychological Science, 23(1), 3640.Google Scholar
Dumas, D., & Alexander, P. A. (2016). Calibration of the test of relational reasoning. Psychological Assessment, 10, 13031318.Google Scholar
Durant, S., & Johnston, A. (2004). Temporal dependence of local motion induced shifts in perceived position. Vision Research, 44, 357366.Google Scholar
Durgin, F. H., Baird, J. A., Greenburg, M., Russell, R., Shaughnessy, K., & Waymouth, S. (2009). Who is being deceived? The experimental demands of wearing a backpack. Psychonomic Bulletin & Review, 16(5), 964969.Google Scholar
Durgin, F. H., Hajnal, A., Li, Z., Tonge, N., & Stigliani, A. (2010). Palm boards are not action measures: An alternative to the two-systems theory of geographical slant perception. Acta Psychologica, 134(2), 182197.Google Scholar
Durgin, F. H., & Li, Z. (2011). The perception of 2D orientation is categorically biased. Journal of Vision, 11(8), 110.Google Scholar
Durso, F. T., & Johnson, M. K. (1980). The effects of orienting tasks on recognition, recall, and modality confusion of pictures and words. Journal of Verbal Learning and Verbal Behavior, 19, 416429.Google Scholar
Dyde, R. T., Jenkin, M. R., & Harris, L. R. (2006). The subjective visual vertical and the perceptual upright. Experimental Brain Research, 173, 612622.Google Scholar
Dye, R. A., Crawford, T. M., & McBeath, M. K. (2014). Absence of lateral navigational bias in young children. Perceptual and Motor Skills: Physical Development & Measurement, 119(1), 292300.Google Scholar
Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18(2), 131136.Google Scholar
Eagleman, D. M., & Pariyadath, V. (2009). Is subjective duration a signature of coding efficiency? Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 18411851.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000a). Flash-lag effect: Differential latency, not postdiction: Response. Science, 290, 1051a.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000b). Motion integration and postdiction in visual awareness. Science, 287, 20362038.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000c). The position of moving objects: Response. Science, 289, 1107a.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2002). Untangling spatial from temporal illusions. Trends in Neurosciences, 25, 293.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2007). Motion signals bias localization judgments: A unified explanation for the flash-lag, flash-drag, flash-jump, and Fröhlich illusions. Journal of Vision, 7(4), 3.Google Scholar
Ebbesen, E. B., Kjos, G. L., & Konečni, V. J. (1976). Spatial ecology: Its effects on the choice of friends and enemies. Journal of Experimental Social Psychology, 12(6), 505518.Google Scholar
Eckman, P, Friesen, W.V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., et al. (1987). Universals and cultural differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology, 53(4), 712717.Google Scholar
Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in-depth – a centripetal bias. Perception, 22(9), 10131023.Google Scholar
Edwards, M., & Ibbotson, M. R. (2007). Relative sensitivities to large-field optic-flow patterns varying in direction and speed. Perception, 36(1), 113124.Google Scholar
Eerland, A., Guadalupe, T. M., & Zwaan, R. A. (2011). Leaning to the left makes the Eiffel Tower seem smaller. Posture-modulated estimation. Psychological Science, 22(12), 15111514.Google Scholar
Eimer, M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30,146156.Google Scholar
Eitan, Z., & Granot, R. Y. (2006). How music moves: Musical parameters and listeners’ images of motion. Music Perception, 23, 221247.Google Scholar
Eitan, Z., & Granot, R. Y. (2007). Intensity changes and perceived similarity: Inter-parametric analogies. Musicae Scientiae, Discussion Forum, 4a, 99133.Google Scholar
Eitan, Z., Ornoy, E., & Granot, R. Y. (2012). Listening in the dark: Congenital and early blindness and cross-domain mapping in music. Psychomusicology: Music, Mind, & Brain, 22, 3345.Google Scholar
Eitan, Z., Schupak, A., Gotler, A., & Marks, L. E. (2014). Lower pitch is larger, yet falling pitches shrink. Experimental Psychology, 61, 273284.Google Scholar
Eitan, Z., & Timmers, R. (2010). Beethoven’s last piano sonata and those who follow crocodiles: Cross-domain mappings of auditory pitch in a musical context. Cognition, 114, 405422.Google Scholar
Emmorey, K., Damasio, H., McCullough, S., Grabowski, T., Ponto, L. L., Hichwa, R. D., & Bellugi, U. (2002). Neural systems underlying spatial language in American Sign Language. Neuroimage, 17(2), 812824.Google Scholar
Emo, B. (2012). Wayfinding in real cities: Experiments at street corners. In C. Stachniss, K. Schill, & D. Uttal (Eds.), Spatial Cognition 2012 (pp. 461–477). LNAI7463.Google Scholar
Emo, B. (2014). Seeing the axial line: Evidence from wayfinding experiments. Behavioral Science 4(3), 167180.Google Scholar
Engebretson, P. H., & Huttenlocher, J. (1996). Bias in spatial location due to categorization: Comment on Tversky and Schiano. Journal of Experimental Psychology: General, 125(1), 96108.Google Scholar
Enns, J. T., & Girgus, J. S. (1985). Perceptual grouping and spatial distortion: A developmental study. Developmental Psychology, 21, 241246.Google Scholar
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12, 388396.Google Scholar
Epstein, R. A. (2011). Cognitive neuroscience: Scene layout from vision and touch. Current Biology, 21, R437R438.Google Scholar
Epstein, W., Park, J., & Casey, A. (1961). The current status of the size-distance hypotheses. Psychological Bulletin, 58(6), 491514.Google Scholar
Epstein, W., & Rogers, S. (1995). Perception of space and motion. New York: Academic Press.Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143149.Google Scholar
Erlhagen, W. (2003). Internal models for visual perception. Biological Cybernetics, 88, 409417.Google Scholar
Ernst, M. O. (2005). A Bayesian view on multimodal cue integration. In Knoblich, G., Thornton, I. M., Grosjean, M., & Shiffrar, M. (Eds.), Human body perception from the inside out (pp. 105131). Oxford: Oxford University Press.Google Scholar
Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch. Journal of Vision, 7, 7.Google Scholar
Ernst, M. O. (2012). Optimal multisensory integration: Assumptions and limits. In Stein, B. E. (Ed.), The new handbook of multisensory processes (pp. 10841124). Cambridge, MA: MIT Press.Google Scholar
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429433.Google Scholar
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162169.Google Scholar
Essock, E. A., DeFord, J. K., Hansen, B. C., & Sinai, M. J. (2003). Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: A horizontal effect. Vision Research, 43, 13291335.Google Scholar
Esterman, M., McGlinchey-Berroth, R., & Milberg, W. P. (2000). Parallel and serial search in hemispatial neglect: Evidence for preserved preattentive but impaired attentive processing. Neuropsychology, 14, 599611.Google Scholar
Estner, B. (2014). Stimulus-response compatibility of auditory stimulus features: Timbre, pitch, and number. Technische Universität Kaiserslautern. Retrieved from urn:nbn:de:hbz:386-kluedo-37812Google Scholar
Euclid, (ed. 1996) Ottica. Immagini di una teoria della visione [Optics. Images of a theory of vision] (Ed. Incardona, F.). Roma: Di Renzo Editore.Google Scholar
Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappings between visual and auditory features. Journal of Vision, 10(1), 6.Google Scholar
Evans, V., & Chilton, P. (2007). Language, cognition and space: Sheffiled, UK: Equinox.Google Scholar
Eves, F. F., Thorpe, S. K. S., Lewis, A., & Taylor-Covill, G. A. H. (2014). Does perceived steepness deter stair climbing when an alternative is available? Psychonomic Bulletin & Review, 21(3), 637644.Google Scholar
Fair, D., Dosenbach, N., Church, J., Cohen, Al., Brahmbhatt, S., Miezin, F., Barch, D., Raichle, M., Petersen, S., & Schlaggar, B. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104, 1350713512.Google Scholar
Fairhurst, M., & Deroy, O. (2017). Magnitude-space mapping for auditory and audio-visual intensity: A test of the shared spatial representation of magnitude. Journal of Experimental Psychology Human Perception and Performance, 43(3), 629637.Google Scholar
Fajen, B. R., & Phillips, F. (2012). Spatial perception and action. In Waller, D. A. & Nadel, L. (Eds.), Handbook of spatial cognition (pp. 6780). Washington, DC: American Psychological Association.Google Scholar
Fantoni, C., Hilger, J. D., Gerbino, W., & Kellman, P. J. (2008). Surface interpolation and 3D relatability. Journal of Vision, 8, 29 2119.Google Scholar
Farran, E. K., Whitaker, A., & Patel, N. (2009). The effect of pictorial depth information on projected size judgments. Attention, Perception, & Psychophysics, 71(1), 207214.Google Scholar
Fasoli, F., Paladino, M. P., Carnaghi, A., Jetten, J., Bastian, B., & Bain, P. G. (2016). Not “just words”: Exposure to homophobic epithets leads to dehumanizing and physical distancing from gay men. European Journal of Social Psychology, 46(2), 237248.Google Scholar
Fattorini, E., Pinto, M., Rotondaro, F., & Doricchi, F. (2015). Perceiving numbers does not cause automatic shifts of spatial attention. Cortex, 73, 298316.Google Scholar
Faust, M. (1990). Representational momentum: A dual process perspective (Unpublished doctoral dissertation). University of Oregon, Eugene.Google Scholar
Favretto, A. (2002). Displaced representations of targets undergoing luminance transformations (Unpublished doctoral dissertation). University of Trieste, Italy.Google Scholar
Fechner, G. T. (1876). Vorschule de Aesthetik. Leipzig: Brietkopt and Hatrtel.Google Scholar
Fecteau, J. H., Au, C., Armstrong, I. T., & Munoz, D. P. (2004). Sensory biases produce alternation advantage found in sequential saccadic eye movement tasks. Experimental Brain Research, 159, 8491.Google Scholar
Fendrich, R., & Corballis, P. M. (2001). The temporal cross-capture of audition and vision. Perception & Psychophysics, 63, 719725.Google Scholar
Fernandez, C., & Goldberg, J. M. (1976). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. Journal of Neurophysiology, 39, 970984.Google Scholar
Fernández-Prieto, I., & Navarra, J. (2017). Spatial encoding of pitch in frequency sweeps. Psychology of Music, 0305735616684205Google Scholar
Fernández-Prieto, I., Navarra, J., & Pons, F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development, 38, 7781.Google Scholar
Fernández-Prieto, I., Navarra, J., & Pons, F. (2016). Crossmodal correspondence between pitch and height in childhood. Poster presented at the International Meeting of the Psychonomic Society, Granada, Spain.Google Scholar
Ferri, F., Tajadura-Jimenez, A., Valjamae, A., Vastano, R., & Costantini, M. (2015). Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia, 70, 468475.Google Scholar
Fessler, D. M. T., & Holbrook, C. (2013). Friends shrink foes: The presence of comrades decreases the envisioned physical formidability of an opponent. Psychological Science, 24, 797802.Google Scholar
Fias, W., Bryspaert, M, Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95110.Google Scholar
Fias, W., & van Dijck, J. P. (2016). The temporary nature of number – space interactions. Canadian Journal of Experimental Psychology, 70(1), 3340.Google Scholar
Fick, A. (1851). De errore quodam optico asymetrica bulbi effecto. Marburg: J. A. Kochin.Google Scholar
Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: evidence for a local “association field.” Vision Research, 33, 173193.Google Scholar
Findlay, J. M. (1973). Feature detectors and vernier acuity. Nature, 241, 135137.Google Scholar
Findlay, J. M. (1982). Global visual processing for saccadic eye movement. Vision Research, 22, 10331045.Google Scholar
Finger, F. W., & Spelt, D. K. (1947). The illustration of the horizontal vertical illusion. Journal of Experimental Psychology, 37, 243250.Google Scholar
Finisguerra, A., Canzoneri, E., Serino, A., Pozzo, T., & Bassolino, M. (2015). Moving sounds within the peripersonal space modulate the motor system. Neuropsychologia, 70, 421428.Google Scholar
Fink, G. R., Marshall, J. C., Weiss, P. H., & Zilles, K. (2001). The neural basis of vertical and horizontal line bisection judgments: An fMRI study of normal volunteers. Neuroimage, 14, S59S67.Google Scholar
Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 780794.Google Scholar
Finke, R. A., Freyd, J. J., & Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. Journal of Experimental Psychology: General, 115, 175188.Google Scholar
Finke, R. A., Johnson, M. K., & Shyi, G. C. W. (1988). Memory confusions for real and imaged completions of symmetrical visual patterns. Memory & Cognition, 16, 133137.Google Scholar
Finke, R. A., & Shyi, G. C. W. (1988). Mental extrapolation and representational momentum for complex motions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 112120.Google Scholar
Firestone, C. (2013). How “paternalistic” is spatial perception? Why wearing a heavy backpack doesn’t – and couldn’t – make hills appear steeper. Perspectives on Psychological Science, 8(4), 455473.Google Scholar
Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behavioral and Brain Sciences, 39, e229.Google Scholar
Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822826.Google Scholar
Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13, 161164.Google Scholar
Fischer, M. H. (2013). The spatial mapping of numbers: Its origin and flexibility. In Coello, Y. & Bartolo, A. (Eds.), Language and action in cognitive neuroscience (p. 225242). London: Psychology Press.Google Scholar
Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2:260Google Scholar
Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555556.Google Scholar
Fischer, M. H., & Hill, R. (2004, January). A SNARC in the dark: Input modality affects number representation. A poster presented at the 22nd European Workshop of Cognitive Neuropsychology, Bressanone, Italy.Google Scholar
Fischer, M. H., Mills, R. A, & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72, 333336.Google Scholar
Fischer, M. H., Riello, M., Giordano, B. L., & Rusconi, E. (2013). Singing numbers … in cognitive space – a dual-task study of the link between pitch, space, and numbers. Topics in Cognitive Sciences, 5, 354366.Google Scholar
Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition – from single digits to arithmetic. The Quarterly Journal of Experimental Psychology 67, 14611483.Google Scholar
Fischer, M. H., & Shaki, S. (2015). Two steps to space for numbers. Frontiers in Psychology, 6, 612.Google Scholar
Fischer, M. H., & Shaki, S. (2016). Measuring spatial–numerical associations: Evidence for a purely conceptual link. Psychological Research, 80(1), 109112.Google Scholar
Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361366.Google Scholar
Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.-C. (2011). Embodied spatial numerical training of number magnitude representation: An intervention study. Psychonomic Bulletin & Review, 18, 177183.Google Scholar
Fiske, A. P. (2000). Complementarity theory: Why human social capacities evolved to require cultural complements. Personality and Social Psychology Review, 4(1), 7694.Google Scholar
Fiske, A. P. (2004). Four modes of constituting relationships: Consubstantial assimilation; space, magnitude, time, and force; concrete procedures; abstract symbolism. In Haslam, N. (Ed.) Relational models theory: A contemporary overview (pp. 61146). Mahwah, NJ: Erlbaum.Google Scholar
Fitting, S., Wedell, D. H., & Allen, G. L. (2007). Memory for spatial location: Cue effects as a function of field rotation. Memory & Cognition, 35(7), 16411658.Google Scholar
Fitts, P. M., & Deininger, R. L. (1954). S-R compatibility: Correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48, 483492.Google Scholar
Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: Spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46, 199210.Google Scholar
Fletcher, P. D., Nicholas, J. M., Shakespeare, T. J., Downey, L. E., Golden, H. L., et al. (2015). Dementias show differential physiological responses to salient sounds. Frontiers in Behavioral Neuroscience, 9. doi:10.3389/fnbeh.2015.00073Google Scholar
Flöel, A., Jansen, A., Deppe, M., Kanowski, M., Konrad, C., Sommer, J. & Knecht, S. (2005). Atypical hemispheric dominance for attention: Functional MRI topography. Journal of Cerebral Blood Flow & Metabolism, 25, 11971208.Google Scholar
Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
Foley, J. M. (1972). The size-distance relation and intrinsic geometry of visual space: Implications for processing. Vision Research, 12, 323332.Google Scholar
Foley, J. M. (1977). Effect of distance information and range on two indices of visually perceived distance. Perception, 6, 449460.Google Scholar
Foley, J. M., Ribeiro-Filho, N. P. & Da Silva, J. A. (2004). Visual perception of extent and the geometry of visual space. Vision Research, 44, 147156.Google Scholar
Foley, M. A., & Johnson, M. K. (1985). Confusions between memories for performed and imagined actions: A developmental comparison. Child Development, 56, 11451155.Google Scholar
Foo, P., Warren, W. H., Duchon, A., & Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 195215.Google Scholar
Forbes, K., & Klein, R. M. (1996). The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. Journal of Cognitive Neuroscience, 8(4), 344352.Google Scholar
Forbus, K. D. (2011). Qualitative modeling. Cognitive Science, 2, 374391.Google Scholar
Forsyth, D. R. (1983). An introduction to group dynamics. Pacific Grove, CA: Brooks/Cole.Google Scholar
Foster, D. H., & Gravano, S. (1982). Overshoot of curvature in visual apparent motion. Perception & Psychophysics, 31, 411420.Google Scholar
Foster, N. E. V., & Zatorre, R. J. (2010). Cortical structure predicts success in performing musical transformation judgments. NeuroImage, 53, 2636.Google Scholar
Foulsham, T., & Kingstone, A. (2010). Asymmetries in the direction of saccades during perception of scenes and fractals: Effects of image type and image features. Vision Research, 50(8), 779795.Google Scholar
Foxe, J. J., McCourt, M. E., & Javitt, D. C. (2003). Right hemisphere control of visuospatial attention: Line-bisection judgments evaluated with high-density electrical mapping and source analysis. Neuroimage, 19(3), 710726.Google Scholar
Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can you select? Journal of Experimental Psychology: Human Perception and Performance, 33, 10031012.Google Scholar
Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 9991010.Google Scholar
Franklin, N., Henkel, L. A., & Zangas, T. (1995). Parsing surrounding space into regions. Memory & Cognition, 23, 397407.Google Scholar
Fraser, J. (1908). A new visual illusion of direction. British Journal of Psychology, 2, 307337.Google Scholar
Frassinetti, F., Magnani, B., & Oliveri, M. (2009). Prismatic lenses shift time perception. Psychological Science, 20, 949954.Google Scholar
Frederici, A. (1981). Production and comprehension of prepositions in aphasia. Neuropsychologia, 19, 191199.Google Scholar
Freeman, E., & Driver, J. (2008). Direction of visual apparent motion driven solely by timing of a static sound. Current Biology, 18, 12621266.Google Scholar
Freeman, J., Brouwer, G. J., Heeger, D. J., & Merriam, E. P. (2011). Orientation decoding depends on maps, not columns. Journal of Neuroscience, 31(13), 47924804.Google Scholar
Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure level as an auditory distance cue. British Journal of Developmental Psychology, 19, 110.Google Scholar
Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33, 575581.Google Scholar
Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427438.Google Scholar
Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In Meyer, D. & Kornblum, S. (Eds.), Attention and Performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 99119). Cambridge, MA: MIT Press.Google Scholar
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126132.Google Scholar
Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society, 23, 443446.Google Scholar
Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259268.Google Scholar
Freyd, J. J., & Jones, K. T. (1994). Representational momentum for a spiral path. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 968976.Google Scholar
Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 11071117.Google Scholar
Freyd, J. J., & Miller, G. F. (1992, November). Creature motion. Paper presented at the 33rd Annual Meeting of the Psychonomic Society, St. Louis, MO.Google Scholar
Freyd, J. J., & Pantzer, T. M. (1995). Static patterns moving in the mind. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 181204). Cambridge, MA: MIT Press.Google Scholar
Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395407.Google Scholar
Freyd, J. J., & Tversky, B. (1984). The force of symmetry in form perception. American Journal of Psychology, 97, 109126.Google Scholar
Friedenberg, J. (2012). Aesthetic judgment of triangular shape: compactness and not the golden ratio determines perceived attractiveness. i-Perception, 3, 163175.Google Scholar
Friedenberg, J., & Bertamini, M. (2015). Aesthetic preference for polygon shape. Empirical Studies of the Arts, 33, 144160.Google Scholar
Friedman, A. (2009). The role of categories and spatial cuing in global-scale location estimates. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 94112.Google Scholar
Friedman, A., & Brown, N. R. (2000a). Reasoning about geography. Journal of Experimental Psychology: General, 129(2), 193219.Google Scholar
Friedman, A., & Brown, N. R. (2000b). Updating geographical knowledge: Principles of coherence and inertia. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(4), 900914.Google Scholar
Friedman, A., Brown, N. R., & McGaffey, A. P. (2002). A basis for bias in geographical judgments. Psychonomic Bulletin & Review, 9(1), 151159.Google Scholar
Friedman, A., Kerkman, D. D., Brown, N. R., Stea, D., & Cappello, H. M. (2005). Cross-cultural similarities and differences in North Americans’ geographic location judgments. Psychonomic Bulletin & Review, 12(6), 10541060.Google Scholar
Friedman, A., Ludvig, E. A., Legge, E. L. G., & Vuong, Q. C. (2013). Bayesian combination of two-dimensional location estimates. Behavior Research Methods, 45(1), 98107.Google Scholar
Friedman, A., & Montello, D. R. (2006). Global-scale location and distance estimates: Common representations and strategies in absolute and relative judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 333346.Google Scholar
Friedman, A., Montello, D. R., & Burte, H. (2012). Location memory for dots in polygons versus cities in regions: Evaluating the category adjustment model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 13361351.Google Scholar
Friemuth, M., & Wapner, S. (1979). The influence of lateral organization on the evaluation of paintings. British Journal of Psychology, 70, 211218.Google Scholar
Frimer, J. A., & Sinclair, L. (2016). Moral heroes look up and to the right. Personality and Social Psychology Bulletin, 42, 400410.Google Scholar
Frisén, L. (2010). Deviations of the visual upright in three dimensions in disorders of the brainstem: A clinical exploration. Brain, 133, 35413551.Google Scholar
Frith, C. D., & Nias, D. K. B. (1974). What determines aesthetic preference? Journal of General Psychology, 91, 163173.Google Scholar
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit [Measuring the time of sensation]. Zeitschrift für Sinnesphysiologie, 54, 5878.Google Scholar
Fröhlich, F. W. (1925). Über die Methoden der Empfindungszeitmessung im Gebiet des Gesichtsinnes [On the measurement of the sensation time in the visual field]. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 208(1), 120134.Google Scholar
Fröhlich, F. W. (1929). Die Empfindungszeit: Ein Beitrag zur Lehre von der Zeit-, Raum- und Bewegungsempfindung [Time of sensation: A contribution on the model of the perception of time, space and motion]. Jena: Fischer.Google Scholar
Fröhlich, F. W. (1930). Über die Messung der Empfindungszeit [Measuring the time of sensation]. Psychologische Forschung, 13(1), 285288.Google Scholar
Fröhlich, F. W. (1932). Bemerkungen zu G. E. Müllers Kritik der Empfindungszeitmessung [Remarks on the criticism of G. E. Müller of the measurement of sensation time]. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 62, 246249.Google Scholar
Fu, Y. X., Shen, Y., & Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. The Journal of Neuroscience, 21, RC172.Google Scholar
Fuhrman, O., Boroditsky, L. (2010). Cross-cultural differences in mental representations of time: Evidence from an implicit nonlinguistic task. Cognitive Science, 34, 14301451.Google Scholar
Fujita, K., Henderson, M. D., Eng, J., Trope, Y., & Liberman, N. (2006). Spatial distance and mental construal of social events. Psychological Science, 17(4), 278282.Google Scholar
Fukiage, T., & Murakami, I. (2010). The tilt aftereffect occurs independently of the flash-lag effect. Vision Research, 50, 19491956.Google Scholar
Fukiage, T., & Murakami, I. (2013). Adaptation to a spatial offset occurs independently of the flash-drag effect. Journal of Vision, 13(2), 114.Google Scholar
Fukiage, T., Whitney, D., & Murakami, I. (2011). A flash-drag effect in random motion reveals involvement of preattentive motion processing. Journal of Vision, 11(13), 12.Google Scholar
Fukusima, S. S., & Faubert, J. (2001). Perceived length in the central visual field: Evidence for visual field asymmetries. Vision Research, 41(16), 21192126.Google Scholar
Fukusima, S. S., Loomis, J. M., & Da Silva, J. A. (1997). Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 86100.Google Scholar
Furmanski, C. S., & Engel, S. A. (2000). An oblique effect in human primary visual cortex, Nature Neuroscience, 3, 535536.Google Scholar
Futterweit, L. R., & Beilin, H. (1994). Recognition memory for movement in photographs: A developmental study. Journal of Experimental Child Psychology, 57, 163179.Google Scholar
Gaffron, M. (1950). Right and left in pictures. Art Quarterly, 13, 312331.Google Scholar
Gagnier, K. M. (2010). Rethinking Boundary Extension: The Role of Source Monitoring in Scene Memory (Doctoral dissertation). Retrieved from Proquest, 854499379.Google Scholar
Gagnier, K. M., Dickinson, C. A., & Intraub, H. (2013). Fixating picture boundaries does not eliminate boundary extension: Implications for scene representation. Quarterly Journal of Experimental Psychology, 66, 21612186.Google Scholar
Gagnier, K. M., & Intraub, H. (2012). When less is more: Line-drawings lead to greater boundary extension than colour photographs. Visual Cognition, 20, 815824.Google Scholar
Gagnier, K. M., Intraub, H., Oliva, A., Wolfe, J. M. (2011). Why does vantage point affect boundary extension? Visual Cognition, 19, 234257.Google Scholar
Gagnon, S. A., Brunyé, T. T., Robin, C., Mahoney, C. R., & Taylor, H. A. (2011). High and mighty: Implicit associations between space and social status. Frontiers in Psychology, 2, 110.Google Scholar
Gainotti, G., D’Erme, P., & Bartolomeo, P. (1991). Early orientation of attention toward the half space ipsilateral to the lesion in patients with unilateral brain damage. Journal of Neurology, Neurosurgery and Psychiatry, 54, 10821089.Google Scholar
Gale, M., & Ball, L. J. (2012). Contrast class cues and performance facilitation in a hypothesis testing task: Evidence for an iterative counterfactual model. Memory & Cognition, 40, 408419.Google Scholar
Gallace, A., Martelli, M., & Daini, R. (2012). Inconstancy and inconsistency of visual illusory phenomena? The case of the Poggendorff figure. Psychology, 3, 257264.Google Scholar
Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics, 68, 11911203.Google Scholar
Ganel, T., Tanzer, M., & Goodale, M. A. (2008). A double dissociation between action and perception in the context of visual illusions opposite effects of real and illusory size. Psychological Science, 19(3), 221225.Google Scholar
Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.Google Scholar
Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Cambridge, MA: The MIT PressGoogle Scholar
Gardner, J. S., Fowlkes, C., Nothelfer, C., & Palmer, S. E. (2008). Exploring aesthetic principles of spatial composition through stock photography. Journal of Vision, 8, 337a.Google Scholar
Gardner, S. (2007). The limits of naturalism and the metaphysics of German idealism. In Hammer, E. (Ed.), German idealism: Contemporary perspectives (pp. 1949). Abingdon, UK: Routledge.Google Scholar
Gärling, T., & Gärling, E. (1988). Distance minimization in downtown pedestrian shopping. Environment and Planning A, 20(4), 547554.Google Scholar
Gartus, A., & Leder, H. (2013). The small step toward asymmetry: Aesthetic judgment of broken symmetries. i-Perception, 4, 352355.Google Scholar
Gattis, M. (Ed.). (2001). Spatial schemas and abstract thought. Cambridge, MA: MIT Press.Google Scholar
Gauch, A., & Kerzel, D. (2008a). Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbinding of abrupt and continuous changes. Vision Research, 48, 15841591.Google Scholar
Gauch, A., & Kerzel, D. (2008b). Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory. Perception & Psychophysics, 70, 10921103.Google Scholar
Gauch, A., & Kerzel, D. (2009). Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 49, 29832991.Google Scholar
Gauthier, L., Dehaut, F., & Joanette, Y. (1989). The bells test: A quantitative and qualitative test for visual neglect. International Journal of Clinical Neuropsychology, 11, 4654.Google Scholar
Gawley, T., Perks, T., & Curtis, J. (2009). Height, gender, and authority status at work: Analyses for a national sample of Canadian workers. Sex Roles, 60, 208222.Google Scholar
Gazzaniga, M. S., & Ladavas, E. (1987). Disturbances in spatial attention following lesion of the right parietal lobe. In Jeannerod, M. (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect (pp. 203213). Amsterdam: Elsevier Science Publishers.Google Scholar
Ge, Y., Wang, L., & He, S. (2015). Perceived illusory orientation from the flash grab effect induces the Tilt Aftereffect. Journal of Vision, 15(12), 992.Google Scholar
Gebhard, J. W., & Mowbray, G. H. (1959). On discriminating the rate of visual flicker and auditory flutter. American Journal of Psychology, 72, 521529.Google Scholar
Geer, M., & Schmidt, W. C. (2006). Perception of initial moving target signals: Support for a cumulative lateral inhibition theory. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 11851196.Google Scholar
Geesaman, B. J., & Qian, N. (1996). A novel speed illusion involving expansion and rotation patterns. Vision Research, 36(20), 32813292.Google Scholar
Geminiani, G., Camaschella, E., Mariani, C., Alberoni, M., & Farina, E. (2002). Direction and position factors in performance of line extension task by unilateral neglect subjects. Neuropsychologia, 40(11), 18341840.Google Scholar
Gentner, D. (2003). Why we’re so smart. In Gentner, D. & Goldin-Meadows, S. (Eds.), Language in mind (pp. 195235). Cambridge, MA: MIT Press.Google Scholar
Gentner, D., & Markman, A. B. (1994). Structure mapping in analogy and similarity. American Psychologist, 52(1), 4556.Google Scholar
Georges, S., Schiltz, C., & Hoffmann, D. (2015). Task instructions determine the visuospatial and verbal–spatial nature of number–space associations, The Quarterly Journal of Experimental Psychology, 68(9), 18951909.Google Scholar
Gershoni, S., & Hochstein, S. (2011). Measuring pictorial balance perception at first glance using Japanese calligraphy. I-Perception, 2, 508527.Google Scholar
Getzmann, S. (2005). Representational momentum in spatial hearing does not depend on eye movements. Experimental Brain Research, 165, 229238.Google Scholar
Getzmann, S. (2007). The effect of brief auditory stimuli on visual apparent motion. Perception, 36, 10891103.Google Scholar
Getzmann, S., & Lewald, J. (2007). Localization of moving sound. Perception & Psychophysics, 69, 10221034.Google Scholar
Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193, 437443.Google Scholar
Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33, 591599.Google Scholar
Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17(5), 659673.Google Scholar
Gevers, W., & Lammertyn, J. (2005). The hunt for SNARC. Psychology Science, 47, 1021.Google Scholar
Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53(1), 5868.Google Scholar
Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87–95.Google Scholar
Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organized: Evidence from days of the week. Cortex, 40(1):171172Google Scholar
Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number–space interactions. Journal of Experimental Psychology: General, 139, 180190.Google Scholar
Ghazanfar, A. A., Neuhoff, J. G., & Logothetis, N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 1575515757.Google Scholar
Gibb, R., Ercoline, B., & Scharff, L. (2011). Spatial disorientation: Decades of pilot fatalities. Aviation, Space, and Environmental Medicine 82, 717724.Google Scholar
Gibbs, R. W. (2005). Embodiment and cognitive science. New York: Cambridge University Press.Google Scholar
Gibson, B. S., & Egeth, H. (1994). Inhibition and disinhibition of return: Evidence from temporal order judgments. Perception & Psychophysics, 56(6), 669680.Google Scholar
Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Giessner, S. R., Ryan, M. K., Schubert, T. W., & van Quaquebeke, N. (2011). The power of pictures: Vertical picture angles in power pictures. Media Psychology, 14(4), 442464.Google Scholar
Giessner, S. R., & Schubert, T. W. (2007). High in the hierarchy: How vertical location and judgments of leaders’ power are interrelated. Organizational Behavior and Human Decision Processes, 104(1), 3044.Google Scholar
Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 489494.Google Scholar
Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2008). Support for lateralization of the Whorf effect beyond the realm of color discrimination. Brain and Language, 105(2), 9198.Google Scholar
Gilinsky, A. S. (1951). Perceived size and distance in visual space, Psychological Review, 58(6), 460482.Google Scholar
Gilis, B., Helsen, W., Catteeuw, P., & Wagemans, J. (2008). Offside decisions by expert assistant referees in association football: Perception and recall of spatial positions in complex dynamic events. Journal of Experimental Psychology: Applied, 14, 2135.Google Scholar
Gill, D., Jordan, J. S., & Cutting, J. C. (2014). Examining possible perceptual proxies of flow state. Poster presented at the 55th Annual Meeting of the Psychonomic Society, Long Beach, CA.Google Scholar
Gillam, B. (1971). A depth processing theory of the Poggendorff illusion. Perception & Psychophysics, 10, 211216.Google Scholar
Gillam, B. (1988). Illusions at century’s end. In Hochberg, J. (Ed.), Perception and cognition at century’s end: History, philosophy, theory (pp. 98137). New York: Academic Press.Google Scholar
Gillner, S., & Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10(4), 445463.Google Scholar
Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Frontiers in Human Neuroscience, 9:8Google Scholar
Ginsburg, V., van Dijck, J. P., Previtali, P., Fias, W., & Gevers, W. (2014). The impact of verbal working memory on number–space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976986.Google Scholar
Giocomo, L. M., Zilli, E. A., Fransén, E., & Hasselmo, M. E. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science, 315(5819), 17191722.Google Scholar
Girard, T. A., Martius, D. L. M. A., & Cheyne, J. A. (2007). Mental representation of space: Insights from oblique distribution of hallucinations. Neuropsychologia, 45, 12571269.Google Scholar
Glasauer, S., & Mittelstaedt, H. (1998) Perception of spatial orientation in microgravity. Brain Research Review, 28, 185193.Google Scholar
Glass, L. (1970). Effects of blurring on perception of a simple geometric pattern. Nature, 228, 13411342.Google Scholar
Gleitman, L., & Papafragou, A. (2012). New perspectives on language and thought. In Holyoak, K. & Morrison, R. (Eds.), The Oxford handbook of thinking and reasoning (pp. 543567). New York: Oxford University Press.Google Scholar
Glenberg, A. M., Lopez-Mobilia, G., McBeath, M. K., Toma, M., Sato, M., & Cattaneo, L. (2010). Knowing beans: Human mirror mechanisms revealed through motor adaptation. Frontiers in Human Neuroscience, 4(206), 16.Google Scholar
Glicksohn, J. (1994). Rotation, orientation, and cognitive mapping. American Journal of Psychology, 107, 3951.Google Scholar
Gobara, A., Yamada, Y., & Miura, K. (2016). Crossmodal modulation of spatial localization by mimetic words. i-Perception, 7(6). doi: 10.1177/2041669516684244Google Scholar
Göbel, S. M. (2015). Up or down? Reading direction influences vertical counting direction in the horizontal plane – a cross-cultural comparison. Frontiers in Psychology, 6, 228.Google Scholar
Gogel, W. C., & Da Silva, J. A. (1987). A two-process theory of the response to size and distance. Attention, Perception, & Psychophysics, 41(3), 220238.Google Scholar
Göksun, T., Lehet, M., Malykhina, K., & Chatterjee, A. (2013). Naming and gesturing spatial relations: Evidence from focal brain-injured individuals. Neuropsychologia, 51(8), 15181527.Google Scholar
Goldinger, S. D., Papesh, M. H., Barnhart, A. S., Hansen, W. A., & Hout, M. C. (2016). The poverty of embodied cognition. Psychonomic Bulletin & Review, 23(4), 959978.Google Scholar
Goldmeier, E. (1936/1972). Similarity in visually perceived forms. Psychological Issues, 29, 136.Google Scholar
Goldstone, R. L. (1994). The role of similarity in categorization: Providing a groundwork. Cognition, 52(2), 125157.Google Scholar
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Review of Cognitive Science, 1(1), 6978.Google Scholar
Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2009). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Neuroimage, 52, 862874.Google Scholar
Golledge, R. G. (1992). Place recognition and wayfinding: Making sense of space. Geoforum, 23, 199214.Google Scholar
Golledge, R. G. (1995). Path selection and route preference in human navigation: A progress report. In Spatial information theory: A theoretical basis for GIS (Vol. 988, pp. 207222). Berlin: Springer.Google Scholar
Golledge, R. G., & Zannaras, G. (1973) Cognitive approaches to the analysis of human spatial behavior. In Ittelson, W. H. (Ed.), Environment and cognition (pp. 5994). New York: Seminar.Google Scholar
Gollisch, T., & Meister, M. (2010). Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, 65, 150164.Google Scholar
Gombrich, E. H. (1979). The sense of order. London: Phaidon Press.Google Scholar
Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779782.Google Scholar
Gooch, B., Reinhard, E. Moulding, C., & Shirley, P. (2001). Artistic composition for image creation. In Proceedings of Rendering Techniques 2001 Eurographics (pp. 8388). London, UK.Google Scholar
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 2025.Google Scholar
Goodhill, G. J., Finch, S., & Sejnowski, T. J. A. (1995) Unifying measure for neighborhood preservation in topographic mappings. Proceedings of the 2nd Joint Symposium on Neural Computation, University of California, San Diego and California Institute of Technology Institute for Neural Computation, La Jolla, CA, 191–202Google Scholar
Goodwin, G. P., & Johnson-Laird, P. N. (2006). Reasoning about the relations between relations. Quarterly Journal of Experimental Psychology, 59(6), 10471069.Google Scholar
Gordon, I. E. (1974). Left and right in Goya’s portraits. Nature, 249, 197198.Google Scholar
Gordon, M. S., & Rosenblum, L. D. (2005). Effects of intrastimulus modality change on audiovisual time-to-arrival judgments. Perception & Psychophysics, 67(4). doi:10.3758/bf03193516Google Scholar
Gordon, M. S., Russo, F. A., & MacDonald, E. (2013). Spectral information for detection of acoustic time to arrival. Attention, Perception, & Psychophysics, 75(4), 738750.Google Scholar
Gorea, A., Belkoura, S., & Solomon, J. A. (2014). Summary statistics for size over space and time. Journal of Vision, 14(9), 114.Google Scholar
Gorman, A. D., Abernethy, B., & Farrow, D. (2011). Investigating the anticipatory nature of pattern perception in sport. Memory & Cognition, 39, 894901.Google Scholar
Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. The Quarterly Journal of Experimental Psychology, 65, 11511160.Google Scholar
Gottesman, C. V. (2011). Mental layout extrapolations prime spatial processing of scenes. Journal of Experimental Psychology: Human Perception and Performance, 37, 382395.Google Scholar
Gottesman, C. V., & Intraub, H. (2002). Surface construal and the mental representation of scenes. Journal of Experimental Psychology: Human Perception and Performance, 28, 589599.Google Scholar
Gottwald, V. M., Lawrence, G. P., Hayes, A. E., & Khan, M. A. (2015). Representational momentum reveals visual anticipation differences in the upper and lower visual fields. Experimental Brain Research, 233, 22492256.Google Scholar
Gould, S. J. (1979). Mickey-mouse meets Konrad Lorenz. Natural History, 88 (5), 30.Google Scholar
Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist paradigm. Proceedings of the Royal Society of London, Series B, 205, 581598.Google Scholar
Grassi, M. (2010). Sex difference in subjective duration of looming and receding sounds. Perception, 39(10), 14241426.Google Scholar
Grassi, M., & Darwin, C. J. (2006). The subjective duration of ramped and damped sounds. Perception & Psychophysics, 68(8), 13821392.Google Scholar
Grau, J. W., & Nelson, D. K. (1988). The distinction between integral and separable dimensions: Evidence for the integrality of pitch and loudness. Journal of Experimental Psychology: General, 117, 347370.Google Scholar
Gray, R. (2013). Being selective at the plate: Processing dependence between perceptual variables relates to hitting goals and performance. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 11241142.Google Scholar
Gray, R. (2014). Embodied perception in sport. International Review of Sport and Exercise Psychology, 7(1), 7286.Google Scholar
Gray, R., Navia, J. A., & Allsop, J. (2014). Action-specific effects in aviation: What determines judged runway size? Perception, 43, 145154.Google Scholar
Gray, R., & Regan, D. (1998). Accuracy of estimating time to collision using binocular and monocular information. Vision Research, 38(4), 499512.Google Scholar
Gray, R., & Thornton, I. M. (2001). Exploring the link between time to collision and representational momentum. Perception, 30, 10071022.Google Scholar
Green, C. D. (1995). All the glitters: A review of psychological research on the aesthetics of the golden section. Perception, 24, 937968.Google Scholar
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
Greene, M. R., & Oliva, A. (2009). The briefest of glances: the time course of natural scene understanding. Psychological Science, 20(4), 464472.Google Scholar
Greenstein, M., Franklin, N., Martins, M., Sewack, C., & Meier, M. A. (2016). When anticipation beats accuracy: Threat alters memory for dynamic scenes. Memory & Cognition, 44(4), 633649.Google Scholar
Gregory, R. L. (1963). Distortion of visual space as inappropriate constancy scaling. Nature, 199, 678680.Google Scholar
Gregory, R. L. (1970). The intelligent eye. New York: McGraw Hill.Google Scholar
Gregory, R. L. (1996). Mirrors in mind. New York: Freeman Spektrum.Google Scholar
Grieves, R. M., Jenkins, B. W., Harland, B. C., Wood, E. R., & Dudchenko, P. A. (2016). Place field repetition and spatial learning in a multicompartment environment. Hippocampus, 26(1), 118134.Google Scholar
Guariglia, C., & Antonucci, G. (1992). Personal and extrapersonal space: A case of neglect dissociation. Neuropsychologia, 30(11), 10011009.Google Scholar
Guariglia, C., Padovani, A., Pantano, P., & Pizzamiglio, L. (1993). Unilateral neglect restricted to visual imagery. Nature, 364(6434), 235237.Google Scholar
Gulick, W. L. (1971). Hearing: Physiology and psychophysics. New York: Oxford University Press.Google Scholar
Guski, R. (1992). Acoustic tau: An easy analogue to visual tau? Ecological Psychology, 4, 189197.Google Scholar
Haber, R. N. (1985). Toward a theory of the perceived spatial layout of scenes. Computer Vision, Graphics, and Image Processing, 31(3), 282321.Google Scholar
Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17(17), 751753.Google Scholar
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 718734.Google Scholar
Haberman, J., & Whitney, D. (2011). Efficient summary statistical representation when change localization fails. Psychonomic Bulletin & Review, 18(5), 855859.Google Scholar
Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801806.Google Scholar
Hagen, M.A. (1980) The perception of pictures, vol. 1. Alberti’s window: The projective model of pictorial information. New York: Academic Press.Google Scholar
Hagenbeek, R. E., & Van Strien, J. W. (2002). Left–right and upper-lower visual field asymmetries for face matching, letter naming, and lexical decision. Brain and Cognition, 49, 3444.Google Scholar
Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382385.Google Scholar
Hagler, D. J. Jr. (2014). Visual field asymmetries in visual evoked responses. Journal of Vision, 14(14), 119.Google Scholar
Haig, N. D. (1993). Reflections on inversion and reversion. Perception, 22, 863868.Google Scholar
Hall, D. A., & Moore, D. R. (2003). Auditory neuroscience: The salience of looming sounds. Current Biology, 13(3), R91R93.Google Scholar
Hall, J. A., Coats, E. J., & LeBeau, L. S. (2005). Nonverbal behavior and the vertical dimension of social relations: A meta-analysis. Psychological Bulletin, 131(6), 898.Google Scholar
Halligan, P. W., & Marshall, J. C. (1991). Left neglect for near but not far space in man. Nature, 350, 498500.Google Scholar
Halligan, P. W., & Marshall, J. (1994). Toward a principled explanation of unilateral neglect. Cognitive Neuropsychology, 11, 167206.Google Scholar
Halligan, P. W., & Marshall, J. C. (1995). Grounding figural attention in left neglect. Neurocase, 1, 7982.Google Scholar
Halpern, A. R., & Kelly, M. H. (1993). Memory biases in left versus right implied motion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 471484.Google Scholar
Hamburger, K., & Hansen, T. (2010). Analysis of individual variations in the classical horizontal-vertical illusion. Attention, Perception, & Psychophysics, 72(4), 10451052.Google Scholar
Hamburger, K., Hansen, T., & Gegenfurtner, K. R. (2007). Geometric-optical illusions at isoluminance. Vision Research, 47(26), 32763285.Google Scholar
Hancock, P. A., & Manser, M. P. (1997). Time-to-contact: More than Tau alone. Ecological Psychology, 9(4), 265297.Google Scholar
Hansen, B. C., & Essock, E. A. (2004). A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. Journal of Vision, 4, 10441060.Google Scholar
Hansen, B. C., & Essock, E. A. (2006). Anisotropic local contrast normalization: The role of stimulus orientation and spatial frequency bandwidths in the oblique and horizontal effect perceptual anisotropies. Vision Research, 46, 43984415.Google Scholar
Harmon-Jones, E., & Sigelman, J. (2001). State anger and prefrontal brain activity: Evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. Journal of Personality and Social Psychology, 80(5), 797803.Google Scholar
Harrar, V., Tammam, J., Pérez-Bellido, A., Pitt, A., Stein, J., & Spence, C. (2014). Multisensory integration and attention in developmental dyslexia. Current Biology, 24, 531535.Google Scholar
Harré, R. (1986) Varieties of realism: A rationale for the natural sciences. Oxford: Blackwell.Google Scholar
Harris, L. R., Duke, P. A., & Kopinska, A. (2006). Flash lag in depth. Vision Research, 46, 27352742.Google Scholar
Harris, L. R., Jenkin, M., Dyde, R. T., & Jenkin, H. (2011). Enhancing visual cues to orientation: Suggestions for space travelers and the elderly. Progress in Brain Research, 191, 133142.Google Scholar
Harris, J. M., & Morgan, M. J. (1993). Stereo and motion disparities interfere with positional averaging. Vision Research, 33(3), 309312.Google Scholar
Harrison, N. (2012). Auditory motion in depth is preferentially “captured” by visual looming signals. Seeing and Perceiving, 25(1), 7185.Google Scholar
Haselton, M. G., Bryant, G. A., Wilke, A., Frederick, D. A., Galperin, A., Frankenhuis, W. E., & Moore, T. (2009). Adaptive rationality: An evolutionary perspective on cognitive bias. Social Cognition, 27(5), 733763.Google Scholar
Haselton, M. G., & Buss, D. M. (2000). Error management theory: A new perspective on biases in cross-sex mind reading. Journal of Personality and Social Psychology, 78(1), 8191.Google Scholar
Haselton, M. G., & Nettle, D. (2006). The paranoid optimist: An integrative evolutionary model of cognitive biases. Personality and Social Psychology Review, 10(1), 4766.Google Scholar
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences, 104, 17261731.Google Scholar
Hatin, B., Tottenham, L. S., & Oriet, C. (2012). The relationship between collisions and pseudoneglect: Is it right? Cortex, 48(8), 9971008.Google Scholar
Haun, D. B. M., Allen, G. L., & Wedell, D. H. (2005). Bias in spatial memory: A categorical endorsement. Acta Psychologica, 118(1–2), 149170.Google Scholar
Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 827.Google Scholar
Hayes, A. E., Sacher, G., Thornton, I. M., Sereno, M. E., & Freyd, J. J. (1996). Representational momentum in depth using stereopsis [ARVO Abstract 2120]. Investigative Ophthalmology & Visual Science, 37(Suppl. 3), S467.Google Scholar
Haynes, J. D. (2015). An information-based approach to consciousness: Mental state decoding. In Open MIND. Frankfurt am Main: MIND Group.Google Scholar
Hayward, W. G., & Tarr, M. J. (1995). Spatial language and spatial representation. Cognition, 55(1), 3984.Google Scholar
He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905918.Google Scholar
He, S., Cavanagh, P. & Intriligator, J. (1996). Attentional resolution and the locus of awareness. Nature, 383, 334338.Google Scholar
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.Google Scholar
Hecht, H. (2001). Regularities of the physical world and the absence of their internalization. Behavioral and Brain Sciences, 24, 608617.Google Scholar
Hecht, H., Bertamini, M., & Gamer, M. (2005). Naive optics: Acting on mirror reflections. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 10231038.Google Scholar
Hedge, A., & Marsh, N. W. A. (1975). The effect of irrelevant spatial correspondences on two-choice response time. Acta Psychologica, 39, 427439.Google Scholar
Heeger, D. J., & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews Neuroscience, 3(2), 142151.Google Scholar
Heeley, D. W., Buchanan-Smith, H. M., Cromwell, J. A., & Wright, J. S. (1997). The oblique effect in orientation acuity. Vision Research, 31(2), 235242.Google Scholar
Hegarty, P., & Buechel, C. (2006). Androcentric reporting of gender differences in APA journals: 1965–2004. Review of General Psychology, 10(4), 377389.Google Scholar
Hegarty, P., Lemieux, A. F., & McQueen, G. (2010). Graphing the order of the sexes: Constructing, recalling, interpreting, and putting the self in gender difference graphs. Journal of Personality and Social Psychology, 98(3), 375.Google Scholar
Heinemann, W., Pellander, F., Vogelbusch, A., & Wojtek, B. (1981). Meeting a deviant person: Subjective norms and affective reactions. European Journal of Social Psychology, 11(1), 125.Google Scholar
Held, R., Ostrovsky, Y., de Gelder, B., Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly sighted fail to match seen with felt. Nature Neuroscience, 14, 551553.Google Scholar
Helmholtz, H. von (1962). Physiological optics, Southall, J. P. C., Trans. New York: Dover. (Original work published 1866).Google Scholar
Helmholtz, H. von (1925/2000). Physiological optics. (Vol. III Concerning the perceptions in general). In Yanstis, S. (Ed.), Visual perception: Essential readings (pp. 2444). Philadelphia: Psychology Press.Google Scholar
Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.Google Scholar
Henderson, J. M., & Hollingworth, A. (1999). High level scene perception. Annual Review of Psychology, 50, 243271.Google Scholar
Henderson, M. D., Fujita, K., Trope, Y., & Liberman, N. (2006). Transcending the “here”: The effect of spatial distance on social judgment. Journal of Personality and Social Psychology, 91(5), 845.Google Scholar
Henderson, M. D., Wakslak, C. J., Fujita, K., & Rohrbach, J. (2011). Construal level theory and spatial distance. Social Psychology, 42(3), 165173.Google Scholar
Henkel, L. A., Franklin, N., & Johnson, M. K. (2000). Cross-modal source monitoring confusions between perceived and imagined events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 321.Google Scholar
Henrich, J., & Gil-White, F. J. (2001). The evolution of prestige: Freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evolution and Human Behavior, 22, 165196.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 61135.Google Scholar
Hensley, W. E., & Cooper, R. (1987). Height and occupational success: A review and critique. Psychological Reports, 60(3, Pt 1), 843849.Google Scholar
Heron, J., Whitaker, D., & McGraw, P. V. (2004). Sensory uncertainty governs the extent of audio-visual interaction. Vision Research, 44, 28752884.Google Scholar
Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225237.Google Scholar
Hershenson, M. (1999). Visual space perception. Cambridge, MA: MIT Press.Google Scholar
Herz-Fischler, R. (1998). A mathematical history of the golden number. Mineola, NY: Dover.Google Scholar
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430(6998), 453456.Google Scholar
Hevner, K. (1935). Experimental studies of the affective value of colors and lines. Journal of Applied Psychology, 19, 385398.Google Scholar
Heyes, C. M. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483.Google Scholar
Hidaka, S., Higuchi, S., Teramoto, W., and Sugita, Y. (2017). Neural mechanisms underlying sound-induced visual motion perception: An fMRI study. Acta Psychologica, 178, 6672.Google Scholar
Hidaka, S., Kawachi, Y., & Gyoba, J. (2009). The representation of moving 3-D objects in apparent motion perception. Attention, Perception, & Performance, 71, 12941304.Google Scholar
Hidaka, S., Manaka, Y., Teramoto, W., Sugita, Y., Miyauchi, R., Gyoba, J., Suzuki, Y., & Iwaya, Y. (2009). Alternation of sound location induces visual motion perception of a static object. PLoS ONE, 4, e8188.Google Scholar
Hidaka, S., Teramoto, W., Keetels, M., & Vroomen, J. (2013). Effect of pitch-space correspondence on sound-induced visual motion perception. Experimental Brain Research, 231, 117126.Google Scholar
Hidaka, S., Teramoto, W., Kobayashi, M., & Sugita, Y. (2011). Sound-contingent visual motion aftereffect. BMC Neuroscience, 12, 16.Google Scholar
Hidaka, S., Teramoto, W., & Sugita, Y. (2015). Spatiotemporal processing in crossmodal interactions for perception of the external world: A review. Frontiers in Integrative Neuroscience, 9, 62.Google Scholar
Hidaka, S., Teramoto, W., Sugita, Y., Manaka, Y., Sakamoto, S., & Suzuki, Y. (2011). Auditory motion information drives visual motion perception. PLoS ONE, 6, e17499.Google Scholar
Higashiyama, A. (1996). Horizontal and vertical distance perception: The discorded-orientation theory. Attention, Perception, & Psychophysics, 58, 259270.Google Scholar
Higashiyama, A., & Ueyama, E. (1988). The perception of vertical and horizontal distances in outdoor settings. Attention, Perception, & Psychophysics, 44(2), 151156.Google Scholar
Higham, P. A., & Carment, D. W. (1992). The rise and fall of politicians: The judged heights of Broadbent, Mulroney and Turner before and after the 1988 Canadian federal election. Canadian Journal of Behavioural Science, 24(3), 404409.Google Scholar
Hilchey, M. D., & Christie, J. (2016). The input form of “inhibition of return” requires the presence of objects. revision in preparation.Google Scholar
Hilchey, M. D., Dohmen, D., Crowder, N. A., & Klein, R. M. (2016). When is inhibition of return input- or output-based? It depends on how you look at it. Canadian Journal of Experimental Psycholology, 70(4), 325334.Google Scholar
Hilchey, M. D., Hashish, M., MacLean, G. H., Ivanoff, J., Satel, J., & Klein, R. M. (2014). On the role of eye movement monitoring and discouragement on inhibition of return in a go no-go task. Vision Research, 96, 133139.Google Scholar
Hilchey, M. D., Ivanoff, J., Taylor, T. L., & Klein, R. M. (2011) Visualizing the temporal dynamics of spatial information processing responsible for the Simon effect and its amplification by inhibition of return, Acta Psychologica, 136, 235244.Google Scholar
Hilchey, M. D., Klein, R. M., & Ivanoff, J. (2012). Perceptual and motor IOR: Components or flavors? Attention, Perception & Psychophysics, 74, 14161429.Google Scholar
Hilchey, M. D., Klein, R. M., & Satel, J. (2014). Returning to “inhibition of return” by dissociating long-term oculomotor IOR from short-term sensory adaptation and other nonoculomotor “inhibitory” cueing effects. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 16061616.Google Scholar
Hillebrand, F. (1902). Theorie der scheinbaren grösse bei binocularem Sehen (Theory of apparent size in binocular vision). Denkschriften der Wiener Akademie, Mathematisch Naturwissenschaft Klasse, 72, 255307.Google Scholar
Hillier, B. (1996). Space is the machine. Cambridge: Cambridge University Press.Google Scholar
Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge: Cambridge University Press.Google Scholar
Hills, T., Brockie, P. J., & Maricq, A. V. (2004). Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. Journal of Neuroscience, 24, 12171225.Google Scholar
Hills, T. T., Kalff, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE, 8(4), e60488.Google Scholar
Hine, T. J., White, A. M. V., & Chappell, M. (2003). Is there an auditory-visual flash-lag effect? Clinical and Experimental Ophthalmology, 31, 254257.Google Scholar
Hinton, G. E., McClelland, J. L., & Rummelhart, D. E. (1986). Distributed representations. In McClelland, J. L. & Rummelhart, D. E. (Eds.), Parallel distributed processing. Cambridge: MIT Press.Google Scholar
Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208217.Google Scholar
Hochberg, J. (1986). Representation of motion and space in video and cinematic displays. In Boff, K. J., Kaufman, L., & Thomas, J. P. (Eds.), Handbook of perception and human performance (Vol. 1, pp. 22.122.64). New York: Wiley.Google Scholar
Hochmair, H. H., & Frank, A. U. (2002). Influence of estimation errors on wayfinding-decisions in unknown street networks – analyzing the least-angle strategy. Spatial Cognition and Computation, 2, 283313.Google Scholar
Hochmair, H. H., & Karlsson, V. (2005). Investigation of preference between the least-angle strategy and the initial segment strategy for route selection in unknown environments. In Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., & Barkowsky, T. (Eds.), Spatial cognition IV. Reasoning, action, interaction (pp. 7997). Berlin: Springer.Google Scholar
Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., Gaßner, A., & Nuerk, H.-C. (2008). Impairments of the mental number line for two-digit numbers in neglect. Cortex, 44, 429438.Google Scholar
Hofbauer, M., Wuerger, S. M., Meyer, G. F., Roehrbein, F., Schill, K., & Zetzsche, C. (2004). Catching audiovisual mice: Predicting the arrival time of auditory-visual motion signals. Cognitive Affective & Behavioral Neuroscience, 4(2), 241250.Google Scholar
Höge, H. (1995). Fechner’s experimental aesthetics and the golden section hypothesis today. Empirical Studies of the Arts, 13, 131148.Google Scholar
Holden, M. P., Curby, K. M., Newcombe, N. S., & Shipley, T. F. (2010). A category adjustment approach to memory for spatial location in natural scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 590604.Google Scholar
Holden, M. P., Duff-Canning, S. J., & Hampson, E. (2015). Sex differences in the weighting of metric and categorical information in spatial location memory. Psychological Research, 79(1), 118.Google Scholar
Holden, M. P., & Hampson, E. (2014). Categorical bias in line angle judgments: Sex differences and the use of multiple categories. Spatial Cognition and Computation, 14(3), 199219.Google Scholar
Holden, M. P., & Newcombe, N. S. (2013). The development of location coding: An adaptive combination account. In Waller, D. & Nadel, L. (Eds.), Handbook of spatial cognition (pp. 191–209). http://dx.doi.org/10.1037/13936-011Google Scholar
Holden, M. P., Newcombe, N. S., Resnick, I., & Shipley, T. F. (2015). Seeing like a geologist: Bayesian use of expert categories in location memory. Cognitive Science. Advance online publication. http://dx.doi.org/10.1111/cogs.12229Google Scholar
Holden, M. P., Newcombe, N. S., & Shipley, T. F. (2013). Location memory in the real world: Category adjustment effects in 3-dimensional space. Cognition, 128(1), 4555.Google Scholar
Holden, M. P., Newcombe, N. S., & Shipley, T. F. (2015). Categorical biases in spatial memory: The role of certainty. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 473481.Google Scholar
Holmes, K. J., & Lourenco, S. F. (2012). Orienting numbers in mental space: Horizontal organization trumps vertical. Quarterly Journal of Experimental Psychology, 65(6), 10441051.Google Scholar
Holmes, K. J., & Wolff, P. (2012). Does categorical perception in the left hemisphere depend on language? Journal of Experimental Psychology: General, 141(3), 439443.Google Scholar
Holmes, K. J., & Wolff, P. (2013). Spatial language and the psychological reality of schematization. Cognitive Processing, 14(2), 205208.Google Scholar
Holmes, M. C., & Sholl, M. J. (2005). Allocentric coding of object-to-object relations in overlearned and novel environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 10691087.Google Scholar
Hölscher, C., Büchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29(2), 208219.Google Scholar
Hölscher, C., Meilinger, T., Vrachliotis, G., Brösamle, M., & Knauff, M. (2006). Up the down staircase: Wayfinding strategies and multi-level buildings. Journal of Environmental Psychology, 26(4), 284299Google Scholar
Hölscher, C., Tenbrink, T., & Wiener, J. M. (2011). Would you follow your own route description? Cognitive strategies in urban route planning. Cognition, 121(2), 228247.Google Scholar
Holt, E. B., Marvin, W. T., Montague, W. P., Perry, R. B., Pitkin, W. B., & Spaulding, E. G. (1910). The program and first platform of six realists. The Journal of Philosophy, Psychology and Scientific Methods, 7, 393401.Google Scholar
Holten, V., Donker, S. F., Stuit, S. M., Verstraten, F. A. J., & van der Smagt, M. J. (2015). Visual directional anisotropy does not mirror the directional anisotropy apparent in postural sway. Perception, 44(5), 477489.Google Scholar
Holyoak, K. J., & Mah, W. A. (1982). Cognitive reference points in judgments of symbolic magnitude. Cognitive Psychology, 14(3), 328352.Google Scholar
Hommel, B. (2011a). The Simon effect as a tool and heuristic. Acta Psychologica, 136, 188201.Google Scholar
Hommel, B. (2011b). Attention and spatial stimulus coding in the Simon task: A rejoinder to Van der Lubbe and Abrahamse. Acta Psychologica, 136, 265268.Google Scholar
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849937.Google Scholar
Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 117.Google Scholar
Hommuk, K., Bachmann, T., & Oja, A. (2008). Precuing an isolated stimulus temporarily outweighs in-stream stimulus facilitation. Journal of General Psychology, 135, 167181.Google Scholar
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284291.Google Scholar
Hotopf, W. H., & Hibberd, M. C. (1989). The role of angles in inducing misalignment in the Poggendorff figure. Quarterly Journal of Experimental Psychology, 41A(2), 355383.Google Scholar
Hotopf, W. H., & Ollerearnshaw, C. (1972). The regression to right angles tendency and the Poggendorff illusion. I. British Journal of Psychology 63(3), 359367.Google Scholar
Hotopf, W. H., Ollerearnshaw, C., & Brown, S. (1974). The regression to right angles tendency and the Poggendorff illusion. 3. British Journal of Psychology, 65(2), 213231.Google Scholar
Howard, I. P. (1982). Human visual orientation. New York: John Wiley & Sons.Google Scholar
Howard, I. P., & Rogers, B. J. (2002). Seeing in depth (Vol. 2). Toronto: Toronto University Press.Google Scholar
Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. New York: Wiley.Google Scholar
Howe, C. Q., & Purves, D. ( 2002). Range image statistics can explain the anomalous perception of length. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 1318413188.Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435448.Google Scholar
Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299309.Google Scholar
Hubbard, T. L. (1993). The effect of context on visual representational momentum. Memory & Cognition, 21, 103114.Google Scholar
Hubbard, T. L. (1994). Judged displacement: A modular process? American Journal of Psychology, 107, 359373.Google Scholar
Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, direction, and velocity effects. American Journal of Psychology, 108, 255274.Google Scholar
Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 241254.Google Scholar
Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322338.Google Scholar
Hubbard, T. L. (1996a). Displacement in depth: Representational momentum and boundary extension. Psychological Research, 59, 3347.Google Scholar
Hubbard, T. L. (1996b). Representational momentum, centripetal force, and curvilinear impetus. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 10491060.Google Scholar
Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 14841493.Google Scholar
Hubbard, T. L. (1998). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Canadian Journal of Experimental Psychology, 52, 4449.Google Scholar
Hubbard, T. L. (1999). How consequences of physical principles influence mental representation: The environmental invariants hypothesis. In Killeen, P. R. & Uttal, W. R. (Eds.), Fechner Day 99: The end of 20th century psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (pp. 274279). Tempe, AZ: The International Society for Psychophysics.Google Scholar
Hubbard, T. L. (2001). The effect of height in the picture plane on the forward displacement of ascending and descending targets. Canadian Journal of Experimental Psychology, 55, 325329.Google Scholar
Hubbard, T. L. (2004). The perception of causality: Insights from Michotte’s launching effect, naive impetus theory, and representational momentum. In Oliveira, A. M., Teixeira, M. P., Borges, G. F., & Ferro, M. J. (Eds.), Fechner Day 2004 (pp. 116121). Coimbra, Portugal: The International Society for Psychophysics.Google Scholar
Hubbard, T. L. (2005a). An effect of target orientation on representational momentum. Paidéia, 15, 207216.Google Scholar
Hubbard, T. L. (2005b). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822851.Google Scholar
Hubbard, T. L. (2006a). Bridging the gap: Possible roles and contributions of representational momentum. Psicológica (Valencia), 27, 134.Google Scholar
Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174177.Google Scholar
Hubbard, T. (2007). What is mental representation? And how does it relate to consciousness? Journal of Consciousness Studies, 14(1–1), 3761.Google Scholar
Hubbard, T. L. (2008). Representational momentum contributes to motion induced mislocalization of stationary objects. Visual Cognition, 16, 4467.Google Scholar
Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 338365). Cambridge: Cambridge University Press.Google Scholar
Hubbard, T. L. (2011a). Boundary extension as a new Gestalt principle. In Algom, D., Zakay, D., Chajut, E., Shaki, S., Mama, Y., & Shakuf, V. (Eds.), Fechner Day 2011: Proceedings of the 27th Annual Meeting of the International Society for Psychophysics (pp. 6570). Raanana, Israel: International Society for Psychophysics.Google Scholar
Hubbard, T. L. (2011b). Extending pragnanz: Dynamic aspects of mental representation and Gestalt principles. In Albertazzi, L., van Tonder, G. J., & Vishwanath, D. (Eds.), Perception beyond inference: The information content of visual processes (pp. 75108). Cambridge, MA: MIT Press.Google Scholar
Hubbard, T. L. (2012). Visual perception of force: Comment on White (2012). Psychological Bulletin, 138, 616623.Google Scholar
Hubbard, T. L. (2013a). Auditory imagery contains more than audition. In Lacey, S. & Lawson, R. (Eds.), Multisensory imagery: Theories and applications (pp. 221247). New York: Springer.Google Scholar
Hubbard, T. L. (2013b). Do the flash-lag effect and representational momentum involve similar extrapolations? Frontiers in Psychology, 4, 290.Google Scholar
Hubbard, T. L. (2013c). Launching, entraining, and representational momentum: Evidence consistent with an impetus heuristic in perception of causality. Axiomathes, 23, 633643.Google Scholar
Hubbard, T. L. (2013d). Phenomenal causality I: Varieties and variables. Axiomathes, 23, 142.Google Scholar
Hubbard, T. L. (2013e). Phenomenal causality II: Integration and implication. Axiomathes, 23, 485524.Google Scholar
Hubbard, T. L. (2014a). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 13711403.Google Scholar
Hubbard, T. L. (2014b). The flash-lag effect and related mislocalizations: Findings, properties, and theories. Psychological Bulletin, 140, 308338.Google Scholar
Hubbard, T. L. (2015a). Forms of momentum across time: Behavioral and psychological. Journal of Mind and Behavior, 36, 4782.Google Scholar
Hubbard, T. L. (2015b). The varieties of momentum-like experience. Psychological Bulletin, 141, 10811119.Google Scholar
Hubbard, T. L. (2017). Toward a general theory of momentum-like effects. Behavioural Processes, 141, 5066.Google Scholar
Hubbard, T. L., & Baird, J. C. (1993). The effects of size, clutter, and complexity on the vanishing point distance in visual imagery. Psychological Research/Psychologische Forschung, 55, 223236.Google Scholar
Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211221.Google Scholar
Hubbard, T. L., & Blessum, J. A. (2001). A structural dynamic of form: Displacements in memory for the size of an angle. Visual Cognition, 8, 725749.Google Scholar
Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte’s (1946/1963) “launching effect” paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 294301.Google Scholar
Hubbard, T. L., & Courtney, J. R. (2010). Cross-modal influences on representational momentum and representational gravity. Perception, 39, 851862.Google Scholar
Hubbard, T. L., & Favretto, A. (2003). Naïve impetus and Michotte’s “tool effect”: Evidence from representational momentum. Psychological Research, 67, 134152.Google Scholar
Hubbard, T. L., Hutchison, J. L., & Courtney, J. R. (2010). Boundary extension: Findings and theories. The Quarterly Journal of Experimental Psychology, 63, 14671494.Google Scholar
Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 666677.Google Scholar
Hubbard, T. L., & Lange, M. (2010). Prior probabilities and representational momentum. Visual Cognition, 18, 10631087.Google Scholar
Hubbard, T. L., Matzenbacher, D. L., & Davis, S. E. (1999). Representational momentum in children: Dynamic information and analogue representation. Perceptual and Motor Skills, 88, 910916.Google Scholar
Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition, 82, B89B99.Google Scholar
Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. Quarterly Journal of Experimental Psychology, 58, 961979.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53, 242256.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research, 64, 4155.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte’s “Launching Effect:” Evidence from representational momentum. Visual Cognition, 9, 153176.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2011). Effects of spatial cuing on the onset repulsion effect. Attention, Perception, & Psychophysics, 73(7), 22362248.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2013). A Fröhlich effect and representational gravity in memory for auditory pitch. Journal of Experimental Psychology: Human Perception and Performance, 39, 11531164.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2014). An effect of contrast and luminance on visual representational momentum for location. Perception, 43, 754766.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2017a). The (dynamic) mind in the cave: Representational space of cave paintings and petroglyphs. Empirical Studies of the Arts, 35, 6792.Google Scholar
Hubbard, T. L., & Ruppel, S. E. (2017b). Perceived causality, force, and resistance in the absence of launching. Psychonomic Bulletin & Review, 24, 591, 596.Google Scholar
Hubbard, T. L., Ruppel, S. E., & Courtney, J. R. (2005). The force of appearance: Gamma movement, naive impetus, and representational momentum. Psicológica (Valencia), 26, 209228.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology, 148, 574591.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106154.Google Scholar
Huber, S., Klein, E., Moeller, K., & Willmes, K. (2016). Spatial-numerical and ordinal positional associations coexist in parallel. Frontiers in Psychology, 7:438Google Scholar
Huberle, E., & Karnath, H.-O. (2010). Saliency modulates global perception in simultanagnosia. Experimental Brain Research, 204(4), 595603.Google Scholar
Hudson, M., & Jellema, T. (2011). Resolving ambiguous behavioral intentions by means of involuntary prioritization of gaze processing. Emotion, 11, 681686.Google Scholar
Hudson, M., Liu, C. H., & Jellema, T. (2009). Anticipating intentional actions: The effect of eye gaze direction on the judgment of head rotation. Cognition, 112, 423434.Google Scholar
Hudson, M., Nicholson, T., Ellis, R., & Bach, P. (2016). I see what you say: Prior knowledge of other’s goals automatically biases the perception of their actions. Cognition, 146, 245250.Google Scholar
Hudson, M., Nicholson, T., Simpson, W. A., Ellis, R., & Bach, P. (2016). One step ahead: The perceived kinematics of others’ actions are biased toward expected goals. Journal of Experimental Psychology: General, 145, 17.Google Scholar
Hume, D., & Selby-Bigge, L. A. (1967). A treatise of human nature: Reprinted from the original edition in three volumes and edited, with an analytical index, by LA Selby-Bigge. Oxford: Clarendon Press.Google Scholar
Hund, A. M., & Plumert, J. M. (2002). Delay-induced bias in children’s memory for location. Child Development, 73(3), 829840.Google Scholar
Hund, A. M., & Plumert, J. M. (2003). Does information about what things are influence children’s memory for where things are? Developmental Psychology, 39(6), 939948.Google Scholar
Hund, A. M., & Plumert, J. M. (2005). The stability and flexibility of spatial categories. Cognitive Psychology, 50(1), 144.Google Scholar
Hund, A. M., Plumert, J. M., & Benney, C. J. (2002). Experiencing nearby locations together in time: The role of spatiotemporal contiguity in children’s memory for location. Journal of Experimental Child Psychology, 82(3), 200225.Google Scholar
Huron, D. (2006). Sweet anticipation: Music and the psychology of anticipation. Cambridge, MA: MIT Press.Google Scholar
Huron, D., & Shanahan, D. (2013). Eyebrow movements and vocal pitch height: Evidence consistent with an ethological signal. Journal of the Acoustical Society of America, 133, 29472952.Google Scholar
Husain, M., Mannan, S., Hodgson, T., Wojciulik, E., Driver, J., & Kennard, C. (2001). Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain, 124, 941952.Google Scholar
Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 3036.Google Scholar
Husain, M., & Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 4, 2636.Google Scholar
Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
Hutchison, J. L., Hubbard, T. L., Ferrandino, B., Brigante, R., Wright, J. M., & Rypma, B. (2012). Auditory memory distortion for spoken prose. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 14691489.Google Scholar
Huttenlocher, J., Hedges, L. V., & Bradburn, N. M. (1990). Reports of elapsed time: Bounding and rounding processes in estimation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(2), 196213.Google Scholar
Huttenlocher, J., Hedges, L. V., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93(2), 7597.Google Scholar
Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98(3), 352376.Google Scholar
Huttenlocher, J., Hedges, L. V., Lourenco, S. F., Crawford, L. E., & Corrigan, B. (2007). Estimating stimuli from contrasting categories: Truncation due to boundaries. Journal of Experimental Psychology: General, 136(3), 502519.Google Scholar
Huttenlocher, J., Hedges, L., & Prohaska, V. (1988). Hierarchical organization in ordered domains: Estimating the dates of events. Psychological Review, 95(4), 471484.Google Scholar
Huttenlocher, J., Hedges, L. V., & Prohaska, V. (1992). Memory for day of the week: A 5+2 day cycle. Journal of Experimental Psychology: General, 121(3), 313325.Google Scholar
Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129(2), 220241.Google Scholar
Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27(2), 115147.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 25262528.Google Scholar
Ichikawa, M., & Masakura, Y. (2006). Manual control of the visual stimulus reduces the flash-lag effect. Vision Research, 46, 21922203.Google Scholar
Ichikawa, M., & Masakura, Y. (2010). Reduction of the flash-lag effect in terms of active observation. Attention, Perception, & Psychophysics, 72, 10321044.Google Scholar
Ichikawa, M., & Masakura, Y. (2013). Effects of consciousness and consistency in manual control of visual stimulus on reduction of the flash-lag effect for luminance change. Frontiers in Psychology, 4, 120.Google Scholar
Ignaschenkova, A., Dicke, P. W., Haarmeier, T., & Thier, P. (2004). Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neuroscience, 7, 5664.Google Scholar
Imbo, I., De Brauwer, J., Fias, W., & Gevers, W. (2012). The development of the SNARC effect: Evidence for early verbal coding. Journal of Experimental Child Psychology, 111(4), 671680.Google Scholar
Immordino-Yang, M. H., Chiao, J. Y., & Fiske, A. P. (2010). Neural re-use in the social and emotional brain. Behavioral and Brain Sciences, 33(4), 275276.Google Scholar
Indovina, I., Maffei., V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science, 308(5720), 416419.Google Scholar
Indow, T. (2004). The global structure of visual space. River Edge, NJ: World Scientific.Google Scholar
Indow, T., & Watanabe, T. (1988). Alleys on an extensive frontoparallel plane: A second experiment. Perception, 17, 647666.Google Scholar
Intraub, H. (1997). The representation of visual scenes. Trends in Cognitive Sciences, 1, 217222.Google Scholar
Intraub, H. (2002). Anticipatory spatial representation of natural scenes: Momentum without movement? Visual Cognition, 9, 93119.Google Scholar
Intraub, H. (2004). Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition, 94(1), 1937.Google Scholar
Intraub, H. (2010). Rethinking scene perception: A multisource model. In Ross, B. (Ed.), The Psychology of learning and motivation: Advances in research and theory (Vol. 52, pp. 231264). San Diego, CA: Elsevier Academic Press.Google Scholar
Intraub, H. (2012). Rethinking visual scene perception. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 117127.Google Scholar
Intraub, H. (2014). Visual scene representation: A spatial-cognitive perspective. In Kveraga, K. & Bar, M. (Eds.), Scene vision: Making sense of what we see (pp. 526). Cambridge, MA: MIT Press.Google Scholar
Intraub, H., Bender, R. S., & Mangels, J. A. (1992). Looking at pictures but remembering scenes. Journal of Experimental Psychology: Learning, Memory and Cognition, 18(1), 180191.Google Scholar
Intraub, H., & Bodamer, J. L. (1993). Boundary extension: Fundamental aspect of pictorial representation or encoding artifact? Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 13871397.Google Scholar
Intraub, H., Daniels, K. K., Horowitz, T. S., & Wolfe, J. M. (2008). Looking at scenes while searching for numbers: Dividing attention multiplies space. Perception & Psychophysics, 70(7), 13371349.Google Scholar
Intraub, H., & Dickinson, C.A. (2008). False memory 1/20 of a second later: What the early onset of boundary extension reveals about perception. Psychological Science, 19, 10071013.Google Scholar
Intraub, H., Gottesman, C. V., & Bills, A. J. (1998). Effects of perceiving and imaging scenes on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 186201.Google Scholar
Intraub, H., Gottesman, C. V., Willey, E. V., & Zuk, I. J. (1996). Boundary extension for briefly glimpsed photographs: Do common perceptual processes result in unexpected memory distortions? Journal of Memory and Language, 35(2), 118134.Google Scholar
Intraub, H., & Hoffman, J. E. (1992). Reading and visual memory: remembering scenes that were never seen. American Journal of Psychology, 105(1), 101114.Google Scholar
Intraub, H., Hoffman, J. E., Wetherhold, C. J., & Stoehs, S. (2006). More than meets the eye: The effect of planned fixations on scene representation. Perception & Psychophysics, 68, 759769.Google Scholar
Intraub, H., Morelli, F., & Gagnier, K. M. (2015). Visual, haptic and bimodal scene perception: Evidence for a unitary representation. Cognition, 138, 132147.Google Scholar
Intraub, H., & Richardson, M. (1989). Wide-angle memories of close-up scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179187.Google Scholar
Ishiai, S., Sugishita, M., Watabiki, S., Nakayama, T., Kotera, M., & Gono, S. (1994). Improvement of left unilateral spatial neglect in a line extension task. Neurology, 44, 294298.Google Scholar
Ishiai, S., Watabiki, S., Lee, E., Kanouchi, T., & Odajima, N. (1994). Preserved leftward movement in left unilateral spatial neglect due to frontal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 57, 10851090.Google Scholar
Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44, 454461.Google Scholar
Ishihara, M., Revol, P., Jacquin-Courtois, S., Maye, R., Rode, G., Boisson, D., et al. (2013). Tonal cues modulate line bisection performance: preliminary evidence for a new rehabilitation prospect? Frontiers in Psychology 4, 704.Google Scholar
Ishii, M., Seekkuarachchi, H., Tamura, H., & Tang, Z. (2004). 3D flash lag illusion. Vision Research, 44, 19811984.Google Scholar
Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16, 448450.Google Scholar
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304313.Google Scholar
Ittelson, W. H. (1993). Mirror reversals: Real and perceived. Perception, 22, 855861.Google Scholar
Ivanoff, J., & Klein, R. M. (2001). The presence of a nonresponding effector increases inhibition of return. Psychonomic Bulletin and Review, 8, 307314.Google Scholar
Ivanoff, J., & Klein, R. M. (2003). Orienting of attention without awareness is affected by measurement-induced attentional control settings. Journal of Vision, 3(1), 3240.Google Scholar
Ivanoff, J., & Klein, R. M. (2004). Stimulus-response expectancies and inhibition of return. Psychonomic Bulletin & Review, 11, 542550.Google Scholar
Ivanoff, J., & Klein, R. M. (2006). A speed-accuracy analysis of inhibition of return in go/no-go and choice-RT tasks. Journal of Experimental Psychology: Human Perception and Performance, 32, 908919.Google Scholar
Ivanoff, J., Klein, R. M., & Lupianez, J. (2002). Inhibition of return interacts with the Simon effect: An omnibus analysis and its implications. Perception & Psychophysics, 64, 318327.Google Scholar
Jacobs, L. F., & Schenk, F. (2003). Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review, 110(2), 285315.Google Scholar
Jacoby, L. L., Kelley, C., Brown, J., & Jasechko, J. (1989). Becoming famous overnight: Limits on the ability to avoid unconscious influences of the past. Journal of Personality and Social Psychology, 56(3), 326338.Google Scholar
Jammer, M. (2000). Concepts of mass in contemporary physics and philosophy. Princeton, NJ: Princeton University Press.Google Scholar
Jancke, D., & Erlhagen, W. (2010). Bridging the gap: A model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 422440). New York: Cambridge University Press.Google Scholar
Jancke, D., Erlhagen, W., Dinse, H., Akhavan, A., Giese, M., Steinhage, A., et al. (1999). Parametric population representation of retinal location: Neuronal interaction dynamics in cat primary visual cortex. Journal of Neuroscience, 19, 90169028.Google Scholar
Jans, B., Peters, J. C., & DeWeerd, P. (2010). Visual spatial attention to multiple locations at once: The jury is still out. Psychological Review, 117, 637684.Google Scholar
Janzen, G. (2006). Memory for object location and route direction in virtual large-scale space. Quarterly Journal of Experimental Psychology, 59(3), 493508.Google Scholar
Jarchow, T., & Mast, F. W. (1999). The effect of water immersion on postural and visual orientation. Aviation, Space, and Environmental Medicine, 70, 879886.Google Scholar
Jarraya, M., Amorim, M. A., & Bardy, B. G. (2005). Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 67, 951961.Google Scholar
Jarrett, C. B., Phillips, M., Parker, A., & Senior, C. (2002). Implicit motion perception in schizotypy and schizophrenia: A representational momentum study. Cognitive Neuropsychiatry, 7, 114.Google Scholar
Jasmin, K., & Casasanto, D. (2012). The QWERTY effect: How typing shapes the meanings of words. Psychonomic Bulletin & Review, 19(3), 499504.Google Scholar
Jastrow, J. (1900). Fact and Fable in Psychology. Boston, MA: Houghton Mifflin.Google Scholar
Jenkin, M. R., Dyde, R. T., Jenkin, H. L., Zacher, J. E., & Harris, L. R. (2011). Perceptual upright: The relative effectiveness of dynamic and static images under different gravity states. Seeing and Perceiving, 24, 5364.Google Scholar
Jenkin, H. L., Jenkin, M. R., Dyde, R. T., & Harris, L. R. (2004). Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception, 33(12), 14531461.Google Scholar
Jeschonek, S., Pauen, S., & Babocsai, L. (2013). Cross-modal mapping of visual and acoustic displays in infants: The effect of dynamic and static components. European Journal of Developmental Psychology, 10, 337358.Google Scholar
Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection task. Neuropsychologia, 38, 93110.Google Scholar
Jian, B. J., Shintani, T., Emanuel, B. A., & Yates, B. J. (2002). Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Experimental Brain Research, 144(2), 247257.Google Scholar
Jiang, T., Sun, L., & Zhu, L. (2015). The influence of vertical motor responses on explicit and incidental processing of power words. Consciousness and Cognition, 34, 3342.Google Scholar
Jiang, T., & Zhu, L. (2015). Is power-space a continuum? Distance effect during power judgments. Consciousness and Cognition, 37, 815.Google Scholar
Joanette, Y., Brouchon, M., Gauthier, L., & Samson, M. (1986). Pointing with left vs right hand in left visual field neglect. Neuropsychologia, 24(3), 391396.Google Scholar
Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 32, 217.Google Scholar
Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 328.Google Scholar
Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 6785.Google Scholar
Johnson, M. K., Raye, C. L., Wang, A. Y., & Taylor, T. H. (1979). Fact and fantasy: The roles of accuracy and variability in confusing imaginations with perceptual experiences. Journal of Experimental Psychology: Human Learning and Memory, 5, 229240.Google Scholar
Johnson, M. K., Taylor, T. H., & Raye, C. L. (1977). Fact and fantasy: The effects of internally generated events on the apparent frequency of externally generated events. Memory & Cognition, 5(1), 116122.Google Scholar
Jones, B., & Huang, Y. L. (1982). Space–time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91, 128142.Google Scholar
Jones, L. A. (1988). Motor illusions: What do they reveal about proprioception? Psychological Bulletin, 103, 7286.Google Scholar
Jones, S. (2002). Antonymy: A corpus–based perspective. London UK: Routledge.Google Scholar
Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In Long, J. B. & Baddeley, A. D. (Eds.), Attention and performance IX (pp. 187203). Hillsdale, NJ: Lawrence Erlbaum Publishers.Google Scholar
Joo, S. J., Shin, K., Chong, S. C., & Blake, R. (2009). On the nature of the stimulus information necessary for estimating mean size of visual arrays. Journal of Vision, 9, 112.Google Scholar
Joordens, S., Spalek, T. M., Razmy, S., & van Duijn, M. (2004). A clockwork orange: Compensation opposing momentum in memory for location. Memory & Cognition, 32, 3950.Google Scholar
Jordan, J. S. (1998). Recasting Dewey’s critique of the reflex-arc concept via a theory of anticipatory consciousness: Implications for theories of perception. New Ideas in Psychology, 16(3), 165187.Google Scholar
Jordan, J. S. (2000, July). Intentionality in perception/action space. In Attention and Performance XIX: Common Mechanisms in Perception and Action. Organized by the Wolfgang Prinz & Bernhard Hommel: Max Planck Institute for Psychological Research, Munich Germany.Google Scholar
Jordan, J. S. (2003). Emergence of self and other in perception and action. Consciousness and Cognition, 12, 633646.Google Scholar
Jordan, J. S. (2008). Wild-agency: Nested intentionalities in neuroscience and archeology. Philosophical Transactions of the Royal Society B (Biological Sciences), 363, 19811991.Google Scholar
Jordan, J. S. (2013). The wild ways of conscious will: What we do, how we do it, and why it has meaning. Frontiers in Psychology, 4, 574.Google Scholar
Jordan, J. S., Bai, J., Cialdella, V., & Schloesser, D. (2015). Foregrounding the context: Cognitive science as the study of embodied context. In Dzhafarov, E. & Jordan, J. S. (Eds.), Contextuality from physics to psychology (pp. 209228). Berlin: Springer.Google Scholar
Jordan, J. S. & Day, B. (2015). Wild systems theory as a 21st century coherence framework for cognitive science. In Metzinger, T. & Windt, J. M. (Eds.), Open MIND: 21(T). Frankfurt am Main: MIND Group.Google Scholar
Jordan, J. S., & Ghin, M. (2006). (Proto-)consciousness as a contextually-emergent property of self-sustaining systems, Mind & Matter, 4(1), 4568.Google Scholar
Jordan, J. S., & Ghin, M. (2007). The role of control in a science of consciousness: Causality, regulation and self-sustainment, Journal of Consciousness Studies, 14(1–2), 177197.Google Scholar
Jordan, J. S., Gill, D., & Dupuis, R. (2014, November). The influence of control and intentional dynamics on spatial perception. Presented at the 55th Annual Meeting of the Psychonomic Society, Long Beach, CA.Google Scholar
Jordan, J. S., & Heidenreich, B. (2010). The intentional nature of self-sustaining systems. Mind & Matter, 8, 4562.Google Scholar
Jordan, J. S., & Hunsinger, M. (2008). Learned patterns of action-effect anticipation contribute to the spatial displacement of continuously moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 34, 113124.Google Scholar
Jordan, J. S., Kenning, A., Clinton, J., & Durtschi, J. (2010). Spatial perception during control with another: The “other” as potential perturbation. Fechner Day 2010. Proceedings of the 26th Annual Meeting of the International Society of Psychophysics, Padua, Italy: The International Society for Psychophysics.Google Scholar
Jordan, J. S., & Knoblich, G. (2004). Spatial perception and control. Psychonomic Bulletin & Review, 11, 5459.Google Scholar
Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., & Müsseler, J. (2002). Action planning affects spatial localization. In Prinz, W. & Hommel, B. (Eds.), Common mechanisms in perception and action: Attention and performance XIX (pp. 158176). New York: Oxford University Press.Google Scholar
Jordan, J. S., & Vinson, D. (2012). After nature: On bodies, consciousness, and causality. Journal of Consciousness Studies, 19, 229250.Google Scholar
Jordan, K., & Schiano, D. J. (1986). Serial processing and the parallel-lines illusion: Length contrast through relative spatial separation of contours. Perception & Psychophysics, 40, 384390.Google Scholar
Jordan, K., & Uhlarik, J. (1985). Assimilation and contrast of perceived length depends on temporal factors. Perception & Psychophysics, 37, 447454.Google Scholar
Jost, J. T., Banaji, M. R., & Nosek, B. A. (2004). A decade of system justification theory: Accumulated evidence of conscious and unconscious bolstering of the status quo. Political Psychology, 25(6), 881919.Google Scholar
Joye, Y., & Verpooten, J. (2013). An exploration of the functions of religious monumental architecture from a Darwinian perspective. Review of General Psychology, 17(1), 5368.Google Scholar
Judd, C. H. (1899). A study of gemoetrical illusions. Psychological Review, 6, 241249.Google Scholar
Judge, T. A., & Cable, D. M. (2004). The effect of physical height on workplace success and income: Preliminary test of a theoretical model. Journal of Applied Psychology, 89(3), 428441.Google Scholar
Julian, J. B., Keinath, A. T., Muzzio, I. A., & Epstein, R. A. (2015). Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. Proceedings of the National Academy of Sciences, 112(20), 65036508.Google Scholar
Kafaligonul, H., & Oluk, C. (2015). Audiovisual associations alter the perception of low-level visual motion. Frontiers in Integrative Neuroscience, 9, 26.Google Scholar
Kafaligönül, H., Patel, S. S., Öğmen, H., Bedell, H. E., & Purushothaman, G. (2010). Perceptual asynchronies and the dual-channel differential latency hypothesis. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 379395). New York: Cambridge University Press.Google Scholar
Kahan, T. A., Colligan, S. M., & Wiedman, J. N. (2011). Are visual features of a looming or receding object processed in a capacity-free manner? Consciousness and Cognition, 20(4), 17611767.Google Scholar
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175219.Google Scholar
Kaiser, M. K., & Mowafy, L. (1993). Optical specification of time-to-passage: Observers’ sensitivity to global tau. Journal of Experimental Psychology: Human Perception and Performance, 19(5), 10281040.Google Scholar
Kanai, R., Sheth, B. R., & Shimojo, S. (2004). Stopping the motion and sleuthing the flash-lag effect: Spatial uncertainty is the key to perceptual mislocalization. Vision Research, 44, 26052619.Google Scholar
Kanai, R., & Verstraten, F. A. J. (2006). Visual transients reveal the veridical position of a moving object. Perception, 35, 453460.Google Scholar
Kanizsa, G. (1979). Organization in vision. New York: Praeger.Google Scholar
Kanten, A. B., & Teigen, K. H. (2015). A magnitude effect in judgments of subjective closeness. Personality and Social Psychology Bulletin, 41, 17121722.Google Scholar
Kaptein, R. G., & Van Gisbergen, J. A. (2004). Interpretation of a discontinuity in the sense of verticality at large body tilt. Journal of Neurophysiology, 91, 22052214.Google Scholar
Kaptein, R. G., & Van Gisbergen, J. A. (2005). Nature of the transition between two modes of external space perception in tilted subjects. Journal of Neurophysiology, 93(6), 33563369.Google Scholar
Karwoski, T. F., Odbert, H. S., & Osgood, C. E. (1942). Studies in synesthetic thinking: II. The role of form in visual responses to music. The Journal of General Psychology, 26, 199222.Google Scholar
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751761.Google Scholar
Kauffman, S. (1995). At home in the universe. New York: Oxford University Press.Google Scholar
Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169185.Google Scholar
Kay, P., & Kempton, W. (1984). What is the Sapir-Whorf hypothesis? American Anthropologist, 86, 6579.Google Scholar
Keating, C. F. (1985). Gender and the physiognomy of dominance and attractiveness. Social Psychology Quarterly, 48, 6170.Google Scholar
Keil, M. S., & Cristobal, G. (2000). Separating the chaff from the wheat: Possible origins of the oblique effect. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17, 697710.Google Scholar
Kelly, J. W., Loomis, J. M., & Beall, A. C. (2004). Judgments of exocentric direction in large-scale space. Perception, 33(4), 443454.Google Scholar
Kelly, M. H., & Freyd, J. J. (1987). Explorations of representational momentum. Cognitive Psychology, 19, 369401.Google Scholar
Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
Kelso, J. A. S. (2003), Cognitive coordination dynamics. In Tschacher, W. & Dauwalder, J. (Eds.), Dynamical systems approaches to embodied cognition (pp. 4567). Berlin: Springer Verlag.Google Scholar
Kelso, J. A. S., & Engstrøm, D. (2006). The complementary nature. Cambridge, MA: MIT Press.Google Scholar
Kemp, M. (1992). The science of art: Optical themes in western art from Brunelleschi to Seurat. New Haven, CT: Yale University Press.Google Scholar
Kerkman, D. D., Friedman, A., Brown, N. R., Stea, D., & Carmichael, A. (2003). The development of geographic categories and biases. Journal of Experimental Child Psychology, 84(4), 265285.Google Scholar
Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 37033715.Google Scholar
Kerzel, D. (2002a). Attention shifts and memory averaging. Quarterly Journal of Experimental Psychology, 55A, 425443.Google Scholar
Kerzel, D. (2002b). Different localization of motion onset with pointing and relative judgements. Experimental Brain Research, 145(3), 340350.Google Scholar
Kerzel, D. (2002c). The locus of “memory displacement” is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight. Perception & Psychophysics, 64, 680692.Google Scholar
Kerzel, D. (2002d). A matter of design: No representational momentum without predictability. Visual Cognition, 9, 6680.Google Scholar
Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition, 88, 109131.Google Scholar
Kerzel, D. (2003b). Centripetal force draws the eyes, not memory of the target, toward the center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 458466.Google Scholar
Kerzel, D. (2003c). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 26232635.Google Scholar
Kerzel, D. (2004). Attentional load modulates mislocalization of moving stimuli, but does not eliminate the error. Psychonomic Bulletin & Review, 11, 848853.Google Scholar
Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum.” Psychonomic Bulletin & Review, 13, 166173.Google Scholar
Kerzel, D. (2010). The Fröhlich effect: Past and present. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 321337). New York: Cambridge University Press.Google Scholar
Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 19751978.Google Scholar
Kerzel, D., & Gegenfurtner, K. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Research, 44(6), 577590.Google Scholar
Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829840.Google Scholar
Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Research, 42, 181189.Google Scholar
Keslo, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
Kessler, K., Gordon, L., Cessford, K., & Lages, M. (2010). Characteristics of motor resonance produce the pattern of flash-lag effects for biological motion. PLoS ONE, 5, e8258.Google Scholar
Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33(4), 681695.Google Scholar
Khurana, B., Carter, R. M., Watanabe, K., & Nijhawan, R. (2006). Flashlag chimeras: The role of perceived alignment in the composite face effect. Vision Research, 46, 27572772.Google Scholar
Khurana, B., & Nijhawan, R. (1995). Extrapolation or attention shift? Nature, 378, 566.Google Scholar
Khurana, B., Watanabe, K., & Nijhawan, R. (2000). The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception, 29, 675692.Google Scholar
Kim, R., Peters, M. A., & Shams, L. (2012). 0 + 1 > 1: How adding noninformative sound improves performance on a visual task. Psychological Science, 23, 612.Google Scholar
Kim, S., Dede, A. J., Hopkins, R.O., & Squire, L. R. (2015). Memory, scene construction, and the human hippocampus. Proceedings of the National Academy of Sciences USA 112, 47674772.Google Scholar
Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press.Google Scholar
King, A. J. (2004). The Superior Colliculus, Current Biology 14(9), R335R338.Google Scholar
King, S. M., Dykeman, C., Redgrave, P., & Dean, P. (1992). Use of a distracting task to obtain defensive head movements to looming visual-stimuli by human adults in a laboratory setting. Perception, 21(2), 245259.Google Scholar
King, Z. R., Tenhundfeld, N. T., & Witt, J. K. (2018). What you see and what you are told: Feedback does not diminish action-specific perception. Psychological Research, 82. 507519.Google Scholar
Kingdom, F. A., Prins, N., & Hayes, A. (2003). Mechanism independence for texture-modulation detection is consistent with a filter-rectify-filter mechanisms. Visual Neuroscience, 20, 6576.Google Scholar
Kinsbourne, M., & Jordan, J. S. (2009). Embodied anticipation: A neurodevelopmental interpretation. Discourse Processes, 46, 103126.Google Scholar
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: A consequence of the interaction of visual focal attention and metacontrast. Vision Research, 39, 37023709.Google Scholar
Kitagawa, N., & Ichihara, S. (2002). Hearing visual motion in depth. Nature, 416, 172174.Google Scholar
Kitajima, N., & Yamashita, Y. (1999). Dynamic capture of sound motion by light stimuli moving in three-dimensional space. Perceptual and Motor Skills, 89, 11391158.Google Scholar
Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In Freksa, C., Habel, C., & Wender, K. F. (Eds.), Spatial cognition – An interdisciplinary approach to representation and processing of spatial knowledge (pp. 117). Berlin: Springer-Verlag.Google Scholar
Klein, R., Brennan, M., D’Aloisio, A., D’Entremont, B., & Gilani, A. (1987a). Covert cross-modality orienting of attention. Unpublished manuscript.Google Scholar
Klein, R. M. (2009). On the control of attention. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 63(3), 240252.Google Scholar
Klein, R. M., Brennan, M., & Gilani, A. (1987b, November). Covert cross-modality orienting of attention in space. Paper presented at the annual meeting of the Psychonomics Society, Seattle, WA.Google Scholar
Klein, R. M., Christie, J., & Morris, E. P. (2005). Vector averaging of inhibition of return. Psychonomic Bulletin & Review, 12, 295300.Google Scholar
Klein, R. M., & Hilchey, M. D. (2011). Oculomotor inhibition of return. In Liversedge, S., Gilchrist, I. D., & Everling, S. (Eds.), The Oxford handbook of eye movements (pp. 471492). Oxford: Oxford University Press.Google Scholar
Klein, R. M., & Juckes, T. (1989, October). Can auditory frequency control the direction of visual attention? Paper presented at the Canadian Acoustic Association, Halifax, Nova Scotia. (Abstract published in Proceedings).Google Scholar
Klein, S. (2002). Libet’s research on the timing of conscious intention to act: A commentary. Consciousness and Cognition, 11, 273279.Google Scholar
Kleinman, J. T., Newhart, M., Davis, C., Heidler-Gary, J., Gottesman, R. F., & Hillis, A. E. (2007). Right hemispatial neglect: Frequency and characterization following acute left hemisphere stroke. Brain and Cognition, 64, 5059.Google Scholar
Klippel, A. (2012). Spatial information theory meets spatial thinking: Is topology the Rosetta Stone of spatio-temporal cognition? Annals of the Association of American Geographers, 102, 13101328.Google Scholar
Klippel, A., Knuf, L., Hommel, B., & Freksa, C. (2004). Perceptually induced distortions in cognitive maps. In Spatial Cognition IV. Reasoning, Action, Interaction (pp. 204213). Berlin: Springer Heidelberg.Google Scholar
Kluss, T., Marsh, W. E., Zetzsche, C., & Schill, K. (2015). Representation of impossible worlds in the cognitive map. Cognitive Processing, 16(Suppl 1), 271276.Google Scholar
Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. New York: Cambridge University Press.Google Scholar
Kobayashi, M., Teramoto, W., Hidaka, S., & Sugita, Y. (2012a). Indiscriminable sounds determine the direction of visual motion. Scientific Reports, 2, 365.Google Scholar
Kobayashi, M., Teramoto, W., Hidaka, S., & Sugita, Y. (2012b). Sound frequency and aural selectivity in sound-contingent visual motion aftereffect. PLoS ONE, 7, e36803.Google Scholar
Koenderink, J. J., & van Doorn, A. J. (1998). Exocentric pointing. In Harris, L. R. & Jenkin, M. (Eds.), Vision and action (pp. 295313). Cambridge: Cambridge University Press.Google Scholar
Koenderink, J. J., & van Doorn, A. J. (2008). The structure of visual spaces. Journal of Mathematical Imaging and Vision, 31, 171187.Google Scholar
Koenderink, J. J., van Doorn, A. J., Kappers, A. M. L., Doumen, M. J. A., & Todd, J. T. (2008). Exocentric pointing in depth. Vision Research, 48, 716723.Google Scholar
Koenderink, J. J., van Doorn, A. J., Kappers, A. M. L., & Lappin, J. S. (2002). Large-scale visual frontoparallels under full-cue conditions. Perception, 31, 14671475.Google Scholar
Koenderink, J. J., van Doorn, A. J., & Lappin, J. S. (2000). Direct measurement of the curvature of visual space. Perception, 29, 6979.Google Scholar
Koffka, K. (1935). Principles of Gestalt psychology. New York: Harcourt Brace.Google Scholar
Köhler, W. (1938). Physical Gestalten. In Ellis, W. D. (Ed.), A source book of Gestalt psychology (pp. 1754). London: Routledge & Kegan Paul. (Original work published 1920).Google Scholar
Köhler, W. (1920). Die physischen Gestalten in Ruhe und im stationären Zustand. Eine natur-philosophische Untersuchung. Braunschweig. Germany: Friedr. Vieweg und Sohn. (Translated extract reprinted as “Physical Gestalten.” In Ellis, W. D. [Ed.]. [1938]. A source book of Gestalt psychology [pp. 1754]. London: Routledge & Kegan Paul Ltd.)Google Scholar
Köhler, W. (1940). Dynamics in psychology. New York: Liveright.Google Scholar
Kolb, H. (2007). Feedback loops in the retina. Retrieved from www.ncbi.nlm.nih.gov/books/NBK11514/Google Scholar
Konečni, V. J. (2001). The golden section in the structure of 20th-century painting. Rivista Psicologia dell’Arta, Visual Arts Research, 22, 2742.Google Scholar
Konečni, V. J. (2005). On the “golden section.” Visual Arts Research, 31, 7687.Google Scholar
Konen, C. S., & Kastner, S. (2008). Two hierarchically organized neural systems for object information in human visual cortex. Nature Neuroscience, 11(2), 224231.Google Scholar
Koriat, A., Goldsmith, M., & Pansky, A. (2000). Toward a psychology of memory accuracy. Annual Review of Psychology, 51, 481537.Google Scholar
Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PLoS ONE, 2, e943.Google Scholar
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility ⎯ A model and taxonomy. Psychological Review, 97, 253270.Google Scholar
Kornblum, S., & Lee, J.-W. (1995). Stimulus–response compatibility with relevant and irrelevant stimulus dimensions that do and do not overlap with the response. Journal of Experimental Psychology: Human Perception and Performance, 21, 855875.Google Scholar
Kosovicheva, A. A., Maus, G. W., Anstis, S., Cavanagh, P., Tse, P. U., & Whitney, D. (2012). The motion-induced shift in the perceived location of a grating also shifts its aftereffect. Journal of Vision, 12(8): 114.Google Scholar
Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94(2), 148175.Google Scholar
Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception and Performance, 15(4), 723735.Google Scholar
Kosslyn, S. M., Pick, H. L., & Fariello, G. R. (1974). Cognitive maps in children and men. Child Development, 45, 707716.Google Scholar
Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12, 4855.Google Scholar
Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion. Psychonomic Bulletin & Review, 8, 439453.Google Scholar
Koziol, L., Budding, D., & Chidekel, D. (2011). From movement to thought: Executive function, embodied cognition, and the cerebellum. The Cerebellum, 11, 505525.Google Scholar
Koziol, L., & Lutz, J. (2013). From movement to thought: The development of executive function. Applied Neuropsychology: Child, 2(2), 104115.Google Scholar
Kragen, B. P. (2005). The art of composition. Allworth Communications.Google Scholar
Kranjec, A. (2013). Thought is a material: Talking with Mel Bochner about space, art, and language. Journal of Cognitive Neuroscience, 25(12), 20152024.Google Scholar
Kranjec, A., & Chatterjee, A. (2010). Are temporal concepts embodied? A challenge for cognitive neuroscience. Frontiers in Psychology (Special Issue: Embodied and grounded cognition) 1:240.Google Scholar
Kranjec, A., Ianni, G., & Chatterjee, A. (2013). Schemas reveal spatial relations to a patient with simultanagnosia. Cortex, 49(7), 19831988.Google Scholar
Kranjec, A., Lupyan, G., & Chatterjee, A. (2014). Categorical biases in perceiving spatial relations. PLoS ONE, 9(5), e98604.Google Scholar
Kreegipuu, K., & Allik, J. (2003). Perceived onset time and position of a moving stimulus. Vision Research, 43, 16251635.Google Scholar
Kreegipuu, K., & Allik, J. (2004). Confusion of space and time in the flash-lag effect. Perception, 33, 293306.Google Scholar
Kreindel, E., & Intraub, H. (2017). Anticipatory scene representation in preschool children’s recall and recognition memory. Developmental Science. doi: 10.1111/desc.12444Google Scholar
Krekelberg, B. (2001). The persistence of position. Vision Research, 41, 529539.Google Scholar
Krekelberg, B. (2003). Sound and vision. Trends in Cognitive Sciences, 7, 277279.Google Scholar
Krekelberg, B. (2008). Perception of direction is not compensated for neural latency. Behavioral and Brain Sciences, 31(2), 208209.Google Scholar
Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research, 39, 26692679.Google Scholar
Krekelberg, B., & Lappe, M. (2000a). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Research, 40, 201215.Google Scholar
Krekelberg, B., & Lappe, M. (2000b). The position of moving objects. Science, 289, 1107a.Google Scholar
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends in Neurosciences, 24, 335339.Google Scholar
Krekelberg, B., & Lappe, M. (2002). Response: Untangling spatial from temporal illusions. Trends in Neurosciences, 25, 294.Google Scholar
Krüger, H., Collins, T., Pressnitzer, D., Kang, H., Teki, S., & Patrick, C. (2015). Evidence for the common coding of location in auditory and visual space. Journal of Vision, 15(12), 368.Google Scholar
Krumhansl, C. L. (1979). The psychological representation of musical pitch in a tonal context. Cognitive Psychology, 11, 346374.Google Scholar
Krumhansl, C. L. (2001). Cognitive foundations of musical pitch. Oxford: Oxford University Press.Google Scholar
Kuang, S., & Zhang, T. (2014). Smelling directions: Olfaction modulates ambiguous visual motion perception. Scientific Reports, 4, 5796.Google Scholar
Kubovy, M. (1986). The psychology of perspective and Renaissance art. Cambridge: Cambridge University Press.Google Scholar
Kuipers, B., & Byun, Y. T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8(1), 4763.Google Scholar
Kumar, D., & Srinivasan, N. (2013). Hierarchical control and sense of agency: Differential effects of control on implicit and explicit measures of agency. Proceedings of 35th Annual Meeting of the Cognitive Science Society, Berlin, Germany.Google Scholar
Kunde, W. (2001). Response–effect compatibility in manual choice–reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387394.Google Scholar
Künnapas, T. M. (1955). An analysis of the “vertical–horizontal illusion.” Journal of Experimental Psychology, 49, 134140.Google Scholar
Künnapas, T. M. (1957). The vertical-horizontal illusion and the visual field. Journal of Experimental Psychology, 53, 405407.Google Scholar
Kushiro, K., Taga, G., & Watanabe, H. (2007). Frame of reference for visual perception in young infants during change of body position. Experimental Brain Research, 183, 523529.Google Scholar
Kwon, O.-C., Tadin, D., & Knill, D. C. (2015). Unifying account of visual motion and position perception. PNAS, 112, 81428147.Google Scholar
Kwon, T., & Kim, T. (2012). The effect of skill level on perceptual judgment. European Journal of Scientific Research, 91, 184187.Google Scholar
La Scaleia, B., Lacquaniti, F., & Zago, M. (2014). Neural extrapolation of motion for a ball rolling down an inclined plane. PLoS ONE, 9, e99837.Google Scholar
La Scaleia, B., Zago, M., & Lacquaniti, F. (2015). Hand interception of occluded motion in humans: a test of model-based vs. on-line control. Journal of Neurophysiology, 114(3), 15771592.Google Scholar
Laberge, D., Auclair, L., & Siéroff, E. (2000). Preparatory attention: Experiment and theory. Consciousness and Cognition, 9, 396434.Google Scholar
Lackner, J. R., & DiZio, P. (2000). Human orientation and movement control in weightless and artificial gravity environments. Experimental Brain Research, 130(1), 226.Google Scholar
Lacquaniti, F. (1997). Frames of reference in sensorimotor coordination. In Boller, F. & Grafman, J. (Eds.), Handbook of neuropsychology (vol. 11, pp. 2764). Amsterdam: Elsevier.Google Scholar
Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2014). Multisensory integration and internal models for sensing gravity effects in primates. Biomedical Research International, 2014, 615854.Google Scholar
Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2015). Gravity in the brain as a reference for space and time perception. Multisensory Research. doi:10.1163/22134808-00002471Google Scholar
Lacquaniti, F., & Maioli, C. (1989). The role of preparation in tuning anticipatory and reflex responses during catching, Journal of Neuroscience, 9, 134148.Google Scholar
Lakens, D., Semin, G. R., & Foroni, F. (2011). Why your highness needs the people. Social Psychology, 42(3), 205213.Google Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
Landau, B., & Jackendoff, R. (1993). Whence and whither in spatial language and spatial cognition? Behavioral and Brain Sciences, 16(2), 255265.Google Scholar
Landau, M. J., Meier, B. P., & Keefer, L. A. (2010). A metaphor-enriched social cognition. Psychological Bulletin, 136(6), 10451067.Google Scholar
Lappe, M., & Krekelberg, B. (1998). The position of moving objects. Perception, 27, 14371449.Google Scholar
Lappin, J. S., Shelton, A. L., & Rieser, J. J. (2006). Environmental context influences visually perceived distance. Attention, Perception, & Psychophysics, 68(4), 571581.Google Scholar
Larson, S. (2012). Musical forces: Motion, metaphor, and meaning in music. Bloomington: Indiana University Press.Google Scholar
Latto, R., Brain, D., & Kelly, B. (2000). An oblique effect in aesthetics: Homage to Mondrian (1872–1944). Perception, 29, 981987.Google Scholar
Latto, R., & Russell-Duff, K. (2002). An oblique effect in the selection of line orientation by twentieth century painters. Empirical Studies of the Arts, 20, 4960.Google Scholar
Laurens, J., Meng, H., & Angelaki, D. E. (2013) Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron, 80, 15081518.Google Scholar
Laurienti, P. J., Kraft, R. A., Maldjian, J. A., Burdett, J. H., & Wallace, M. T. (2004). Semantic congruence is a critical factor in multisensory behavioral performance. Experimental Brain Research, 158, 405414.Google Scholar
Lawson, R. (2010). People cannot locate the projection of an object on the surface of a mirror. Cognition, 115, 336342.Google Scholar
Lawson, R. (2012). Mirrors, mirrors on the wall … the ubiquitous multiple reflection error. Cognition, 122, 111.Google Scholar
Lawson, R., & Bertamini, M. (2006). Errors in judging information about reflections in mirrors. Perception, 35, 12651288.Google Scholar
Lawson, R., Bertamini, M., & Liu, D. (2007). Overestimation of the projected size of objects on the surface of mirrors and windows. Journal of Experimental Psychology: Human Perception and Performance, 33, 10271044.Google Scholar
Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11–12), 765779.Google Scholar
Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of Environmental Psychology, 16, 5968.Google Scholar
Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9–10), 389401.Google Scholar
Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489508.Google Scholar
Leder, H., Carbon, C., & Ripsas, A. (2006). Entitling art: Influence of title information on understanding and appreciation of paintings. Acta Psychologica, 121, 176198.Google Scholar
Lee, D. N. (1976). Theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437459.Google Scholar
Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10(3-4), 221-250.Google Scholar
Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets – A paradigm of ecological optics. Nature, 293(5830), 293294.Google Scholar
Lee, T. C. P., Khuu, S. K., Li, W., & Hayes, A. (2008). Distortion in perceived image size accompanies flash lag in depth. Journal of Vision, 8(11), 20.Google Scholar
Lee, Y., Lee, S., Carello, C., & Turvey, M. T. (2012). An archer’s perceived form scales the “hitableness” of archery targets. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 11251131.Google Scholar
Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex, 48, 13201328.Google Scholar
Leslie, A. M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. & Gelman, S. (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 119148). New York: Cambridge University Press.Google Scholar
Lessard, D. A., Linkenauger, S. A., & Proffitt, D. R. (2009). Look before you leap: Jumping ability affects distance perception. Perception, 38, 18631866.Google Scholar
Leung, A. K., Qiu, L., Ong, L., & Tam, K. P. (2011). Embodied cultural cognition: Situating the study of embodied cognition in socio-cultural contexts. Social and Personality Psychology Compass, 5(9), 591608.Google Scholar
Levelt, W. J. M. (1982a). Cognitive styles in the use of spatial direction terms. In Jarvella, R. J. & Klein, W. (Eds.), Speech, place, and action (pp. 251268). Chichester: Wiley.Google Scholar
Levelt, W. J. M. (1982b). Linearization in describing spatial networks. In Peters, S. & Saarinen, E. (Eds.), Processes, beliefs, and questions (pp. 199220). Dordrecht: Reidel.Google Scholar
Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. Van Doorn, W. A. Van de Grind, & J. J. Koenderink (Eds.), Limits in perception (pp. 323358). Utrecht: VNU Science Press.Google Scholar
Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.Google Scholar
Leventhal, A. G. (1983). Relationship between preferred orientation and receptive field position of neurons in cat striate cortex. Journal of Comparative Neurology, 220, 476483.Google Scholar
Levi, D. M., Klein, S. A., & Yap, Y. L. (1988). Weber’s law for position: Unconfounding the role of separation and eccentricity. Vision Research, 28, 597603.Google Scholar
Levin, C. A., & Haber, R. N. (1993). Visual angle as a determinant of perceived interobject distance. Attention, Perception, & Psychophysics, 54(2), 250259.Google Scholar
Levine, M., Marchon, I., & Hanley, G. (1984). The placement and misplacement of you-are-here maps. Environment and Behavior, 16(2), 139157.Google Scholar
Levinson, S. (1996) Frames of reference and Molyneux’s question: Cross-linguistic evidence. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. (Eds.), Space and language (pp. 109169). Cambridge, MA: MIT Press.Google Scholar
Levinson, S. C. (2003). Space in language and cognition: Explorations in cognitive diversity. Cambridge: Cambridge University Press.Google Scholar
Levy, J. (1976). Lateral dominance and aesthetic preference. Neuropsychologia, 14, 431445.Google Scholar
Lewis, C. F., & McBeath, M. K. (2004). Bias to experience approaching motion in a three-dimensional virtual environment. Perception, 33(3), 259276.Google Scholar
Lewis, J. E., & Neider, M. B. (2015). Fixation not required: Characterizing oculomotor attention capture for looming stimuli. Attention, Perception, & Psychophysics, 77(7), 22472259.Google Scholar
Lewis, J. W., Beauchamp, M. S., & DeYoe, E. A. (2000). A comparison of visual and auditory motion processing in human cerebral cortex. Cerebral Cortex, 10, 873888.Google Scholar
Lewkowicz, D. J., & Minar, N. J. (2014). Infants are not sensitive to synesthetic cross-modality correspondences: A comment on Walker et al. (2010). Psychological Science, 25, 832834.Google Scholar
Leyssen, M. H. R., Linsen, S., Sammartino, J., & Palmer, S. E. (2012). Aesthetic preference for spatial composition in multiobject pictures. I-Perception, 3, 2549.Google Scholar
Leyton, M. (1989). Inferring causal history from shape. Cognitive Science, 13, 357387.Google Scholar
Leyton, M. (1992). Symmetry, causality, mind. Cambridge, MA: MIT Press.Google Scholar
Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: A neural basis in the visual cortex. Journal of Neurophysiology, 90, 204217.Google Scholar
Li, C., & Chen, T. (2009). Aesthetic visual quality assessment of paintings. IEEE Journal of Selected Topics in Signal Processing, 3, 236252.Google Scholar
Li, Z., Phillips, J., & Durgin, F. H. (2011). The underestimation of egocentric distance: Evidence from frontal matching tasks. Attention, Perception, & Psychophysics, 73, 22052217.Google Scholar
Liberman, N., & Förster, J. (2009). The effect of psychological distance on perceptual level of construal. Cognitive Science, 33(7), 13301341.Google Scholar
Liberman, N., Trope, Y., & Stephan, E. (2007). Psychological distance. In Kruglanski, A. W. & Higgins, E. T. (Eds.), Social psychology: A handbook of basic principles (2nd ed, pp. 353383). New York: Guilford Press.Google Scholar
Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences, 8, 529566.Google Scholar
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): The unconscious initiation of a freely voluntary act. Brain, 106, 623642.Google Scholar
Libet, B., Wright, E. W. Jr., & Gleason, C. A. (1982). Readiness-potentials preceding unrestricted “spontaneous” vs. pre-planned voluntary acts. Electroencephalography and Clinical Neurophysiology, 54, 322335.Google Scholar
Lidji, P., Kolinsky, R., Lochy, A., & Morais, J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance, 33, 11891207.Google Scholar
Lima, S. L., Blackwell, B. F., DeVault, T. L., & Fernandez-Juricic, E. (2015). Animal reactions to oncoming vehicles: A conceptual review. Biological Reviews, 90(1), 6076.Google Scholar
Lin, J. Y., Franconeri, S., & Enns, J. T. (2008). Objects on a collision path with the observer demand attention. Psychological Science, 19(7), 686692.Google Scholar
Linares, D., & López-Moliner, J. (2007). Absence of flash-lag when judging global shape from local positions. Vision Research, 47, 357362.Google Scholar
Linares, D., López-Moliner, J., & Johnston, A. (2007). Motion signal and the perceived positions of moving objects. Journal of Vision, 7(7), 1.Google Scholar
Lindauer, M. S. (1969). The orientation of form in abstract art. Proceedings of the American Psychological Association, 4, 475476.Google Scholar
Lindell, A. K. (2013). The silent social/emotional signals in left and right cheek poses: A literature review. Laterality: Asymmetries of Body, Brain and Cognition, 18(5), 612624.Google Scholar
Lindell, A. K. & Nicholls, M. E. R. (2003). The Cortex Forum – Cortical representation of the fovea: Implications for visual half-field research. Cortex, 39, 111117.Google Scholar
Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space: Memory requirements influence spatial–numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515524.Google Scholar
Lindsay, S. (2008). Source monitoring. In Roediger, H. L. III (Ed.), Cognitive psychology of memory, Vol. 2 of Learning and memory: A comprehensive reference, 4 vols. (J. Byrne Editor) (pp. 325348). Oxford: Elsevier.Google Scholar
Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line – An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 7484.Google Scholar
Link, T., Nuerk, H.-C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. Quarterly Journal of Experimental Psychology, 67(8), 15971613.Google Scholar
Linkenauger, S. A., Bulthoff, H. H., & Mohler, B. J. (2015). Virtual arm’s reach influences perceived distance but only after experience reaching. Neuropsychologia, 70, 393401.Google Scholar
Linkenauger, S. A., Leyrer, M., Buelthoff, H. H., & Mohler, B. J. (2013). Welcome to wonderland: The influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects. PLoS ONE, 8(7), e68594.Google Scholar
Linkenauger, S. A., Ramenzoni, V., & Proffitt, D. R. (2010). Illusory shrinkage and growth: Body-based rescaling affects the perception of size. Psychological Science, 21(9), 13181325.Google Scholar
Linkenauger, S. A., Witt, J. K., & Proffitt, D. R. (2011). Taking a hands-on approach: Apparent grasping ability scales the perception of object size. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 14321441.Google Scholar
Lipinski, J., Simmering, V. R., Johnson, J. S., & Spencer, J. P. (2010). The role of experience in location estimation: Target distributions shift location memory biases. Cognition, 115(1), 147153.Google Scholar
Lipshits, M., Bengoetxea, A., Cheron, G., & McIntyre, J. (2005). Two reference frames for visual perception in two gravity conditions. Perception, 34, 545555.Google Scholar
Lipshits, M., & McIntyre, J. (1999). Gravity affects the preferred vertical and horizontal in visual perception of orientation. NeuroReport, 10, 10851089.Google Scholar
Lisi, M., & Cavanagh, P. (2015) Dissociation between the perceptual and saccadic localisation of moving objects. Current Biology, 25, 235240.Google Scholar
Liu, E. H., Mercado, E., & Church, B. A. (2011). Multidimensional processing of dynamic sounds: More than meets the ear. Attention, Perception, & Psychophysics, 73(8), 26242638.Google Scholar
Liu, G. B., & Pettigrew, J. D. (2003). Orientation mosaic in barn owl’s visual Wulst revealed by optical imaging: Comparison with cat and monkey striate and extra-striate areas. Brain Research, 961, 153158.Google Scholar
Liu, T., Heeger, D. J., & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6, 12941301.Google Scholar
Livio, M. (2003). The golden ratio: The story of phi, the world’s most astonishing number. New York: Broadway Books.Google Scholar
Lloyd, R. (1989). The estimation of distance and direction from cognitive maps. American Cartographer, 16, 109122.Google Scholar
Lloyd, R., & Heivly, C. (1987) Systematic distortions in urban cognitive maps. Annals of the Association of American Geographers, 77, 191207.Google Scholar
Lobmaier, J. S., & Mast, F. W. (2007). The Thatcher illusion: Rotating the viewer instead of the picture. Perception, 36, 537546.Google Scholar
Locher, P., & Nagy, Y. (1996). Vision spontaneously establishes the percept of pictorial balance. Empirical Studies of the Arts, 14, 1731.Google Scholar
Locher, P. J., Cornelis, E., Wagemans, J., & Stappers, P. J. (2001). Artists’ use of compositional balance for creative visual displays. Empirical Studies of the Arts, 19, 213227.Google Scholar
Locher, P. J., & Nodine, C. (1987). Symmetry catches the eye. In O’Regan, J. K. & Levy-Schoen, A. (Eds.), Eye movements: Physiology to cognition (pp. 353361). Amsterdam: Elsevier.Google Scholar
Locher, P., & Nodine, C. (1989). The perceptual value of symmetry. Computers & Mathematics with Applications, 17, 475484.Google Scholar
Locher, P. J., Smith, J. K., & Smith, L. F. (2001). The influence of presentation format and viewer training in the visual arts on the perception of pictorial and aesthetic qualities in paintings. Perception, 30, 449465.Google Scholar
Locher, P. J., & Stappers, P. J. (2002). Factors contributing to the implicit dynamic quality of static abstract designs. Perception, 32, 10931107.Google Scholar
Locher, P. J., Stappers, P. J., & Overbeeke, K. (1998). The role of balance as an organizing design principle underlying adults’ compositional strategies for creating visual displays. Acta Psychologica, 99, 141161.Google Scholar
Loetscher, T., & Brugger, P. (2009). Random number generation in neglect patients reveals enhanced response stereotypy, but no neglect in number space. Neuropsychologia, 47, 276279.Google Scholar
Loetscher, T., Nicholls, M. E. R., Towse, J. N., Bradshaw, J. L., & Brugger, P. (2010). Lucky numbers: Spatial neglect affects physical, but not representational, choices in a Lotto task. Cortex, 46, 685690.Google Scholar
Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62.Google Scholar
Loftus, A. M., Nicholls, M. E., Mattingley, J. B., Chapman, H. L., & Bradshaw, J. L. (2009). Pseudoneglect for the bisection of mental number lines. Quarterly Journal Experimental Psychology, 62(5), 925945.Google Scholar
Loftus, E. F., & Marburger, W. (1983). Since the eruption of Mt. St. Helens, has anyone beaten you up? Improving the accuracy of retrospective reports with landmark events. Memory & Cognition, 11, 114120.Google Scholar
Longo, M. R., & Lourenco, S. F. (2006). On the nature of near space: Effects of tool use and the transition to far space. Neuropsychologia, 44, 977981.Google Scholar
Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906921.Google Scholar
Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5, 7277.Google Scholar
Loomis, J. M., & Philbeck, J. W. (1999). Is the anisotropy of perceived 3-D shape invariant across scale? Attention, Perception, & Psychophysics, 61, 397402.Google Scholar
Loomis, J. M., & Philbeck, J. W. (2008). Measuring perception with spatial updating and action. In Klatzky, R. L., Behrmann, M., & MacWhinney, B. (Eds.), Embodiment, ego-space, and action (pp. 143). Mahwah, NJ: Erlbaum.Google Scholar
Lopez, C., Bachofner, C., Mercier, M., & Blanke, O. (2009). Gravity and observer’s body orientation influence the visual perception of human body postures. Journal of Vision, 9(1), 114.Google Scholar
Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67(1–2), 119146.Google Scholar
López-Moliner, J., & Linares, D. (2006). The flash-lag is reduced when the flash is perceived as a sensory consequence of our action. Vision Research, 46, 21222129.Google Scholar
Lourenco, S. F., Bonny, J. W., & Schwartz, B. L. (2016). Children and adults use physical size and numerical alliances in third-party judgments of dominance. Frontiers in Psychology, 6, 110.Google Scholar
Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114(1), 96104.Google Scholar
Low, A., Lang, P. J., Smith, J. C., & Bradley, M. M. (2008). Both predator and prey emotional arousal in threat and reward. Psychological Science, 19(9), 865873.Google Scholar
Lu, A., Zhang, H., He, G., Zheng, D., & Hodges, B. H. (2014). Looking up to others: Social status, Chinese honorifics, and spatial attention. Canadian Journal of Experimental Psychology, 68, 7783.Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279281.Google Scholar
Ludwig, V. U., Adachi, I., & Matzuzawa, T. (2011). Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans. Proceedings of the National Academy of Sciences of the USA, 108, 2066120665.Google Scholar
Lundholm, H. (1921). The affective tone of lines: Experimental researches. Psychological Review, 28, 4360.Google Scholar
Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.Google Scholar
Luneburg, R. K. (1950). The metric of binocular visual space. Journal of the Optical Society of America, 40, 627642.Google Scholar
Lunven, M., Thiebaut De Schotten, M., Bourlon, C., Duret, C., Migliaccio, R., Rode, G., & Bartolomeo, P. (2015). White matter lesional predictors of chronic visual neglect: A longitudinal study. Brain, 138(3), 746760.Google Scholar
Lupón-Bas, N., Torrents-Gómez, A., Cardona, G., Da Silva, J. A., & Aznar-Casanova, J. A. (2014). New evidence of visual space anisotropy with autostereograms. Psychology & Neuroscience, 7(3), 261267.Google Scholar
Lupyan, G. (2008). The conceptual grouping effect: Categories matter (and named categories matter more). Cognition, 108(2), 566577.Google Scholar
Lupyan, G., Thompson-Schill, S. L., & Swingley, D. (2010). Conceptual penetration of visual processing. Psychological Science, 21(5), 682691.Google Scholar
Luria, A. R. (1959). Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury. Brain, 82(3), 437449.Google Scholar
Lynch, K. (1960). The image of the city. Cambridge, MA: MIT Press.Google Scholar
Maass, A., Pagani, D., & Berta, E. (2007). How beautiful is the goal and how violent is the fistfight? Spatial bias in the interpretation of human behavior. Social Cognition, 25(6), 833852.Google Scholar
Maass, A., & Russo, A. (2003). Directional bias in the mental representation of spatial events: nature or culture? Psychological Science, 14(4), 296301.Google Scholar
Maass, A., & Suitner, C. (2011). Spatial constraints of social cognition. Social Psychology, 42(3), 159164.Google Scholar
Maass, A., Suitner, C., Favaretto, X., & Cignacchi, M. (2009). Groups in space: Stereotypes and the spatial agency bias. Journal of Experimental Social Psychology, 45(3), 496504.Google Scholar
Maass, A., Suitner, C., & Nadhmi, F. (2014). What drives the spatial agency bias? An Italian–Malagasy–Arabic comparison study. Journal of Experimental Psychology: General, 143(3), 991996.Google Scholar
Macaluso, E., Frith, C. D., & Driver, J. (2002). Supramodal effects of covert spatial orienting triggered by visual or tactile events. Journal of Cognitive Neuroscience, 14, 389401.Google Scholar
Macevoy, S. P., & Epstein, R. A. (2007). Position selectivity in scene- and object-responsive occipitotemporal regions. Journal of Neurophysiology, 98, 20892098.Google Scholar
Mach, E. (1959). The analysis of sensations. New York: Dover.Google Scholar
Macmillan, N. A., & Creelman, C. D. (2008). Detection theory: A user’s guide (2nd Ed.). New York: Psychology Press.Google Scholar
MacNeilage, P. R., Banks, M. S., Berger, D. R., & Bulthoff, H. H. (2007). A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Experimental Brain Research, 179, 263290.Google Scholar
Maeda, F., Kanai, R., & Shimojo, S. (2004). Changing pitch induced visual motion illusion. Current Biology, 14, R990R991.Google Scholar
Maglio, S. J., Trope, Y., & Liberman, N. (2013). The common currency of psychological distance. Current Directions in Psychological Science, 22, 278282.Google Scholar
Maguire, E. A., Intraub, H., & Mullally, S. L. (2016). Scenes, spaces, and memory traces: What does the hippocampus do? Neuroscientist, 22(5), 432439.Google Scholar
Mai, L., Le, H., Niu, Y., & Liu, F. (2011). Rule of third detection from photograph. In Proceedings of the IEEE International Symposium on Multimedia (ISM) (pp. 9196). Dana Point, CA.Google Scholar
Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in flash-lag effect. Vision Research, 47, 16551661.Google Scholar
Maier, J. X., Chandrasekaran, C., & Ghazanfar, A. A. (2008). Integration of bimodal looming signals through neuronal coherence in the temporal lobe. Current Biology, 18(13), 963968.Google Scholar
Maier, J. X., & Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. Journal of Neuroscience, 27(15), 40934100.Google Scholar
Maier, J. X., Neuhoff, J. G., Logothetis, N. K., & Ghazanfar, A. A. (2004). Multisensory integration of looming signals by Rhesus monkeys. Neuron, 43(2), 177181.Google Scholar
Mainwaring, S. D., Tversky, B., Ohgishi, M., & Schiano, D. J. (2003). Descriptions of simple spatial scenes in English and Japanese. Spatial Cognition and Computation, 3, 342.Google Scholar
Maki, R. H. (1981) Categorization and distance effects with spatial linear orders. Journal of Experimental Psychology: Human Learning and Memory, 7, 1532.Google Scholar
Mamassian, P., & de Montalembert, M. (2010). A simple model of the vertical-horizontal illusion. Vision Research, 50(10), 956962.Google Scholar
Mamassian, P., & Landy, M. S. (2001). Interaction of visual prior constraints. Vision Research, 41, 26532668.Google Scholar
Mandler, G. (1967). Organization and memory. In Spence, K. W. & Spence, J. T. (Eds.), The psychology of learning and motivation (Vol. 1). New York: Academic Press.Google Scholar
Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review, 99(4), 587604.Google Scholar
Mannan, S. K., Mort, D. J., Hodgson, T. L., Driver, J., Kennard, C., & Husain, M. (2005). Revisiting previously searched locations in visual neglect: Role of right parietal and frontal lesions in misjudging old locations as new. Journal of Cognitive Neuroscience, 17, 340354.Google Scholar
Mannion, D. J., McDonald, J. S., & Clifford, C. W. (2010). Orientation anisotropies in human visual cortex. Journal of Neurophysiology, 103, 34653471.Google Scholar
Manser, M. P., & Hancock, P. A. (1996). Influence of approach angle on estimates of time-to-contact. Ecological Psychology, 8(1), 7199.Google Scholar
Mansfield, R. J. W., & Ronner, S. F. (1978). Orientation anisotropy in monkey visual cortex. Brain Research, 149, 229234.Google Scholar
Mao, L., Zhou, B., Zhou, W., & Han, S. (2007). Neural correlates of covert orienting of visual spatial attention along vertical and horizontal dimensions. Brain Research, 1136, 142153.Google Scholar
Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88(3), B1B10.Google Scholar
Marangolo, P., Piccardi, L., & Rinaldi, M. C. (2003). Dissociation between personal and extrapersonal neglect in a crossed aphasia study. Neurocase, 9(5), 414420.Google Scholar
Mareschal, I., Morgan, M. J., & Solomon, J. A. (2010). Cortical distance determines whether flankers cause crowding or the tilt illusion. Journal of Vision, 10(8), 114.Google Scholar
Marin, D., Pitteri, M., Della Puppa, A., Meneghello, F., Biasutti, E., Priftis, K., & Vallesi, A. (2016). Mental time line distortion in right-brain-damaged patients: Evidence from a dynamic spatiotemporal task. Neuropsychology, 30(3), 338345.Google Scholar
Mark, V. W., Kooistra, C. A., & Heilman, K. M. (1988). Hemispatial neglect affected by non-neglected stimuli. Neurology, 38(8), 12071211.Google Scholar
Markman, A. B., & Gentner, D. (1993). Splitting the difference: A structural alignment view of similarity. Journal of Memory and Language, 32, 517535.Google Scholar
Markovits, H., & Benenson, J. F. (2010). Males outperform females in translating social relations into spatial positions. Cognition, 117(3), 332340.Google Scholar
Marks, L. E. (2004). Cross-modal interactions in speeded classification. In Calvert, G. A., Spence, C., & Stein, B. E. (Eds.), Handbook of multisensory processes (pp. 85105). Cambridge, MA: MIT Press.Google Scholar
Marr, D. (1982). Vision. San Francisco: Freeman.Google Scholar
Marsh, A. A., Yu, H. H., Schechter, J. C., & Blair, R. J. R. (2009). Larger than life: Humans’ nonverbal status cues alter perceived size. PLoS ONE, 4(5), e5707.Google Scholar
Marsh, E. B., & Hillis, A. (2008). Dissociation between egocentric and allocentric visuospatial and tactile neglect in acute stroke. Cortex, 44, 12151220.Google Scholar
Marshall, J. C., & Halligan, P. W. (1990). Line bisection in a case of visual neglect: Psychophysical studies with implications of theory. Cognitive Neuropsychology, 7, 107130.Google Scholar
Masson, N., Pesenti, M., & Dormal, V. (2016). Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line. British Journal of Psychology, 107(3), 467483.Google Scholar
Masson, N., Pesenti, M., & Dormal, V. (2017). Impact of optokinetic stimulation on mental arithmetic. Psychonological Research, 81, 840849.Google Scholar
Mast, F., & Jarchow, T. (1996). Perceived body position and the visual horizontal. Brain Research Bulletin, 40, 393397.Google Scholar
Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711719.Google Scholar
Mateeff, S., Hohnsbein, J., & Noack, T. (1985). Dynamic visual capture: Apparent auditory motion induced by a moving visual target. Perception, 14, 721727.Google Scholar
Mather, G. (2012). Aesthetic judgment of orientation in modern art. i-Perception, 3, 1824.Google Scholar
Mathys, C. D., Lomakina, E. L., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00825Google Scholar
Mattingley, J. B., Bradshaw, J. L., & Bradshaw, J. A. (1995). The effects of unilateral visuospatial neglect on perception of Muller-Lyer illusory figures. Perception, 24, 415433.Google Scholar
Mattingley, J. B., David, G., & Driver, J. (1997). Preattentive filling-in of visual surfaces in parietal extinction. Science, 275, 671674.Google Scholar
Maturana, H., & Varela, F. (1980) Autopoiesis and cognition: The realization of the living. Boston, MA: Reidel.Google Scholar
Maus, G. W., & Nijhawan, R. (2006). Forward displacements of fading objects in motion: The role of transient signals in perceiving position. Vision Research, 46, 43754381.Google Scholar
Maus, G. W., & Nijhawan, R. (2009). Going, going, gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 611626.Google Scholar
Maus, G. W., Weigelt, S., Nijhawan, R., & Muckli, L. (2010). Does area V3A predict positions of moving objects? Frontiers of Psychology, 1, 186.Google Scholar
Mayne, R. (1974). A systems concept of the vestibular organs. In Kornhuber, H. (Ed.), Handbook of sensory physiology: Vestibular system: Psychophysics, applied aspects and general interpretations (Vol. 6, pp. 493580). Berlin: Springer-Verlag.Google Scholar
Mazur, A., Mazur, J., & Keating, C. (1984). Military rank attainment of a West Point class: Effects of cadets’ physical features. American Journal of Sociology, 90(1), 125150.Google Scholar
McBeath, M. K. (1990). The rising fastball: Baseball’s impossible pitch. Perception, 19(4), 545552.Google Scholar
McBeath, M. K., Brimhall, S. E., Miller, T. S., & Holloway, S. R. (2010). Naïve curvilinear impetus bias occurs for locomotion. Journal of Vision, 10(7), 1021.Google Scholar
McBeath, M. K., & Dye, R. A. (2015). Naïve psychophysics of physics teachers. Abstracts of the Psychonomic Society, 20, 18.Google Scholar
McBeath, M. K., & Morikawa, K. (1997). Forward-facing motion biases for rigid and nonrigid biologically likely transformations. Perceptual and Motor Skills, 85, 11871193.Google Scholar
McBeath, M. K., Morikawa, K., & Kaiser, M. K. (1992). Perceptual bias for forward-facing motion. Psychological Science, 3, 362367.Google Scholar
McBeath, M. K., Nathan, A. M., Bahill, A. T., & Baldwin, D. G. (2008). Paradoxical pop-ups: Why are they hard to catch? American Journal of Physics, 76(8), 723729.Google Scholar
McBeath, M. K., & Neuhoff, J. G. (2002). The Doppler effect is not what you think it is: Dramatic pitch change due to dynamic intensity change. Psychonomic Bulletin & Review, 9(2), 306313.Google Scholar
McBeath, M. K., Schiano, D. J., & Tversky, B. (1997). Three-dimensional bilateral symmetry assumed in judging figural identity and orientation. Psychological Science, 8(3), 217223.Google Scholar
McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995a). How baseball outfielders determine where to run to catch fly balls. Science, 268(5210), 569573.Google Scholar
McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995b). Play ball. Science 268(5218), 16811685.Google Scholar
McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1996). On catching fly balls. Science, 273(5272), 256259.Google Scholar
McBeath, M. K., & Shepard, R. N. (1989). Apparent motion between shapes differing in location and orientation: A window technique for estimating path curvature. Perception & Psychophysics, 46(4), 333337.Google Scholar
McBeath, M. K., & Sugar, T. G. (2005). Natural selection of asymmetric traits operates at multiple levels. Behavioral and Brain Sciences, 28(4), 605606.Google Scholar
McCarthy, L., & Olsen, K. N. (2017). A “looming bias” in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization. Attention, Perception, & Psychophysics, 79(1), 352362.Google Scholar
McCloskey, M. (1983a). Intuitive physics. Scientific American, 248, 122130.Google Scholar
McCloskey, M. (1983b). Naive theories of motion. In Gentner, D. & Stevens, A. (Eds.), Mental models (pp. 299324). Hillsdale, NJ: Erlbaum.Google Scholar
McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects. Science, 210(4474), 11391141.Google Scholar
McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The straight-down belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 636649.Google Scholar
McCloud, S. (1994). Understanding comics: The invisible art. Northampton, MA: William Morrow Paperbacks.Google Scholar
McCourt, M. E., & Jewell, G. (1999). Visuospatial attention in line bisection: Stimulus modulation of pseudoneglect. Neuropsychologia, 37, 843855.Google Scholar
McDonough, L., Choi, S., & Mandler, J. M. (2003). Understanding spatial relations: Flexible infants, lexical adults. Cognitive Psychology, 46, 229259.Google Scholar
McDunn, B. A., Siddiqui, A. P., & Brown, J. M. (2014). Seeking the boundary of boundary extension. Psychonomic Bulletin & Review, 21, 370375. doi: 10.3758/s13423-013-0494-0Google Scholar
McFie, J., Piercy, M., & Zangwill, O. (1950). Visual-spatial agnosia associated with lesions of the right cerebral hemisphere. Brain, 73(2), 167190.Google Scholar
McGeorge, P., Beschin, N., Colnaghi, A., Rusconi, M. L., & Della Sala, S. (2007). A lateralized bias in mental imagery: evidence for representational pseudoneglect. Neuroscience Letters, 421, 259263.Google Scholar
McGeorge, P., Beschin, N., & Della Sala, S. (2006). Representing target motion: The role of the right hemisphere in the forward displacement bias. Neuropsychology, 20, 708715.Google Scholar
McGuire, A., Gillath, O., & Vitevitch, M. (2016). Effects of mental resource availability on looming task performance. Attention, Perception, & Psychophysics, 78(1), 107113.Google Scholar
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746748.Google Scholar
McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton’s laws? Nature Neuroscience, 4, 693694.Google Scholar
McKee, S. P., & Welch, L. (1992). The precision of size constancy. Vision Research, 32(8), 14471460.Google Scholar
McKyton, A., & Zohary, E. (2007). Beyond retinotopic mapping: The spatial representation of objects in the human lateral occipital complex. Cerebral Cortex, 17, 11641172.Google Scholar
McLeod, R. W., & Ross, H. E. (1983). Optic-flow and cognitive-factors in time-to-collision estimates. Perception, 12(4), 417423.Google Scholar
McManus, I. C. (1980). The aesthetics of simple figures. British Journal of Psychology, 71, 505524.Google Scholar
McManus, I. C. (2005). Symmetry and asymmetry in aesthetics and the arts. European Review, 13, 157180.Google Scholar
McManus, I. C., Cook, R., & Hunt, A. (2010). Beyond the golden section and normative aesthetics: Why do individuals differ so much in their aesthetic preference for rectangles? Psychology of Aesthetics, Creativity, and the Arts, 4, 113126.Google Scholar
McManus, I. C., Edmondson, D., & Rodgers, J. (1985). Balance in pictures. British Journal of Psychology, 76, 311324.Google Scholar
McManus, I. C., & Humphrey, N. K. (1973). Turning the left cheek. Nature, 243, 271272.Google Scholar
McManus, I. C., & Kitson, C. M. (1995). Compositional geometry in pictures. Empirical Studies of the Arts, 13, 7394.Google Scholar
McManus, I. C., Stöver, K., & Kim, D. (2011). Arnheim’s Gestalt theory of visual balance: Examining the compositional structure of art photographs and abstract images. I-Perception, 2, 615647.Google Scholar
McManus, I. C., & Thomas, P. (2007). Eye centering in portraits: A theoretical and empirical evaluation. Perception, 36, 167182.Google Scholar
McManus, I. C., & Weatherby, P. (1997). The golden section and the aesthetics of form and composition: A cognitive model. Empirical Studies of the Arts, 15, 209232.Google Scholar
McManus, I. C., & Wu, W. (2013). “The square is … bulky, heavy, contented, plain, good-natured stupid…”: A cross-cultural study of the aesthetics and meanings of rectangles. Psychology of Aesthetics, Creativity, and the Arts, 7, 130139.Google Scholar
McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18(1), 87121.Google Scholar
McNamara, T. P. (1991). Memory’s view of space. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 27, pp. 147186). San Diego, CA: Academic Press.Google Scholar
McNamara, T. P., & Diwadkar, V. A. (1997). Symmetry and asymmetry of human spatial memory. Cognitive Psychology, 34(2), 160190.Google Scholar
McWhinnie, H. J. (1986). A review of the use of symmetry, the golden section, and dynamic symmetry in contemporary art. Leonardo, 19, 241245.Google Scholar
Medin, D. L., Goldston, R. L., & Gentner, D. (1990). Similarity involving attributes and relations: Judgments of similarity and difference are not inverses. Psychological Science, 1, 6469.Google Scholar
Meier, B. P., & Dionne, S. (2009). Downright sexy: Verticality, implicit power, and perceived physical attractiveness. Social Cognition, 27(6), 883892.Google Scholar
Meier, B. P., Hauser, D. J., Robinson, M. D., Friesen, C. K., & Schjeldahl, K. (2007). What’s “up” with God? Vertical space as a representation of the divine. Journal of Personality and Social Psychology, 93(5), 699710.Google Scholar
Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up. Associations between affect and vertical position. Psychological Science, 15, 243247.Google Scholar
Meilinger, T., Frankenstein, J., & Bülthoff, H. H. (2013). Learning to navigate: Experience versus maps. Cognition, 129(1), 2430.Google Scholar
Meilinger, T., Frankenstein, J., & Bülthoff, H. H. (2014, November). When in doubt follow your nose – a wayfinding strategy. Frontiers in Psychology, 5, 17.Google Scholar
Meilinger, T., Franz, G., & Bülthoff, H. H. (2012). From isovists via mental representations to behaviour: First steps toward closing the causal chain. Environment and Planning B-Planning & Design, 39(1), 4862.Google Scholar
Meilinger, T., Hölscher, C., Büchner, S. J., & Brösamle, M. (2007). How much information do you need? Schematic maps in wayfinding and self localisation. In Barkowsky, T., Knauff, M., Ligozat, G., & Montello, D. R. (Eds.), Spatial cognition v reasoning, action, interaction (Vol. 4387, pp. 381400). Berlin: Springer.Google Scholar
Melamed, T., & Bozionelos, N. (1992). Managerial promotion and height. Psychological Reports, 71(2), 587593.Google Scholar
Melara, R. D., & Marks, L. E. (1990). Interaction among auditory dimensions: Timbre, pitch, and loudness. Perception & Psychophysics, 48, 169178.Google Scholar
Melara, R. D., & O’Brien, T. P. (1987). Interaction between synesthetically corresponding dimensions. Journal of Experimental Psychology: General, 116, 323336.Google Scholar
Meng, J. C., & Sedgwick, H. A. (2001). Distance perception mediated through nested contact relations among surfaces. Attention, Perception, & Psychophysics, 63, 115.Google Scholar
Menon, T., Sim, J., Fu, J. H. Y., Chiu, C. Y., & Hong, Y. Y. (2010). Blazing the trail versus trailing the group: Culture and perceptions of the leader’s position. Organizational Behavior and Human Decision Processes, 113(1), 5161.Google Scholar
Menzel, R., Geiger, K., Chittka, L., Joerges, J., Kunze, J., & Müller, U. (1996). The knowledge base of bee navigation. Journal of Experimental Biology, 199(1), 141146.Google Scholar
Merfeld, D., Zupan, L., & Peterka, R. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature, 398, 615618.Google Scholar
Merleau-Ponty, M. (1945). The phenomenology of perception. Paris: Editions Gallimard.Google Scholar
Mettinger, A. (1994). Aspects of semantic opposition in English. Oxford: Clarendon Press.Google Scholar
Metzger, W. (1930). Optische Untersuchungen am Ganzfeld: II. Zur Phanomenologie des homogenen Ganzfelds [Optical researches on the total field [of vision]. II. On the phenomenology of homogeneous total fields]. Psychologische Forshung, 13, 629.Google Scholar
Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit [An attempt to unify the theories of Fröhlich and Hazelhoff’s phenomena and a review of their method of measuring the time of sensation]. Psychologische Forschung, 16(1), 176200.Google Scholar
Meyer, G. F., & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12, 25572560.Google Scholar
Meyer, G. F., Wuerger, S. M., Röhrbein, F., & Zetzsche, C. (2005). Low-level integration of auditory and visual motion signals requires spatial co-localization. Experimental Brain Research, 166, 538547.Google Scholar
Meyer, L. B. (1956). Emotion and meaning in music. Chicago: University of Chicago Press.Google Scholar
Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Michotte, A. (1963). The perception of causality. T. Miles & E. Miles (Trans.), New York: Basic Books. (Original work published 1946)Google Scholar
Mikellidou, K., & Thompson, P. (2013). The vertical-horizontal illusion: Assessing the contributions of anisotropy, abutting, and crossing to the misperception of simple line stimuli. Journal of Vision, 13(8), 111.Google Scholar
Miles, L. K., Tan, L., Noble, G. D., Lumsden, J., & Macrae, C. N. (2011). Can a mind have two time lines? Exploring space-time mapping in Mandarin and English speakers. Psychonomic Bulletin & Review, 18, 598604.Google Scholar
Milgram, S., & Jodelet, D. (1976). Psychological maps of Paris. In Proshansky, H., Ittelson, W., & Rivlin, L. (Eds.), Environmental psychology (2nd Ed., pp. 104112). New York: Holt, Rinehart and Winston.Google Scholar
Millar, S., & Al-Attar, Z. (2000). Vertical and bisection bias in active touch. Perception, 29, 481500.Google Scholar
Miller, E. F., & Graybiel, A. (1962). Counterrolling of the human eyes produced by head tilt with respect to gravity. Acta Otolaryngology, 54, 479501.Google Scholar
Miller, G. A., & Fellbaum, C. (1991). Semantic networks of English. Cognition, 41, 197229.Google Scholar
Miller, J. O. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247279.Google Scholar
Miller, J. O. (1991). Channel interaction and the redundant targets effect in bimodal divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17, 160169.Google Scholar
Miller, R. J. (2007). Another slant on the oblique effect in drawings and paintings. Empirical Studies of the Arts, 27, 2542.Google Scholar
Millis, K. (2001). Making meaning brings pleasure: The influence of titles on aesthetic experiences. Emotion, 1, 320329.Google Scholar
Milner, A. D., Brechmann, M., & Pagliarini, L. (1992). To halve and to halve not: An analysis of line bisection judgements in normal subjects. Neuropsychologia, 30, 515526.Google Scholar
Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press.Google Scholar
Milner, A. D., Harvey, M., Roberts, R. C., & Forster, S. V. (1993). Line bisection errors in visual neglect: Misguided action or size distortion? Neuropsychologia, 31, 3949.Google Scholar
Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414417.Google Scholar
Mittelstaedt, H. (1983). A new solution to the problem of the subjective vertical. Naturwissenschaften, 70, 272281.Google Scholar
Mittelstaedt, H. (1996). Somatic graviception. Biological Psychology, 42(1), 5374.Google Scholar
Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H. C. (2009). Basic number processing deficits in developmental dyscalculia: Evidence from eye tracking. Cognitive Development, 24(4), 371386.Google Scholar
Mohr, C., & Leonards, U. (2007). Rightward bisection errors for letter lines: The role of semantic information. Neuropsychologia, 45, 295304.Google Scholar
Møller, A. P. (1992). Female swallow preference for symmetric male sexual ornaments. Nature, 357, 238240.Google Scholar
Monacelli, A. M., Cushman, L. A., Kavcic, V., & Duffy, C. J. (2003). Spatial disorientation in Alzheimer’s disease. Neurology, 61(11), 14911497.Google Scholar
Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior, 23, 4769.Google Scholar
Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In Egenhofer, M. J. & Golledge, R. G. (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143154). New York: Oxford University Press.Google Scholar
Montello, D. R. (2003). Regions in geography: Process and content. In Duckham, M., Goodchild, M. F., & Worboys, M. F. (Eds.), Foundations of geographic information science (pp. 173189). London: Taylor & Francis.Google Scholar
Montello, D. R. (2005). Navigation. In Shah, P. & Miyake, A. (Eds.), The Cambridge handbook of visuospatial thinking (pp. 257294). Cambridge: Cambridge University Press.Google Scholar
Montgomery, J., Kusano, K. D., & Gabler, H. C. (2014). Age and gender differences in time to collision at braking from the 100-car naturalistic driving study. Traffic Injury Prevention, 15, S15S20.Google Scholar
Moore, B. C. J. (2003). An introduction to the psychology of hearing (5th Ed.) London: Academic Press.Google Scholar
Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychological Science, 15, 866871.Google Scholar
Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: Examining temporal ventriloquism. Cognitive Brain Research, 17, 154163.Google Scholar
Morgan, M. J. (1977). Molyneux’s Question: Vision, touch and the philosophy of perception. Cambridge: Cambridge University Press.Google Scholar
Morgan, M. J. (1990). Hyperacuity. In Regan, D. (Ed.), Spatial vision (pp. 87113). London: Macmillan.Google Scholar
Morgan, M. J. (1992). On the scaling of size judgments by angular cues. Vision Research, 32, 14331455.Google Scholar
Morgan, M. J. (1996). Visual illusions. In Bruce, V. (Ed.), Unsolved mysteries of the mind (pp. 2958). Hove, East Sussex: Earlbaum UK.Google Scholar
Morgan, M. J. (1999). The Poggendorff illusion: A bias in the estimation of the orientation of virtual lines by second-stage filters. Vision Research, 39(14), 23612380.Google Scholar
Morgan, M. (2003). The space between our ears: How the brain represents the visual space. London: Weidenfeld & Nicolson.Google Scholar
Morgan, M. J. (2005). The visual computation of 2-D area by human observers. Vision Research, 45, 25642570.Google Scholar
Morgan, M. J. (2015). Dissociating perceptual and occulomotor localization of moving objects. Current Biology, 25, R825R844.Google Scholar
Morgan, M. J., & Baldassi, S. (1997). How the human visual system encodes the orientation of a texture, and why it makes mistakes. Current Biology, 7(12), 9991002.Google Scholar
Morgan, M. J., & Casco, C. (1990). Spatial filtering and spatial primitives in early vision: An explanation of the Zollner-Judd class of geometrical illusion. Proceedings of the Royal Society B: Biological Sciences, 242, 110.Google Scholar
Morgan, M. J., & Dillenburger, B. (2016) Geometric features underlying the perception of colinearity. Vision Research, 128, 8394.Google Scholar
Morgan, M., Dillenburger, B., Raphael, S., & Solomon, J. A. (2012). Observers can voluntarily shift their psychometric functions without losing sensitivity. Attention, Perception, & Psychophysics, 74(1), 185193.Google Scholar
Morgan, M. J., & Glennerster, A. (1991) Efficiency of locating centres of dot-clusters by human observers. Vision Research, 31, 20752083.Google Scholar
Morgan, M. J., Grant, S., Melmoth, D., & Solomon, J. A. (2015). Tilted frames of reference have similar effects on the perception of the gravitational vertical and the planning of saccadic eye movement. Experimental Brain Research, 233, 21152125Google Scholar
Morgan, M., Hole, G. J., & Glennerster, A. (1990). Biases and sensitivities in geometrical illusions. Vision Research, 30, 17931810.Google Scholar
Morgan, M. J., Hole, G. J., & Ward, R. M. (1990). Evidence for positional encoding in hyperacuity. Journal of the Optical Society of America, 7, 297304.Google Scholar
Morgan, M. J., & Hotopf, W. H. (1989). Perceived diagonals in grids and lattices. Vision Research, 29(8), 10051015.Google Scholar
Morgan, M. J., Medford, A., & Newsome, P. (1995). The orthogonal orientation shift and spatial filtering. Perception, 24(5), 513524.Google Scholar
Morgan, M. J., & Moulden, B. (1986). The Munsterberg figure and twisted cords. Vision Research, 26, 17931800.Google Scholar
Morgan, M. J., Raphael, S., Tibber, M. S., & Dakin, S.C. (2014). A texture-processing model of the “visual sense of number”. Proceedings of the Royal Society B 281, 20141137.Google Scholar
Morgan, M. J., & Regan, D. (1987). Opponent model for line interval discrimination: Interval and vernier acuity compared. Vision Research, 27, 107118.Google Scholar
Morgan, M. J., & Ward, R. M. (1985). Spatial and spatial‑frequency primitives in spatial‑interval discrimination. Journal of the Optical Society of America, 2, 12051210.Google Scholar
Morgan, M. J., Watamanuik, S. N., & McKee, S. P. (2000). The use of an implicit standard for measuring discrimination thresholds. Vision Research, 40(17), 109117.Google Scholar
Morgan, M. J., & Watt, R. J. (1989). The Weber’s Law for position is not an artefact of eccentricity. Vision Research, 29, 14571462.Google Scholar
Morikawa, K. (1999). Symmetry and elongation of objects influence perceived direction of translational motion. Perception & Psychophysics, 61(1), 134143.Google Scholar
Morikawa, K., & McBeath, M. K. (1992). Lateral motion bias associated with reading direction. Vision Research, 32(6), 11371141.Google Scholar
Morrison, J. B., & Tversky, B. (2005). Bodies and their parts. Memory & Cognition, 33, 696709.Google Scholar
Morrongiello, B. A., Hewitt, K. L., & Gotowiec, A. (1991). Infants discrimination of relative distance in the auditory modality – approaching versus receding sound sources. Infant Behavior & Development, 14(2), 187208.Google Scholar
Morsella, E. (2005). The function of phenomenal states: Supramodular interaction theory. Psychological Review, 112, 10001021.Google Scholar
Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., et al. (2003). The anatomy of visual neglect. Brain, 126, 19861997.Google Scholar
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 6989.Google Scholar
Mossbridge, J. A., Grabowecky, M., & Suzuki, S. (2011). Changes in auditory frequency guide visual-spatial attention. Cognition, 121, 133139.Google Scholar
Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 10761083.Google Scholar
Mou, W., Fan, Y., McNamara, T. P., & Owen, C. (2008). Intrinsic frames of reference and egocentric viewpoints in scene recognition. Cognition, 106, 750769.Google Scholar
Mou, W., McNamara, T. P., Rump, B., & Xiao, C. (2006). Roles of egocentric and allocentric spatial representations in locomotion and reorientation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 12741290.Google Scholar
Mou, W., McNamara, T. P., Valiquiette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 142157.Google Scholar
Mudd, S. A. (1963). Spatial stereotypes of four dimensions of pure tone. Journal of Experimental Psychology, 66, 347352.Google Scholar
Mudd, S. A. (1965). Experimental evaluation of binary pure-tone auditory displays. Journal of Applied Psychology, 49, 112121.Google Scholar
Mudd, S. A., & McCormick, J. (1960). The use of auditory cues in a visual search task. Journal of Applied Psychology, 44, 184188.Google Scholar
Muelenz, C., Hecht, H., & Gamer, M. (2010). Testing the egocentric mirror-rotation hypothesis. Seeing and Perceiving, 23(5–6), 373383.Google Scholar
Mueller, A. S., & Timney, B. (2014). Effects of radial direction and eccentricity on acceleration perception. Perception, 43(8), 805810.Google Scholar
Mueller, U., & Mazur, A., (2001). Evidence of unconstrained directional selection for male tallness. Behavioral Ecology and Sociobiology, 50(4), 302311.Google Scholar
Mullally, S. L., Intraub, H., & Maguire, E. A. (2012). Attenuated boundary extension produces a paradoxical memory advantage in amnesic patients. Current Biology, 22(4), 261268.Google Scholar
Müller, D., & Schwarz, W. (2007). Is there an internal association of numbers to hands? The task set influences the nature of the SNARC effect. Memory & Cognition, 35(5), 11511161.Google Scholar
Müller, G. E. (1931). Erklärung der Erscheinungen eines mit konstanter Geschwindigkeit bewegten Lichtstreifens, insbesondere auch des Pihl-Fröhlichschen Phänomens [Explanation of the appearances of a lit bar moving at constant velocity, in particular the phenomenon of Pihl-Fröhlich]. Zeitschrift für Sinnesphysiologie, 62, 167202.Google Scholar
Müller-Lyer, F. C. (1889). Optische Urteilstauschungen. Arch Fur Physiologie, 263–270.Google Scholar
Müller-Lyer, F. C. (1896a). Zur Lehre von den optischen Täuschungen: Über Kontrast und Konfluxion. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 9, 116.Google Scholar
Müller-Lyer, F. C. (1896b). Über Kontrast und Konfluxion. (Zweiter Artikel). Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 10, 421431.Google Scholar
Multhaup, K. S., Munger, M. P. & Smith, K. C. (2016). Boundary extension is sensitive to hand position in young and older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences. Advance online publication. doi:10.1093/geronb/gbw011Google Scholar
Munger, M. P. (2015). The ministry of silly walks’ report: Representational momentum sensitive to awkwardness following action, not single posture. Visual Cognition, 23, 796808.Google Scholar
Munger, M. P., Dellinger, M. C., Lloyd, T. G., Johnson-Reid, K., Tonelli, N. J., Wolf, K., & Scott, J. M. (2006). Representational momentum in scenes: Learning spatial layout. Memory & Cognition, 34, 15571568.Google Scholar
Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9, 177194.Google Scholar
Munger, M. P., & Multhaup, K. S. (2016). No imagination effect on boundary extension. Memory & Cognition, 44, 7388.Google Scholar
Munger, M. P., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Visual Cognition, 11, 81103.Google Scholar
Munger, M. P., Owens, T. R., & Conway, J. E. (2005). Are boundary extension and representational momentum related? Visual Cognition, 12, 10411056.Google Scholar
Munger, M. P., Solberg, J. L., & Horrocks, K. K. (1999). The relationship between mental rotation and representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 15571568.Google Scholar
Munger, M. P., Solberg, J. L., Horrocks, K. K., & Preston, A. S. (1999). Representational momentum for rotations in depth: Effects of shadings and axis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 157171.Google Scholar
Murakami, I. (2001a). The flash-lag effect as a spatiotemporal correlation structure. Journal of Vision, 1(2), 6.Google Scholar
Murakami, I. (2001b). A flash-lag effect in random motion. Vision Research, 41, 31013119.Google Scholar
Murphy, L. (2003). Semantic relations and the lexicon: Antonyms, synonyms and other semantic paradigms. Cambridge: Cambridge University Press.Google Scholar
Murray, G. R., & Schmitz, J. D. (2011). Caveman politics: Evolutionary leadership preferences and physical stature. Social Science Quarterly, 92(5), 121.Google Scholar
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683695.Google Scholar
Müsseler, J., & Kerzel, D. (2004). The trial context determines adjusted localization of stimuli: Reconciling the Fröhlich and Onset Repulsion Effects. Vision Research, 44(19), 22012206.Google Scholar
Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (tandem effect): Evidence for an attentional-shifting model. Psychological Research, 54, 246266.Google Scholar
Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120138.Google Scholar
Müsseler, J., Stork, S., & Kerzel, D. (2008). Localizing the onset of moving stimuli by pointing or relative judgment: Variations in the size of the Fröhlich effect. Vision Research, 48, 611617.Google Scholar
Müsseler, J., & Tiggelbeck, J. (2013). The perceived onset position of a moving target: Effects of trial contexts are evoked by different attentional allocations. Attention, Perception, & Psychophysics, 75(2), 349357.Google Scholar
Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201288.Google Scholar
Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313329.Google Scholar
Nachmias, J. (2008). Judging spatial properties of simple figures. Vision Research, 48, 12901296.Google Scholar
Nachson, I., Argaman, E., & Luria, A. (1999). Effects of directional habits and handedness on aesthetic preference for left and right profiles. Journal of Cross-Cultural Psychology, 30, 106114.Google Scholar
Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward displacement in the direction of gravity. Visual Cognition, 9, 2840.Google Scholar
Nagai, M., & Saiki, J. (2005). Illusory motion and representational momentum. Perception & Psychophysics, 67, 855866.Google Scholar
Nagai, M., Suganuma, M., Nijhawan, R., Freyd, J. J., Miller, G., & Watanabe, K. (2010). Conceptual influence on the flash-lag effect and representational momentum. In Nijhawan, R. & Khurana, B. (Eds.), Space and time in perception and action (pp. 366378). New York: Cambridge University Press.Google Scholar
Nagai, M., & Yagi, A. (2001). The pointedness effect on representational momentum. Memory & Cognition, 29, 9199.Google Scholar
Naito, T., Sato, H., & Osaka, N. (2010). Direction anisotropy of human motion perception depends on stimulus speed. Vision Research, 50(18), 18621866.Google Scholar
Nakamoto, H., Mori, S., Ikudome, S., Unenaka, S., & Imanaka, K. (2015). Effects of sport expertise on representational momentum during timing control. Attention, Perception, & Psychophysics, 77, 961971.Google Scholar
Namba, J., & Baldo, M. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception, 33, 621631.Google Scholar
Nardini, M., Begus, K., & Mareschal, D. (2013). Multisensory uncertainty reduction for hand localization in children and adults. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 773787.Google Scholar
Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18(9), 689693.Google Scholar
Nasr, S., & Tootell, R. B. H. (2012). A cardinal orientation bias in scene-selective visual cortex. Journal of Neuroscience, 32(43), 1492114926.Google Scholar
Nathan, M. B., Shaki, S., Salti, M., & Algom, D. (2009). Numbers and space: Associations and dissociations. Psychonomic Bulletin & Review, 16(3), 578582.Google Scholar
Naughtin, C. K., Mattingley, J. B., & Dux, P. E. (2016). Distributed and overlapping neural substrates for object individuation and identification in visual short-term memory. Cerebral Cortex, 26(2), 566575.Google Scholar
Naughtin, C. K., Tamber-Rosenau, B. J., & Dux, P. E. (2014). The neural basis of temporal individuation and its capacity limits in the human brain. Journal of Neurophysiology, 111(3), 499512.Google Scholar
Nava, E., Grassi, M., & Turati, C. (2016). Audio-visual, visuo-tactile and audio-tactile correspondences in preschoolers. Multisensory Research, 29, 93111.Google Scholar
Nelson, T. M., & MacDonald, G. A. (1971). Lateral organization, perceived depth, and title preference in pictures. Perceptual and Motor Skills, 33, 983986.Google Scholar
Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123124.Google Scholar
Neuhoff, J. G. (1999). Perception of changes in loudness – reply. Nature, 398(6729), 673674.Google Scholar
Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 13, 87110.Google Scholar
Neuhoff, J. G. (2016). Looming sounds are perceived as faster than receding sounds. Cognitive Research: Principles and Implications 1, 15.Google Scholar
Neuhoff, J. G., Hamilton, G. R., Gittleson, A. L., & Mejia, A. (2014). Babies in traffic: Infant vocalizations and listener sex modulate auditory motion perception. Journal of Experimental Psychology-Human Perception and Performance, 40(2), 775783.Google Scholar
Neuhoff, J. G., Long, K. L., & Worthington, R. C. (2012). Strength and physical fitness predict the perception of looming sounds. Evolution and Human Behavior, 33(4), 318322.Google Scholar
Neuhoff, J. G., & McBeath, M. (1996). The Doppler illusion: The influence of dynamic intensity change on perceived pitch. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 970985.Google Scholar
Neuhoff, J. G., McBeath, M., & Wanzie, W. (1999). Dynamic frequency change influences loudness perception: A central, analytic process. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 10501059.Google Scholar
Neuhoff, J. G., Planisek, R., & Seifritz, E. (2009). Adaptive sex differences in auditory motion perception: Looming sounds are special. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 225234.Google Scholar
Neumann, O., & Müsseler, J. (1990b). Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen [Visual focusing: The weather-station model and its applications] In Meinecke, C. & Kehrer, L. (Eds.), Bielefelder Beiträge zur Kognitionspsychologie (pp. 77108). Göttingen: Hogrefe.Google Scholar
Neumann, O., & Scharlau, I. (2006). Visual attention and the mechanism of metacontrast. Psychological Research, 71, 626633.Google Scholar
Neuroskeptic. (2012). The nine circles of scientific hell. Perspectives on Psychological Science, 7(6), 643644.Google Scholar
Newcombe, N. S., & Chiang, N. C. R. (2007). Learning geographical information from hypothetical maps. Memory & Cognition, 35(5), 895909.Google Scholar
Newcombe, N., Huttenlocher, J., Sandberg, E., Lie, E., & Johnson, S. (1999). What do misestimations and asymmetries in spatial judgement indicate about spatial representation? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 986996.Google Scholar
Newcombe, N, & Liben, L. (1982) Barrier effects in the cognitive maps of children and adults. Journal of Experimental Child Psychology, 34, 4658.Google Scholar
Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015), Thinking about quantity: The intertwined development of spatial and numerical cognition. WIREs Cognitive Science, 6, 491505.Google Scholar
Newman, D. G. (2007). An overview of spatial disorientation as a factor in aviation accidents and incidents. Canberra, ACT, Australia: Australian Transport Safety Bureau, Research and Analysis Report B2007/0063.Google Scholar
Newsome, L. R. (1972). Visual angle and apparent size of objects in peripheral vision. Perception & Psychophysics, 12, 300304.Google Scholar
Nicholls, M. E. R., Bradshaw, J. L. & Mattingley, J. B. (1999). Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia, 37(3), 307–14.Google Scholar
Nicholls, M. E. R., Clode, D., Lindell, A. K., & Wood, A. G. (2002). Which cheek to turn? The effect of gender and emotional expressivity on posing behaviour. Brain and Cognition, 48, 480484.Google Scholar
Nicholls, M. E. R., Clode, D., Wood, S. J., & Wood, A. G. (1999). Laterality of expression in portraiture: Putting your best cheek forward. Proceedings of the Royal Society of London (Section B), 266, 15171522Google Scholar
Nicholls, M. E. R., Loftus, A., Mayer, K., & Mattingley, J. (2007). Things that go bump in the right: The effect of unimanual activity on rightward collisions. Neuropsychologia, 45, 11221126.Google Scholar
Nicholls, M. E. R., Mattingley, J. B., Berberovic, N., Smith, A., & Bradshaw, J. L. (2004). An investigation of the relationship between free-viewing perceptual asymmetries for vertical and horizontal stimuli. Cognitive Brain Research, 19, 289301.Google Scholar
Nicholls, M. E. R., Wolfgang, B. J., Clode, D., & Lindell, A. K. (2002). The effect of left and right poses on the expression of facial emotion. Neuropsychologia, 40, 16621665.Google Scholar
Nicolay, C. W., & Walker, A. L. (2005). Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. International Journal of Industrial Ergonomics, 35(7), 605618.Google Scholar
Nicoletti, R., Anzola, G. P., Luppino, G., Rizzolatti, G., & Umiltà, C. (1982). Spatial compatibilità effects on the same side of the body midline. Journal of Experimental Psychology: Human Perception and Performance, 8, 664673.Google Scholar
Nicoletti, R., & Umiltà, C. (1989). Splitting visual space with attention. Journal of Experimental Psychology: Human Perception and Performance, 15, 164169.Google Scholar
Nicoletti, R., & Umiltà, C. (1994). Attention shifts produce spatial stimulus codes. Psychological Research, 56(3), 144150.Google Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.Google Scholar
Nielsen, K. E., Intriligator, J., & Barton, J. J. S. (1999). Spatial representation in the normal visual field. Neuropsychologia, 37, 267277.Google Scholar
Nieman, D., Nijhawan, R., Khurana, B., & Shimojo, S. (2006). Cyclopean flash-lag illusion. Vision Research, 46, 39093914.Google Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256257.Google Scholar
Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386, 6669.Google Scholar
Nijhawan, R. (2001). The flash-lag phenomenon: Object motion and eye movements. Perception, 30, 263282.Google Scholar
Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6(9), 387393.Google Scholar
Nijhawan, R. (2008). Visual prediction: Psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31, 179198.Google Scholar
Nijhawan, R., Khurana, B., Kamitani, Y., Watanabe, K., & Shimojo, S. (1998). Eye-movement based extrapolation leads to decomposition of color. Investigative Ophthalmology and Visual Science, 39, 1045.Google Scholar
Nijhawan, R., & Kirschfeld, K. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: Evidence from motor flash-lag. Current Biology, 13, 749753.Google Scholar
Nijhawan, R., Watanabe, K., Khurana, B., & Shimojo, S. (2004). Compensation of neural delays in visual–motor behavior: No evidence for shorter afferent delays for visual motion. Visual Cognition, 11, 275298.Google Scholar
Ninio, J. (2014). Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them. [Review]. Frontiers in Human Neuroscience, 8, 856.Google Scholar
Ninio, J., & O’Regan, J. K. (1999). Characterisation of the misalignment and misangulation components in the Poggendorff and corner–Poggendorff illusions. Perception, 28(8), 949964.Google Scholar
Nishimura, A., & Yokosawa, K. (2009). Effects of laterality and pitch height of an auditory accessory stimulus on horizontal response selection: The Simon effect and the SMARC effect. Psychonomic Bulletin & Review, 16, 666670.Google Scholar
Noël, B., van der Kamp, J., Weigelt, M., & Memmert, D. (2015). Asymmetries in spatial perception are more prevalent under explicit than implicit attention. Consciousness and Cognition, 34, 1015.Google Scholar
Noguchi, Y., & Kakigi, R. (2008). Knowledge-based correction of flashlag illusion. Journal of Cognitive Neuroscience, 20, 513525.Google Scholar
Noordzij, M. L., Neggers, S. F. W., Ramsey, N. F., & Postma, A. (2008). Neural correlates of locative prepositions. Neuropsychologia, 46, 15761580.Google Scholar
Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Science, 25, 73144.Google Scholar
Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space: The reversal of the SNARC and the Simon effects. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 11971207.Google Scholar
Notebaert, W., Soetens, E., & Melis, A. (2001). Sequential analysis of a Simon task-evidence for an attention-shift account. Psychological Research, 65, 170184.Google Scholar
Nuerk, H.-C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Göbel, S. M. (2015). How space-number associations may be created in preliterate children: Six distinct mechanisms. Frontiers in Psychology, 6 :215.Google Scholar
Núñez, R., & Cooperrider, K. (2013). The tangle of space and time in human cognition. Trends in Cognitive Sciences, 17(5), 220229.Google Scholar
Núñez, R., & Fias, W. (2017). Ancestral mental number lines: What is the evidence? Cognitive Science, 41, 22622266. doi: 10.1111/cogs.12296Google Scholar
Nussbaum, C. O. (2007). The musical representation: Meaning, ontology, and emotion. Cambridge, MA: MIT Press.Google Scholar
Nys, G. M. S., Zandvoort, M. J. E. v., Worp, H. B. v. d., Kappelle, L. J., & Haan, E. H. F. d. (2006). Neuropsychological and neuroanatomical correlates of perseverative responses in subacute stroke. Brain, 129(8), 21482157.Google Scholar
Oaksford, M., & Chater, N. (2001). The probabilistic approach to human reasoning. Trends in Cognitive Sciences, 5(8), 349357.Google Scholar
Occelli, V., Spence, C., & Zampini, M. (2009). Compatibility effects between sound frequencies and tactually stimulated locations on the hand. Neuroreport, 20, 793797.Google Scholar
O’Connell, R. G., Schneider, D., Hester, R., Mattingley, J. B., & Bellgrove, M. A. (2011). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 10561065.Google Scholar
Odum, H. T. (1988). Self-organization, transformity, and information. Science, 242, 11321139.Google Scholar
Ogawa, A., & Macaluso, E. (2013). Audio-visual interactions for motion perception in depth modulate activity in visual area V3A. Neuroimage, 71, 158167.Google Scholar
Öğmen, H., Patel, S. S., Bedell, H. E., & Camuz, K. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Research, 44, 21092128.Google Scholar
O’Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus, 1(3), 230235.Google Scholar
O’Keefe, J. (1993). Kant and the sea-horse: An essay in the neurophilosophy of space. In Eilan, N., McCarthy, R., & Brewer, B. (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 4364). Malden, MA: Blackwell Publishing.Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon.Google Scholar
Oliveri, M., Magnani, B., Filipelli, A., Avanzi, S., & Frassinetti, F. (2013). Prismatic adaptation effects on spatial representation of time in neglect patients. Cortex, 49, 120130.Google Scholar
Olsen, K. N., & Stevens, C. J. (2010). Perceptual overestimation of rising intensity: Is stimulus continuity necessary? Perception, 39(5), 695704.Google Scholar
Olsen, K. N., Stevens, C. J., & Tardieu, J. (2010). Loudness change in response to dynamic acoustic intensity. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 16311644.Google Scholar
Olson, C. R. (2003). Brain representation of object-centered space in monkeys and humans. Annual Review of Neuroscience, 26, 331354.Google Scholar
Oman, C. (2007). Spatial orientation and navigation in microgravity. In Mast, F. W. & Jancke, L. (Eds.), Spatial processing in navigation, imagery and perception (pp. 209247). New York: Springer.Google Scholar
Ooi, T. L., Wu, B., & He, Z. J. (2001). Distance determined by the angular declination below the horizon. Nature, 414, 197200.Google Scholar
Oppel, J. (1855). Ueber geometrisch-opeische tauschungen, Jber. phys. Ver. Frankfurt, 34–47.Google Scholar
Orchard-Mills, E., Van der Burg, E., & Alais, D. (2016). Crossmodal correspondence between auditory pitch and visual elevation affects temporal ventriloquism. Perception, 45, 409424.Google Scholar
O’Regan, J. K. (1992) Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461488.Google Scholar
Orne, M. T. (1682). On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. American Psychologist, 17(11), 776783.Google Scholar
Osiurak, F., Morgado, N., & Palluel-Germain, R. (2012). Tool use and perceived distance: When unreachable becomes spontaneously reachable. Experimental Brain Research, 218(2), 331339.Google Scholar
Ouellet, M., Santiago, J., Funes, M. J., & Lupianez, J. (2010). Thinking about the future moves attention to the right. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 1724.Google Scholar
Ouellet, M., Santiago, J., Israeli, Z., & Gabay, S. (2010). Is the future the right time? Experimental Psychology, 57, 308314.Google Scholar
Ozkan, K., & Braunstein, M. L. (2009) Predominance of ground over ceiling surfaces in binocular rivalry. Attention, Perception, & Psychophysics, 71(6), 13051312.Google Scholar
Ozkan, K., & Braunstein, M. L. (2010). Background surface and horizon effects in the perception of relative size and distance. Visual Cognition, 18, 229254.Google Scholar
Padakannaya, P., Devi, M. L., Zaveria, B., Chengappa, S. K., & Vaid, J. (2002). Directional scanning effect and strength of reading habit in picture naming and recall. Brain and Cognition, 48, 484490.Google Scholar
Paillard, J. (1991). Motor and representational framing of space. In Paillard, J. (Ed.), Brain and space (pp. 163182). New York: Oxford University Press.Google Scholar
Paladino, M. P., & Castelli, L. (2008). On the immediate consequences of intergroup categorization: Activation of approach and avoidance motor behavior toward ingroup and outgroup members. Personality and Social Psychology Bulletin, 34(6), 755768.Google Scholar
Palmer, S. E. (1991). On goodness, Gestalt groups, and Garner: Local symmetry subgroups as a theory of figural goodness. In Lockhead, G. & Pomerantz, J. R. (Eds.), The perception of structure: Essays in honor of Wendell R. Garner (pp. 2339). Washington, DC: American Psychological Association.Google Scholar
Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.Google Scholar
Palmer, S. E., Gardner, J. S., & Wickens, T. D. (2008). Aesthetic issues in spatial composition: Effects of position and direction on framing single objects. Spatial Vision, 21, 421449.Google Scholar
Palmer, S. E., & Guidi, S. (2011). Mapping the perceptual structure of rectangles through goodness-of-fit ratings. Perception, 40, 14281446.Google Scholar
Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetries. Journal of Experimental Psychology: Human Perception and Performance, 4, 691702.Google Scholar
Palmer, S. E., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In Long, J. & Baddeley, A. (Eds.), Attention and Performance IX (pp. 135151). Hillsdale, NJ: Erlbaum.Google Scholar
Palmer, S. E., Schloss, K. B., Sammartino, J. (2012). Hidden knowledge in aesthetic judgments: Preference for color and spatial composition. In Shimamura, A. P. & Palmer, S. E. (Eds.), Aesthetic science: Connecting minds, brains, and experience (pp. 189222). Oxford: Oxford University Press.Google Scholar
Palmer, S. E., Schloss, K. B., Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77107.Google Scholar
Paradis, C., Hudson, J. & Magnusson, U. (2013). The construal of spatial meaning: Windows into conceptual space. Oxford: Oxford University Press.Google Scholar
Paradis, C., & Willners, C. (2011). Antonymy: From conventionalization to meaning-making. Review of Cognitive Linguistics, 9(2), 367391.Google Scholar
Pardo, J., Fox, P., & Raichle, M. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 6164.Google Scholar
Parise, C. V. (2016). Crossmodal correspondences: Standing issues and experimental guidelines. Multisensory Research, 29, 728.Google Scholar
Parise, C. V., Harrar, V., Ernst, M. O., & Spence, C. (2013). Cross-correlation between auditory and visual signals promotes multisensory integration. Multisensory Research, 26, 307316.Google Scholar
Parise, C. V., Knorre, K., & Ernst, M. O. (2014) Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Science USA, 111, 61046108.Google Scholar
Parise, C., & Spence, C. (2008). Synaesthetic congruency modulates the temporal ventriloquism effect. Neuroscience Letters, 442, 257261.Google Scholar
Parise, C. V., Spence, C., & Ernst, M. O. (2012). When correlation implies causation in multisensory integration. Current Biology, 22, 4649.Google Scholar
Pariyadath, V., & Eagleman, D. M. (2007). The effect of predictability on subjective duration. PLoS ONE, 2(11), e1264.Google Scholar
Pariyadath, V., & Eagleman, D. M. (2008). Brief subjective durations contract with repetition. Journal of Vision, 8(16), 16.Google Scholar
Park, J. H., Faulkner, J., & Schaller, M. (2003). Evolved disease-avoidance processes and contemporary anti-social behavior: Prejudicial attitudes and avoidance of people with physical disabilities. Journal of Nonverbal Behavior, 27(2), 6587.Google Scholar
Park, S., Intraub, H., Yi, D. J., Widders, D., & Chun, M. M. (2007). Beyond the edges of a view: Boundary extension in human scene-selective visual cortex. Neuron, 54(2), 335342.Google Scholar
Parker, A., & Hawken, M. (1985) Capabilities of monkey cortical cells in spatial-resolution tasks. Journal of the Optical Society of America, A, 2, 11011114.Google Scholar
Parkes, L., Lund, J., Angelluci, A., Solomon, J., & Morgan, M. J. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4, 739744.Google Scholar
Parkhurst, D. J., & Niebur, E. (2003). Scene content selected by active vision. Spatial Vision, 16, 125154.Google Scholar
Parkinson, C., Kohler, P. J., Sievers, B., & Wheatley, T. (2012). Associations between auditory pitch and visual elevation do not depend on language: Evidence from a remote population. Perception, 41, 854861.Google Scholar
Pashler, H., Coburn, N., & Harris, C. R. (2012). Priming of social distance? Failure to replicate effects on social and food judgments. PLoS ONE, 7(8), e42510.Google Scholar
Pasqualotto, A., Taya, S., & Proulx, M. J. (2014). Sensory deprivation: Visual experience alters the mental number line. Behavioural Brain Research, 261, 110113.Google Scholar
Patching, G. R., & Quinlan, P. T. (2002). Garner and congruence effects in the speeded classification of bimodal signals. Journal of Experimental Psychology: Human Perception and Performance, 28, 755775.Google Scholar
Patro, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2016a). How to rapidly construct a spatial–numerical representation in preliterate children (at least temporarily). Developmental Science, 19(1), 126144.Google Scholar
Patro, K., Nuerk, H.-C., & Cress, U. (2016b). Mental number line in the preliterate brain: The role of early directional experiences. Child Development Perspectives, 10(3), 172177.Google Scholar
Patro, K., Nuerk, H.-C., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology, 5:419.Google Scholar
Pavan, A., Cuturi, L. F., Maniglia, M., Casco, C., & Campana, G. (2011). Implied motion from static photographs influences the perceived position of stationary objects. Vision Research, 51, 187194.Google Scholar
Pavlova, M., & Sokolov, A. (2000). Orientation specificity in biological motion perception. Perception & Psychophysics, 62(5), 889899.Google Scholar
Pavlovskaya, M., Bonneh, Y., Soroker, N., & Hochstein, S. (2011). Neglect field objects impact statistical property report in patients with unilateral spatial neglect. Perception, 40, 122.Google Scholar
Pavlovskaya, M., Bonneh, Y., Soroker, N., & Hochstein, S. (2010). Processing visual scene statistical properties in patients with unilateral spatial neglect. Journal of Vision, 10, 280.Google Scholar
Pavio, A. (1986). Mental representations: A dual coding approach. Oxford: Oxford University Press.Google Scholar
Peacocke, C. (2009). The perception of music: Sources of significance. The Modern Schoolman, 86, 239260.Google Scholar
Pedley, P. E., & Harper, R. S. (1959). Pitch and the vertical localization of sound. The American Journal of Psychology, 72, 447449.Google Scholar
Peers, P. V., Cusack, R., & Duncan, J. (2006). Modulation of spatial bias in the dual task paradigm: Evidence from patients with unilateral parietal lesions and controls. Neuropsychologia, 44, 13251335.Google Scholar
Peers, P., Ludwig, C., Rorden, C., Cusack, R., Bonfiglioli, C., et al. (2005). Attentional functions of parietal and frontal cortex. Cerebral Cortex, 15(10), 14691484.Google Scholar
Peirce, C. S. (1955). Philosophical writings of Peirce. New York: Dover.Google Scholar
Pellicano, A., Lugli, L., Baroni, G., & Nicoletti, R. (2009). The Simon effect with conventional signals. A time-course analysis. Experimental Psychology, 56, 219227.Google Scholar
Pérez González, C. (2012). Local portraiture: Through the lens of the 19th-century Iranian photographers. Leiden: Leiden University Press.Google Scholar
Perfors, A., Tenenbaum, J. B., Griffiths, T. L., & Xu, F. (2011). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120(3), 302321.Google Scholar
Perri, R., Bartolomeo, P., & Gainotti, G. (2000). Lack of impairments on leftward and rightward line extension tasks in neglect patients. International Journal of Neuroscience, 103, 101113.Google Scholar
Perrott, D. R., Costantino, B., & Cisneros, J. (1993). Auditory and visual localization performance in a sequential discrimination task. Journal of the Acoustical Society of America, 93, 21342138.Google Scholar
Perry, L. K., Smith, L. B., & Hockema, S. A. (2008). Representational momentum and children’s sensori-motor representations of objects. Developmental Science, 11, F17F23.Google Scholar
Peru, A., & Pinna, G. (1997). Right personal neglect following a left hemisphere stroke. A case report. Cortex, 33, 585590.Google Scholar
Peterhans, E., von der Heydt, R., & Baumgartner, G. (1986) Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing. In Pettigrew, J. D., Sanderson, K. J., & Levick, W. R. (Eds.), Visual neuroscience (pp. 343351). Cambridge: Cambridge University Press.Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389.Google Scholar
Petersik, J. T., & Thiel, R. L. (2010). Detecting sudden changes in dynamic rotation displays. Seeing and Perceiving, 23(3), 241261.Google Scholar
Peterson, M. A., Gillam, B., & Sedgwick, H. A. (Eds.). (2006). In the mind’s eye: Julian Hochberg on the perception of pictures, films, and the world. Oxford: Oxford University Press.Google Scholar
Peyrin, C., Michel, C. M., Schwartz, S., et al. (2010). The neural substrates and timing of top-down process during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 27682780.Google Scholar
Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles: Instant control over spatial–numerical associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 19531958.Google Scholar
Philbeck, J. W., & Loomis, J. M. (1997). Comparison of two indicators of visually perceived egocentric distance under full-cue and reduced-cue conditions. Journal of Experimental Psychology: Human Perception and Performance, 23, 7285.Google Scholar
Philbeck, J. W., & Witt, J. K. (2015). Action-specific influences on perception and post-perceptual processes: Present controversies and future directions. Psychological Bulletin, 141(6), 11201144.Google Scholar
Phillips, J. C., & Ward, R. (2002). S-R correspondence effects of irrelevant visual affordance: Time course and specificity of response activation. Visual Cognition, 9, 540558.Google Scholar
Phillips, R. J., & Noyes, L. (1982). An investigation of visual clutter in the topographic base of a visual map. Cartographic Journal, 19, 122132.Google Scholar
Piéron, H. (1935). Le processus du métacontraste [The process involved in “after-contrast”]. Journal de Psychologie Normale et Pathalogique, 32, 124.Google Scholar
Pinkerton, E., & Humphrey, N. K. (1974). The heaviness of colors. Nature, 250, 164165.Google Scholar
Pinna, B., & Albertazzi, L. (2011). From grouping to visual meanings: A new theory of perceptual organization. In Albertazzi, L., van Tonder, G., & Vishwanath, D. (Eds.), Information in perception (pp. 287344). Cambridge, MA: MIT Press.Google Scholar
Piotrowski, A. S., & Jakobson, L. S. (2011). Representational momentum in older adults. Brain and Cognition, 77, 106112.Google Scholar
Pirenne, M. H. (1970). Optics, painting and photography. Cambridge: Cambridge University Press.Google Scholar
Pittenger, J. B., & Shaw, R. E. (1975). Aging faces as viscal-elastic events: Implications for a theory of nonrigid shape perception. Journal of Experimental Psychology: Human Perception and Performance, 1(4), 374382.Google Scholar
Pittenger, J. B., Shaw, R. E., & Mark, L. S. (1979). Perceptual information for the age level of faces as a higher order invariant of growth. Journal of Experimental Psychology: Human Perception and Performance, 5(3), 478493.Google Scholar
Pizlo, Z., Li, Y., Sawada, T., & Steinman, R. M. (2014). Making a machine that sees like us. New York: Oxford University Press.Google Scholar
Plumhoff, J., & Schirillo, J. A. (2009). Mondrian, eye movements, and the oblique effect. Perception, 38, 719731.Google Scholar
Poffenberger, A. T., & Barrows, B. E. (1924). The feeling value of lines. Journal of Applied Psychology, 8, 187205.Google Scholar
Ponsot, E., Meunier, S., Kacem, A., Chatron, J., & Susini, P. (2015). Are rising sounds always louder? Influences of spectral structure and intensity-region on loudness sensitivity to intensity-change direction. Acta Acustica United with Acustica, 101(6), 10831093.Google Scholar
Ponsot, E., Susini, P., & Meunier, S. (2015). A robust asymmetry in loudness between rising- and falling-intensity tones. Attention Perception & Psychophysics, 77(3), 907920.Google Scholar
Popper, A. N., & Fay, R. R. (1997). Evolution of the ear and hearing: Issues and questions. Brain Behavior and Evolution, 50(4), 213221.Google Scholar
Portin, K., Vanni, S., Virsu, V. & Hari, R. (1999). Stronger occipital cortical activation to lower than upper visual field: Neuromagnetic recordings. Experimental Brain Research, 124(3), 287294.Google Scholar
Portugali, Y. (1993). Implicate relations: Society and space in the Israeli-Palestinian conflict. Amsterdam: Kluwer.Google Scholar
Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.Google Scholar
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 325.Google Scholar
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In Bouma, H. & Bouwhuis, D. G. (Eds.), Attention and performance X: Control of language processes (pp. 531556). Hove, UK: Lawrence Erlbaum Associates Ltd.Google Scholar
Posner, M. I., Rafal, R. D., Choate, L., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211228.Google Scholar
Post, R. B., O’Malley, M. D., Yeh, T. L., & Bethel, J. (2006). On the origin of vertical line bisection errors. Spatial Vision, 19(6), 505527.Google Scholar
Poulton, E. C. (1989). Bias in quantifying judgments. Hillsdale, NJ: Erlbaum Associates.Google Scholar
Pratt, C. C. (1930). The spatial character of high and low tones. Journal of Experimental Psychology, 66, 347352.Google Scholar
Pratt, J., Spalek, T. M., & Bradshaw, F. (1999). The time to detect targets at inhibited and noninhibited locations: Preliminary evidence for attentional momentum. Journal of Experimental Psychology: Human Perception and Performance, 25, 730746.Google Scholar
Predebon, J. (2006). Decrement of the Muller-Lyer and Poggendorff illusions: The effects of inspection and practice. Psychological Research, 70(5), 384394.Google Scholar
Pressey, A. W. (2014). Assimilation theory, attention and asymmetry in the Müller-Lyer illusion: Quantitative predictions. Perceptual and Motor Skills, 119, 509529.Google Scholar
Preuss, N., Harris, L. R., & Mast, F. W. (2013). Allocentric visual cues influence mental transformation of bodies. Journal of Vision, 13(12), 14.Google Scholar
Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 13, 519565.Google Scholar
Previtali, P., de Hevia, M. D., & Girelli, L. (2010). Placing order in space: The SNARC effect in serial learning. Experimental Brain Research, 201, 599605.Google Scholar
Priest, S. (1991). Theories of the mind: A compelling investigation into the ideas of leading philosophers on the nature of the mind and its relation to the body. New York: Mariner Books.Google Scholar
Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18(4), 680688.Google Scholar
Prime, D. J., & Jolicoeur, P. (2009). On the relationship between occipital cortex activity and inhibition of return. Psychophysiology, 46, 12781287.Google Scholar
Prime, D. J., & Ward, L. M. (2006). Cortical expressions of inhibition of return. Brain Research, 1072, 161174.Google Scholar
Prinz, W. (2002). Experimental approaches to imitation. In Meltzoff, A. N., & Prinz, W. (Eds.), The imitative mind: Development, evolution, and brain bases (pp. 143163). Cambridge: Cambridge University Press.Google Scholar
Prinzmetal, W. & Gettleman, L. (1993). Vertical-horizontal illusion: One eye is better than two. Attention, Perception & Psychophysics, 53(1), 8188.Google Scholar
Prior, E., Pargetter, R., & Jackson, F. (1982). Three theses about dispositions. American Philosophical Quarterly, 19, 251257.Google Scholar
Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416442.Google Scholar
Proctor, R. W., & Reeve, T. G. (Eds.). (1989). Stimulus-response compatibility: An integrated perspective. Amsterdam: Elsevier.Google Scholar
Proctor, R. W., & Vu, K.-P. L. (2002). Eliminating, magnifying, and reversing spatial compatibilità effects with mixed location-relevant and irrelevant trials. In Prinz, W. & Hommel, B. (Eds.), Common mechanisms in perception and action: Attention and performance (Vol. 19, pp. 443473). Oxford: Oxford University PressGoogle Scholar
Proctor, R. W., & Vu, K.-P. L.(2006). Stimulus-response compatibility principles. Boca Raton, FL: Taylor & Francis.Google Scholar
Proctor, R. W., Vu, K.-P. L., & Marble, J. G. (2003). Eliminating spatial compatibility effects for location-relevant trials by intermixing location-irrelevant trials. Visual Cognition, 10, 1550.Google Scholar
Proctor, R. W., Vu, K.-P. L., & Nicoletti, R. (2003). Does right–left prevalence occur for the Simon effect? Perception & Psychophysics, 65, 13181329.Google Scholar
Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110122.Google Scholar
Proffitt, D. R. (2009). Affordances matter in geographical slant perception. Psychonomic Bulletin & Review, 16(5), 970972.Google Scholar
Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2(4), 409428.Google Scholar
Proffitt, D. R., & Linkenauger, S. A. (2013). Perception viewed as a phenotypic expression. In Prinz, W., Beisert, M., & Herwig, A. (Eds.), Action science: Foundations of an emerging discipline (pp. 171198). Cambridge, MA: MIT Press.Google Scholar
Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. Psychological Science, 14(2), 106112.Google Scholar
Purushothaman, G., Patel, S. S. Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature, 396, 424.Google Scholar
Put, K., Baldo, V. C. M., Cravo, A. M., Wagemans, J., & Helsen, W. F. (2013). Experts in offside decision making learn to compensate for their illusory perceptions. Journal of Sport & Exercise Psychology, 35, 576584.Google Scholar
Pylyshyn, Z. W. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341423.Google Scholar
Pylyshyn, Z. W. (2003). Seeing and visualizing: It’s not what you think. Cambridge, MA: MIT Press.Google Scholar
Pyoun, H. K., Sargent, J., Dopkins, S., & Philbeck, J. (2013). Two-category place representations persist over body rotations. Memory & Cognition, 41(8), 11321143.Google Scholar
Qu, Z., Song, Y. & Ding, Y. L. (2006). Asymmetry between the upper and lower visual fields: An event-related potential study. Chinese Science Bulletin, 51(5), 536541.Google Scholar
Quadflieg, S., Etzel, J. A, Gazzola, V., Keysers, C., Schubert, T. W., Waiter, G. D., & Macrae, C. N. (2011). Puddles, parties, and professors: Linking word categorization to neural patterns of visuospatial coding. Journal of Cognitive Neuroscience, 23(10), 26362649.Google Scholar
Quattrone, G. A., (1986). On the perception of a group’s variability. In Worchei, S. & Austin, W. (Eds.), The psychology of intergroup relations (2nd ed., pp. 2548). Chicago: Nelson-Hall.Google Scholar
Quek, G. L., & Finkbeiner, M. (2016). The upper-hemifield advantage for masked face processing: Not just an attentional bias. Attention, Perception, & Psychophysics, 78(1), 5268.Google Scholar
Quinn, P. C., Cummins, M., Kase, J., Martin, E., & Weisman, S. (1996). Development of categorical representations for above and below spatial relations in 3- to 7-month-old infants. Developmental Psychology, 32, 942950.Google Scholar
Quinn, P. C., & Intraub, H. (2007). Perceiving "outside the box" occurs early in development: Evidence for boundary extension in three- to seven-month-old infants. Child Development, 78(1), 324334.Google Scholar
Rafal, R. D., Egly, R., & Rhodes, D. (1994). Effects of inhibition of return on voluntary and visually guided saccades. Canadian Journal of Experimental Psychology, 48, 284300.Google Scholar
Raiguel, S. E., Lagae, L., Gulyàs, B., & Orban, G. A. (1989). Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Research, 493, 155159.Google Scholar
Raine, A., Reynolds, C., Venables, P. H., Mednick, S. A., & Farrington, D. P. (1998). Fearlessness, stimulation-seeking, and large body size at age 3 years as early predispositions to childhood aggression at age 11 years. Archives of General Psychiatry, 55(8), 745751.Google Scholar
Ramachandran, V. S. (1988). Shape from shading. Nature, 331, 163166.Google Scholar
Ramachandran, V. S. (2011). The tell-tale brain. New York: W. W. Norton.Google Scholar
Ramachandran, V. S., & Hirsten, W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 1551.Google Scholar
Ramachandran, V. S., & Seckel, E. (2012). Neurology of visual aesthetics: Indian nymphs, modern art, and sexy beaks. In Shimamura, A. P. & Palmer, S. E. (Eds.), Aesthetic science: Connecting minds, brains, and experience. Oxford, UK: Oxford University Press.Google Scholar
Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375394.Google Scholar
Rao, R. P. N., Eagleman, D. M., & Sejnowski, T. J. (2001). Optimal smoothing in visual motion perception. Neural Computation, 13, 12431253.Google Scholar
Rao, H., Han, S., Jiang, Y., Xue, Y., Gu, H., Cui, Y., & Gao, D. (2004). Engagement of the prefrontal cortex in representational momentum: An fMRI study. NeuroImage, 23, 98103.Google Scholar
Rapcsak, S. Z., Cimino, C. R., & Heilman, K. M. (1988). Altitudinal neglect. Neurology, 38, 277281.Google Scholar
Raphael, S., & Morgan, M.J. (2016) The computation of relative numerosity, size and density. Vision Research, 124, 1523.Google Scholar
Rastelli, F., Tallon-Baudry, C., Migliaccio, R., Toba, M. N., Ducorps, A., Pradat-Diehl, P., et al. (2013). Neural dynamics of neglected targets in patients with right hemisphere damage. Cortex, 49(7), 19891996.Google Scholar
Raudsepp, J. (2001a). Horizontal-vertical illusion: Functional and causal issues. Umeä: Umeä University.Google Scholar
Raudsepp, J. (2001b). Peripersonal horizontal-vertical illusions: towards comparable kinesthetic and visual task. Journal of Human Movement Studies, 41, 263286.Google Scholar
Raudsepp, J., & Djupsjöbacka, M. (2005). Handgrip maximum force and the visual horizontal vertical illusion. Perception, 34, 421428.Google Scholar
Re, D. E., Dzhelyova, M., Holzleitner, I. J., Tigue, C. C., Feinberg, D. R., & Perrett, D. I. (2012). Apparent height and body mass index influence perceived leadership ability in three-dimensional faces. Perception, 41(12), 14771485.Google Scholar
Reber, R. (2012). Processing fluency, aesthetic pleasure, and culturally shared taste. In Shimamura, A. P. & Palmer, S. E. (Eds.), Aesthetic science: Connecting minds, brains, and experience (pp. 223249). Oxford: Oxford University Press.Google Scholar
Reber, R., Schwartz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8, 364382.Google Scholar
Redden, R. S., Hilchey, M. D., & Klein, R. M. (2015a). Using speed and accuracy and the Simon effect to explore two forms of inhibition of return. Manuscript under review.Google Scholar
Redden, R. S., Hilchey, M. D., & Klein, R. M. (2015b). Oculomotor inhibition of return: Evidence against object-centered representation. Manuscript under review.Google Scholar
Redden, R. S., Hilchey, M. D., & Klein, R. M. (2016). Peripheral stimuli generate different forms of inhibition of return when participants make prosaccades versus antisaccades to them. Attention, Perception, & Psychophysics, 78(8), 22832291.Google Scholar
Reed, C. L., Stone, V., Bozova, S., & Tanaka, J. (2003). The body inversion effect. Psychological Science, 14, 302308.Google Scholar
Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839850.Google Scholar
Regan, D., & Hamstra, S. J. (1993). Dissociation of discrimination thresholds for time to contact and for rate of angular expansion. Vision Research, 33(4), 447462.Google Scholar
Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13(10), 439446.Google Scholar
Ren, P., Nicholls, M. E., Ma, Y. Y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS ONE, 6(8), e23553.Google Scholar
Rengachary, J., He, B., Shulman, G., & Corbetta, M. (2011). A behavioral analysis of spatial neglect and its recovery after stroke. Frontiers in Human Neuroscience, 5(29), doi: 10.3389/fnhum.2011.00029.Google Scholar
Repp, B. H., & Knoblich, G. (2009). Performed or observed keyboard actions affect pianists’ judgements of relative pitch. The Quarterly Journal of Experimental Psychology, 62, 21562170.Google Scholar
Restle, F., & Levinson, M. (1971) Method of constant stimuli: Invalidity to the third power. Percepion & Psychophysics, 9, 312314.Google Scholar
Rhee, I., Shin, M., Hong, S., Lee, K., & Chong, S. (2008). On the levy-walk: Nature of human mobility. In IEEE INFOCOM 2008 – IEEE Conference on Computer Communications (pp. 924932). Phoenix, AZ: IEEE.Google Scholar
Richards, W. (1975). Visual space perception. In Carterette, E. C. & Friedman, M. P. (Eds.), Handbook of Perception, vol. 5: Seeing (pp. 351386). New York: Academic Press.Google Scholar
Richardson, D. C., Spivey, M. J., Barsalou, L. W., & McRae, K. (2003). Spatial representations activated during real-time comprehension of verbs. Cognitive Science, 27(5), 767780.Google Scholar
Richter, H. O., Wennberg, P., & Raudsepp, J. (2007). The effects of inverting prisms on the horizontal–vertical illusion: A systematic effect of downward gaze. Experimental Brain Research, 183, 915.Google Scholar
Riddoch, M. J., & Humphreys, G. W. (1983). The effect of cueing on unilateral neglect. Neuropsychologia, 21, 589599.Google Scholar
Riello, M., & Rusconi, E. (2011). Unimanual SNARC effect: Hand matters. Frontiers in Psychology, 2:372.Google Scholar
Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480497.Google Scholar
Riestra, A. R., Womack, K. B., Crucian, G. P. & Heilman, K. M. (2002). Is the middle between both halves? Midpoint location and segment size estimation in neglect. Neurology, 59, 15801584.Google Scholar
Riordan, B., & Jones, M. N. (2011). Redundancy in perceptual and linguistic experience: Comparing feature-based and distributional models of semantic representation. Topics in Cognitive Sciences, 3(2), 303345.Google Scholar
Riskind, J. H., Kleiman, E. M., Seifritz, E., & Neuhoff, J. G. (2014). Influence of anxiety, depression and looming cognitive style on auditory looming perception. Journal of Anxiety Disorders, 28(1), 4550.Google Scholar
Rizk, J. K., Chappell, M., & Hine, T. J. (2009). Effect of motion smoothness on the flash-lag illusion. Vision Research, 49, 22012208.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 3146.Google Scholar
Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In Umiltà, C. & Moscovitch, M. (Eds.), Attention and performance XV (pp. 231265). Cambridge, MA: MIT Press.Google Scholar
Roach, N. W., Heron, J., & McGraw, P. V. (2006). Resolving multisensory conflict: A strategy for balancing the costs and benefits of audio-visual integration. Proceedings of the Royal Society of London, Series B: Biological Sciences, 273, 21592168.Google Scholar
Roberston, L. C., Mirjam, E., & Knight, R. (2003). Grouping influences in unilateral visual neglect. Journal of Clinical and Experimental Neuropsychology, 25(3), 297307.Google Scholar
Robertson, I. H. (2001). Do we need the “lateral” in unilateral neglect? Spatially nonselective attention deficits in unilateral neglect and their implications for rehabilitation. NeuroImage, 14, 8590.Google Scholar
Robinson, J. O. (1972). The psychology of visual illusion. London: Hutchinson.Google Scholar
Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
Roese, N. J. (1997). Counterfactual thinking. Psychological Bulletin, 121, 133148.Google Scholar
Roffler, S. K., & Butler, R. A. (1968). Factors that influence the localization of sound in the vertical plane. Journal of the Acoustical Society of America, 43, 12551259.Google Scholar
Rogers, B. J., & Bradshaw, M. F. (1993). Vertical disparities, differential perspective and binocular stereopsis. Nature, 361, 253255.Google Scholar
Rogers, S. (1996). The horizon-ratio relation as information for relative size in pictures. Perception & Psychophysics, 58, 142152.Google Scholar
Rogers, Y., & Lindley, S. (2004). Collaborating around vertical and horizontal large interactive displays: Which way is best? Interacting with Computers, 16(6), 11331152.Google Scholar
Roidl, E., Siebert, F. W., Oehl, M., & Hoeger, R. (2013). Introducing a multivariate model for predicting driving performance: The role of driving anger and personal characteristics. Journal of Safety Research, 47, 4756.Google Scholar
Rorden, C., Berger, M. F., & Karnath, H. O. (2006). Disturbed line bisection is associated with posterior brain lesions. Brain Research, 1080, 1725.Google Scholar
Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191200.Google Scholar
Rorden, C., Fruhmann Berger, M., & Karnath, H. (2006). Disturbed line bisection is associated with posterior brain lesions. Brain Research, 1080(1), 1725.Google Scholar
Rorden, C., Karnath, H. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19, 10811088.Google Scholar
Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7, 532547.Google Scholar
Rosch, E., (1978). Principles of categorization. In Rosch, E. & Lloyd, B. B. (Eds.), Cognition and categorization (pp. 2748). Hillsdale, NJ: Erlbaum.Google Scholar
Rosenberg, A., & Angelaki, D. E. (2014). Gravity influences the visual representation of object tilt in parietal cortex. Journal of Neuroscience, 34, 1417014180.Google Scholar
Rosenbloom, P. S., & Newell, A. (1987). An integrated computational model of stimulus–response compatibility and practice. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 21, pp. 152). San Diego, CA: Academic Press.Google Scholar
Rosenblum, L. D., Carello, C., & Pastore, R. E. (1987). Relative effectiveness of 3 stimulus variables for locating a moving sound source. Perception, 16(2), 175186.Google Scholar
Rosenblum, L. D., Gordon, M. S., & Wuestefeld, A. P. (2000). Effects of performance feedback and feedback withdrawal on auditory looming perception. Ecological Psychology, 12(4), 273291.Google Scholar
Rosenblum, L. D., Wuestefeld, A. P., & Saldana, H. M. (1993). Auditory looming perception – influences on anticipatory judgments. Perception, 22(12), 14671482.Google Scholar
Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 122.Google Scholar
Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86, 638641.Google Scholar
Ross, H., & Plug, K. (2002). The mystery of the moon illusion. Oxford: Oxford University Press.Google Scholar
Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does action make the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological Science, 15(6), 426430.Google Scholar
Rotman, G., Brenner, E., & Smeets, J. B. J. (2002). Spatial but not temporal cueing influences the mislocalization of a target flashed during smooth pursuit. Perception, 31, 11951203.Google Scholar
Rotman, G., Brenner, E., & Smeets, J. B. J. (2004). Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. Journal of Vision, 4(7), 4.Google Scholar
Rotman, G., Brenner, E., & Smeets, J. B. J. (2005). Flashes are localized as if they were moving with the eyes. Vision Research, 45, 355364.Google Scholar
Roulston, B. W., Self, M. W., & Zeki, S. (2006). Perceptual compression of space through position integration. Proceedings of the Royal Society: Series B. Biological Sciences, 273, 25072512.Google Scholar
Rousseaux, M., Honoré, J., Vuilleumier, P., & Saj, A. (2013). Neuroanatomy of space, body, and posture perception in patients with right hemisphere stroke. Neurology, 81(15), 12911297.Google Scholar
Rowland, E., & Durant, S. (2014). High temporal frequency adaptation compresses time in the flash-lag illusion. Vision Research, 105, 130136.Google Scholar
Rubichi, S., Nicoletti, R., Iani, C., & Umiltà, C. (1997). The Simon effect occurs relative to the direction of an attention shift. Journal of Experimental Psychology: Human Perception and Performance, 23, 13531364.Google Scholar
Rubin, E. (1930). Kritisches und Experimentelles zur “Empfindungszeit” Fröhlichs [Review and experiments regarding Fröhlich’s time of sensation]. Psychologische Forschung, 13(1), 101112.Google Scholar
Ruch, T. C., & Fulton, J. F. (1960). Medical physiology and biophysics. Philadelphia: W. B. Saunders Company.Google Scholar
Rueckert, L., & Grafman, J. (1996). Sustained attention deficits in patients with right frontal lesions. Neuropsychologia, 34(10), 953963.Google Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534536.Google Scholar
Runeson, S. (1974). Constant velocity: Not perceived as such. Psychological Research, 37, 323.Google Scholar
Ruppel, S. E., Fleming, C. N., & Hubbard, T. L. (2009). Representational momentum is not (totally) impervious to error feedback. Canadian Journal of Experimental Psychology, 63, 4958.Google Scholar
Rusconi, E., Giordano, B. L., Casey, A., Umiltà, C., & Butterworth, B. (2006). Vertical and horizontal dimensions in the spatial representation of pitch height. In Baroni, M., Addessi, A. R., Caterina, R., & Costa, M. (Eds.), Proceedings of the 9th International Conference on Music Perception and Cognition (ICMPC2006). Bologna, Italy.Google Scholar
Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2005). The mental space of pitch height. NYAS, 1060, 195197.Google Scholar
Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113129.Google Scholar
Russell, P. A. (2000). The aesthetics of rectangle proportion: Effects of judgment scale and context. American Journal of Psychology, 113, 2742.Google Scholar
Sackeim, H. A., & Gur, R. C. (1978). Lateral asymmetry in intensity of emotional expression. Neuropsychologia, 16(4), 473481.Google Scholar
Sadaghiani, S., Maier, J. X., & Noppeney, U. (2009). Natural, metaphoric, and linguistic auditory direction signals have distinct influences on visual motion processing. Journal of Neuroscience, 29, 64906499.Google Scholar
Sadalla, E. K., Burroughs, W. J., & Staplin, L. J. (1980). Reference points in spatial cognition. Journal of Experimental Psychology: Human Learning and Memory, 6(5), 516528.Google Scholar
Sadalla, E. K., & Magel, S. G. (1980). The perception of traversed distance. Environment and Behavior, 12, 6579.Google Scholar
Sadalla, E. K., & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 21, 346363.Google Scholar
Sadalla, E. K., & Staplin, L.J. (1980a) An information storage model for distance cognition. Environment and Behavior, 12, 183193.Google Scholar
Sadalla, E. K., & Staplin, L. J. (1980b). lloyd. Environment and Behavior, 12, 167182.Google Scholar
Sagi, D., & Julesz, B. (1985). “What” and “where” in vision. Science, 228, 12171219.Google Scholar
Sailor, K. M., & Antoine, M. (2005). Is memory for stimulus magnitude Bayesian? Memory & Cognition, 33(5), 840851.Google Scholar
Saj, A., Fuhrman, O., Vuilleumier, P., & Boroditsky, L. (2014). Patients with left spatial neglect also neglect the “left side” of time. Psychological Science, 25, 207214.Google Scholar
Sakata, H., Tsutsui, K., & Taira, M. (2005). Toward an understanding of the neural processing for 3D shape perception. Neuropsychologia, 43, 151161.Google Scholar
Salgado-Montejo, A., Marmolejo-Ramos, F., Alvarado, J. A., Arboleda, J. C., Suarez, D. R., & Spence, C. (2016). Drawing sounds: Representing tones and chords spatially. Experimental Brain Research, 234, 35093522.Google Scholar
Sammartino, J., & Palmer, S. E. (2012a). Aesthetic issues in spatial composition: Effects of vertical position and perspective on framing single objects. Journal of Experimental Psychology: Human Perception and Performance, 38, 865879.Google Scholar
Sammartino, J., & Palmer, S. E. (2012b). Aesthetic issues in spatial composition: Representational fit and the role of sematic context. Perception, 41, 14341457.Google Scholar
Sampaio, C., & Wang, R. F. (2009). Category-based errors and the accessibility of unbiased spatial memories: A retrieval model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 13311337.Google Scholar
Sampaio, C., & Wang, R. F. (2010). Overcoming default categorical bias in spatial memory. Memory & Cognition, 38(8), 10411048.Google Scholar
Sanabria, D., Spence, C., & Soto-Faraco, S. (2007). Perceptual and decisional contributions to audiovisual interactions in the perception of apparent motion: A signal detection theory. Cognition, 102, 299310.Google Scholar
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411437.Google Scholar
Sandberg, E. H., Huttenlocher, J., & Newcombe, N. (1996). The development of hierarchical representation of two-dimensional apace. Child Development, 67(3), 721739.Google Scholar
Santiago, J, & Lakens, D. (2015). Can conceptual congruency effects between number, time, and space be accounted for by polarity correspondence? Acta Psychologica, 156, 179191.Google Scholar
Santiago, J., Lupiáñez, J., Pérez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Reviews, 14, 512516.Google Scholar
Santiago, J., Román, A., Ouellet, M., Rodríguez, N., & Pérez-Azor, P. (2010). In hindsight, life flows from left to right. Psychological Research, 74(1), 5970.Google Scholar
Santiago, J., Román, A., & Ouellet, M. (2011). Flexible foundations of abstract thought: A review and a theory. In Maas, A. & Schubert, T. (Eds.), Spatial dimensions of social thought (pp. 39108). Berlin: Mouton de Gruyter.Google Scholar
Sareen, P., Ehinger, K. A., & Wolfe, J. M. (2014). Through the looking-glass: Objects in the mirror are less real. Psychonomic Bulletin & Review, 22(4), 980986.Google Scholar
Sarich, D., Chappell, M., & Burgess, C. (2007). Dividing attention in the flash-lag illusion. Vision Research, 47, 544547.Google Scholar
Sasaki, Y., Rajimehr, R., Kim, B. W., Ekstrom, L. B., Vanduffel, W., & Tootell, R. B. (2006). The radial bias: A different slant on visual orientation sensitivity in human and nonhuman primates. Neuron, 51, 661670.Google Scholar
Sato, K., & Yamawaki, Y. (2014). Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia. Journal of Neurophysiology, 112(3), 671682.Google Scholar
Saunders, J., & Knill, D. C. (2001). Perception of 3D surface orientation from skew symmetry. Vision Research, 41(24), 31633185.Google Scholar
Saunders, J. A., & Backus, B. T. (2006). Perception of surface slant from oriented textures. Journal of Vision, 6(9), 882897.Google Scholar
Saunders, J. A., & Backus, B. T. (2007). Both parallelism and orthogonality are used to perceive 3D slant of rectangles from 2D images. Journal of Vision, 7(6), 111.Google Scholar
Sauvan, X. M., & Peterhans, E. (1999). Orientation constancy in neurons of monkey visual cortex. Visual Cognition, 6, 4354.Google Scholar
Savardi, U., & Bianchi, I. (2009). The spatial path to contrariety. In Savardi, U. (Ed.), The perception and cognition of contraries (pp. 6392). Milan, IT: McGraw-Hill.Google Scholar
Savardi, U., Bianchi, I., & Bertamini, M. (2010). Naive prediction of orientation and motion in mirrors: From what we see to what we expect reflections to do. Acta Psychologica, 134(1), 115.Google Scholar
Savelsbergh, G. J., Whiting, H. T., & Bootsma, R. J. (1991). Grasping tau. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 315322.Google Scholar
Saygin, A. P., Driver, J., & de Sa, V. R. (2008). In the footsteps of biological motion and multisensory perception. Psychological Science, 19, 469485.Google Scholar
Scarisbrick, D. J., Tweedy, J. R., & Kuslansky, G. (1987). Hand preference and performance effects in line bisection. Neuropsychologia, 25, 695699.Google Scholar
Schacter, D. L., & Addis, D. R. (2007). Constructive memory: The ghosts of past and future. Nature, 445(7123), 27.Google Scholar
Schaffer, J. (2003). Is there a fundamental level? Noûs, 37(3), 498517.Google Scholar
Schall, J. D., Perry, V. H., & Leventhal, A. G. (1986). Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially. Brain Research, 368, 1823.Google Scholar
Scharine, A. A., & McBeath, M. K. (2002) Right handers and Americans favor turning to the right. Human Factors, 44(1), 248256.Google Scholar
Scheef, L., Boecker, H., Daamen, M., Fehse, U., Landsberg, M. W., Granath, D. O., et al. (2009). Multimodal motion processing in area V5/MT: Evidence from an artificial class of audio-visual events. Brain Research, 1252, 94104.Google Scholar
Scheier, C. R., Nijhawan, R., & Shimojo, S. (1999). Sound alters visual temporal resolution. Investigative Ophthalmology & Visual Science, 40, S792.Google Scholar
Schenkenberg, T., Bradford, D. C., & Ajax, E. T. (1980). Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology, 30(5), 509517.Google Scholar
Schiano, D. J., McBeath, M. K., & Chambers, K. W. (2008). Regularity of symmetry verticality guides perceptual judgments of objects. American Journal of Psychology, 121(2), 209227.Google Scholar
Schiano, D., & Tversky, B. (1992). Structure and strategy in viewing simple graphs. Memory & Cognition, 20, 1220.Google Scholar
Schiff, W. (1965). Perception of impending collision – a study of visually directed avoidant behavior. Psychological Monographs, 79(11), 126.Google Scholar
Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science, 136, 982983.Google Scholar
Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival – effects of modality, trajectory, and gender. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 303316. doi:10.1037/0096-1523.16.2.303Google Scholar
Schiller, F., Eloka, O., & Franz, V. H. (2016). Using key distance to clarify a theory on the SNARC. Perception, 45, 196221.Google Scholar
Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23, 515528.Google Scholar
Schirillo, J. A. (2000). Hemispheric asymmetries and gender influence Rembrandt’s portrait orientations. Neuropsychologia, 38, 15931606.Google Scholar
Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature, 403, 3839.Google Scholar
Schmahmann, J. D. (2001). The cerebrocerebellar system: Anatomic substrates of the cerebellar contribution to cognition and emotion. International Review of Psychiatry, 13(4), 247260.Google Scholar
Schmiedchen, K., Freigang, C., Nitsche, I., & Rübsamen, R. (2012). Crossmodal interactions and multisensory integration in the perception of audio-visual motion – a free-field study. Brain Research, 1466, 99111.Google Scholar
Schmiedchen, K., Freigang, C., Rübsamen, R., & Richter, N. (2013). A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, & Psychophysics, 75, 15071519.Google Scholar
Schmitt, D. P., & Pilcher, J. J. (2004). Evaluating evidence of psychological adaptation: How do we know one when we see one? Psychological Science, 15(10), 643649.Google Scholar
Schnall, S., Harber, K. D., Stefanaucci, J. K., & Proffitt, D. R. (2008) Social support and the perception of geographical slant. Journal of Experimental Social Psychology, 44, 12461255.Google Scholar
Schnall, S., Zadra, J. R., & Proffitt, D. R. (2010). Direct evidence for the economy of action: Glucose and the perception of geographical slant. Perception, 39, 464482.Google Scholar
Schober, M. F. (1995). Speakers, addressees, and frames of reference: Whose effort is minimized in conversations about locations? Discourse Processes, 20, 219247.Google Scholar
Schouten, B., Troje, N. F., Vroomen, J., & Verfaillie, K. (2011). The effect of looming and receding sounds on the perceived in-depth orientation of depth-ambiguous biological motion figures. PLoS ONE, 6, e14725.Google Scholar
Schubert, L., Schubert, T. W., & Topolinski, S. (2013). The effect of spatial elevation on respect depends on merit and medium. Social Psychology, 44(2), 147159.Google Scholar
Schubert, T., & Maass, A. (Eds.). (2011). Spatial schemas in social thought. Berlin: Mouton de Gruyter.Google Scholar
Schubert, T. W. (2005). Your highness: Vertical positions as perceptual symbols of power. Journal of Personality and Social Psychology, 89, 121.Google Scholar
Schubert, T. W., & Otten, S. (2002). Overlap of self, ingroup, and outgroup: Pictorial measures of self-categorization. Self and Identity, 1(4), 353376.Google Scholar
Schubert, T. W., Waldzus, S., & Giessner, S. R. (2009). Control over the association of power and size. Social Cognition, 27(1), 119.Google Scholar
Schubert, T. W., Waldzus, S., & Seibt, B. (2008). The embodiment of power and communalism in space and bodily contact. In Semin, G. R. & Smith, E. R. (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp. 160183). New York: Cambridge University Press.Google Scholar
Schubert, T. W., Waldzus, S., & Seibt, B. (2010). More than a metaphor: How the understanding of power is grounded in experience. In Schubert, T. W. & Maass, A. (Eds.), Spatial dimensions of social thought (pp. 177213). Berlin: Mouton de Gruyter.Google Scholar
Schuler, J. R., Bockisch, C. J., Straumann, D., & Tarnutzer, A. A. (2010). Precision and accuracy of the subjective haptic vertical in the roll plane. BMC Neuroscience, 11(1), 83.Google Scholar
Schwartz, B., Tesser, A., & Powell, E. (1982). Dominance cues in nonverbal behavior. Social Psychology Quarterly, 45(2), 114120.Google Scholar
Scocchia, L., Actis-Grosso, R., de’Sperati, C., Stucchi, N., & Baud-Bovy, G. (2009). Observer’s control of the moving stimulus increases the flash-lag effect. Vision Research, 49, 23632370.Google Scholar
Scott, G., & Hellige, J. (1998). Hemispheric asymmetry for word naming: Effects of frequency and regularity of pronunciation. Laterality, 3, 343371.Google Scholar
Scott, T. R., Lavender, A. D., McWhirt, R. A., & Powell, D. A. (1966). Directional asymmetry of motion aftereffect. Journal of Experimental Psychology, 71(6), 806815.Google Scholar
Scruton, R. (1983). The aesthetic understanding. South Bend, IN: St Augustine’s Press.Google Scholar
Seamon, J. G., Schlegel, S. E., Hiester, P. M., Landau, S. M., & Blumenthal, B. F. (2002). Misremembering pictured objects: People of all ages demonstrate the boundary extension illusion. American Journal of Psychology, 115(2), 151167.Google Scholar
Sedgwick, H. A. (1986). Space perception. In Boff, K. R., Kaufman, L., & Thomas, J. P. (Eds.), Handbook of human perception and performance: Sensory processes (pp. 21.121.57). New York: Wiley.Google Scholar
Sedgwick, H. A. (2001). Visual space perception. In Goldstein, E. B. (Ed.), Blackwell handbook of perception (pp. 128167). Oxford: Blackwell.Google Scholar
Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schachinger, H., et al. (2002). Neural processing of auditory looming in the human brain. Current Biology, 12(24). doi:10.1016/s0960-9822(02)01356-8Google Scholar
Seitz, A. R., Kim, R., van Wassenhove, V., & Shams, L. (2007). Simultaneous and independent acquisition of multisensory and unisensory associations. Perception, 36, 14451453.Google Scholar
Sekuler, R., Sekuler, A. B., & Lau, R. (1997). Sound alters visual motion perception. Nature, 385, 308.Google Scholar
Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E. T., Brammer, M., & David, A. S. (2000). The functional neuroanatomy of implicit-motion perception or representational momentum. Current Biology, 10, 1622.Google Scholar
Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation of the functional necessity of V5/MT. Visual Cognition, 9, 8192.Google Scholar
Senot, P., Zago, M., Lacquaniti, F., & McIntyre, J. (2005). Anticipating the effects of gravity when intercepting moving objects: Differentiating up and down based on nonvisual cues. Journal of Neurophysiology, 94, 44714480.Google Scholar
Senot, P., Zago, M., Le Séac’h, A., Zaoui, M., Berthoz, A., Lacquaniti, F., & McIntyre, J. (2012). When up is down in 0g: How gravity sensing affects the timing of interceptive actions. Journal of Neuroscience, 32(6), 19691973.Google Scholar
Serences, J. T., Yantis, S., Culberson, A., & Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. Journal of Neurophysiology, 92, 35383545.Google Scholar
Sereno, A. B., & Maunsell, J. H. (1998). Shape selectivity in primate lateral intraparietal cortex. Nature, 395(6701), 500503.Google Scholar
Sereno, M., Pitzalis, S., & Martinez, A. (2001). Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science, 294, 13501354.Google Scholar
Sereno, M. I., Dale, A. M., Reppas, J. B., et al. (1995). Borders of multiple visual areas in human revealed by functional magnetic resonance imaging. Science, 268, 889893.Google Scholar
Sergent, J. (1982). Theoretical and methodological consequences of variations in exposure duration in visual laterality studies. Perception & Psychophysics, 31(5), 451461.Google Scholar
Sergent, J. (1995). Hemispheric contribution to face processing: Patterns of convergence and divergence. In Davidson, R. & Hughdahl, K. (Eds.), Brain asymmetry (pp. 157181). Cambridge, MA: MIT Press.Google Scholar
Serrano-Pedraza, I., Brash, C., & Read, J. C. (2013). Testing the horizontal-vertical stereo anisotropy with the critical-band masking paradigm. Journal of Vision, 13(11), 115.Google Scholar
Serrano-Pedraza, I., & Read, J. C. A. (2010). Multiple channels for horizontal, but only one for vertical corrugations? A new look at the stereo anisotropy. Journal of Vision, 10(12), 111.Google Scholar
Seuss, Dr. (1953). The Sneetches and other stories. New York: Redbook.Google Scholar
Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185, 359381.Google Scholar
Shaffer, D. M., Krauchunas, S. M., Eddy, M., & McBeath, M. K. (2004). How dogs navigate to catch frisbees. Psychological Science, 15(7), 437441.Google Scholar
Shaffer, D. M., & McBeath, M. K. (2002). Baseball outfielders maintain a linear optical trajectory when tracking uncatchable fly balls. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 335348.Google Scholar
Shaffer, D. M., & McBeath, M. K. (2005). Naïve beliefs in baseball: Systematic distortion in perceived time of apex for fly balls. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 14921501.Google Scholar
Shaffer, D. M., McBeath, M. K., & Roy, W. L., & Krauchunas, S. M. (2003). A linear optical trajectory informs fielders where to run to the side to catch fly balls. Journal of Experimental Psychology: Human Perception and Performance, 29(6), 12441250.Google Scholar
Shaffer, D. M., McManama, E., Swank, C., & Durgin, F. H. (2013). Sugar and space? Not the case: Effects of low blood glucose on slant estimation are mediated by beliefs. i-Perception, 4, 147155.Google Scholar
Shaki, S., & Fischer, M. H. (2008). Reading space into numbers – a cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590599.Google Scholar
Shaki, S., & Fischer, M. H. (2012). Multiple spatial mappings in numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 804809.Google Scholar
Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232(1), 4349.Google Scholar
Shaki, S., Fischer, M. H., & Göbel, S. M. (2012). Direction counts: A comparative study of spatially directional counting biases in cultures with different reading directions. Journal of Experimental Child Psychology, 112(2), 275281.Google Scholar
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328331.Google Scholar
Shaki, S., Petrusic, W. M., & Leth-Steensen, C. (2012). SNARC effects with numerical and non-numerical symbolic comparative judgments: Instructional and cultural dependencies. Journal of Experimental Psychology: Human Perception and Performance, 38, 515530.Google Scholar
Shallice, T., Mussoni, A., D’Agostino, S., & Skrap, M. (2010). Right posterior cortical functions in a tumour patient series. Cortex, 46(9), 11781188.Google Scholar
Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: What you see is what you hear. Nature, 408, 788.Google Scholar
Shams, L., Kamitani, Y., & Shimojo, S. (2002). Visual illusion induced by sound. Cognitive Brain Research, 14, 147152.Google Scholar
Shams, L., & Kim, R. (2010). Crossmodal influences on visual perception. Physics of Life Reviews, 7, 269284.Google Scholar
Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept. Neuroreport, 16, 19231927.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 279423.Google Scholar
Shanon, B. (1983). Answers to where-questions. Discourse Processes, 6, 319352.Google Scholar
Shapiro, K., Hillstrom, A. P., & Husain, M. (2002). Control of visuotemporal attention by inferior parietal and superior temporal cortex. Current Biology, 12, 13201325.Google Scholar
Shaw, B. K., McGowan, R. S., & Turvey, M. T. (1991). An acoustic variable specifying time-to-contact. Ecological Psychology, 3(3), 253261.Google Scholar
Shaw, E. A. G. (1982). External ear response and sound localization. In Gatehouse, R. (Ed.), Localization of sound: Theory and applications (pp. 3041). Groton, CT: Amphora.Google Scholar
Shaw, R., Turvey, M. T., & Mace, W. (1982). Ecological psychology: The consequence of a commitment to realism. Cognition and the Symbolic Processes, 2, 159226.Google Scholar
Shayan, S., Ozturk, O., & Sicoli, M. A. (2011). The thickness of pitch: Crossmodal metaphors in Farsi, Turkish, and Zapotec. The Senses and Society, 6, 96105.Google Scholar
Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4, 102106.Google Scholar
Shelton, P. A., Bowers, D. & Heilman, K. M. (1990). Peripersonal and vertical neglect. Brain, 113, 191205.Google Scholar
Shen, M., Zhou, J., Gao, T., Liang, J., & Shui, R. (2007). The perceived position of a moving object is not the result of position integration. Vision Research, 47, 30883095.Google Scholar
Shepard, R. N. (1982). Geometrical approximations to the structure of musical pitch. Psychological Review, 89, 305333.Google Scholar
Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant Kinematics of perceiving, imaging, thinking, and dreaming. Psychological Review, 91(4), 417447.Google Scholar
Shepard, R. N. (1994). Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin & Review, 1(1), 228.Google Scholar
Shepard, R. N. (2001). Perceptual-cognitive universals as a reflection of the world. Behavioral and Brain Sciences, 24, 581601.Google Scholar
Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nature Neuroscience, 3, 489495.Google Scholar
Shi, Z., & de’Sperati, C. (2008). Motion-induced positional biases in the flash-lag configuration. Cognitive Neuropsychology, 25, 10271038.Google Scholar
Shimojo, S., & Shams, L. (2001). Sensory modalities are not separate modalities: Plasticity and interactions. Current Opinion in Neurobiology, 11, 505509.Google Scholar
Shipley, T. (1964). Auditory flutter-driving of visual flicker. Science, 145, 13281330.Google Scholar
Shipley, T. F. (2003). The effect of object and event orientation on perception of biological motion. Psychological Science, 14, 377380.Google Scholar
Shirai, N., Birtles, D., Wattam-Bell, J., Yamaguchi, M. K., Kanazawa, S., Atkinson, J., & Braddick, O. (2009). Asymmetrical cortical processing of radial expansion/contraction in infants and adults. Developmental Science, 12(6), 946955.Google Scholar
Shirai, N., Kanazawa, S., & Yamaguchi, M. K. (2004). Asymmetry for the perception of expansion/contraction in infancy. Infant Behavior & Development, 27(3), 315322.Google Scholar
Shirai, N., Kanazawa, S., & Yamaguchi, M. K. (2006). Anisotropic motion coherence sensitivities to expansion/contraction motion in early infancy. Infant Behavior & Development, 29(2), 204209.Google Scholar
Sholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 615628.Google Scholar
Shi, Z., & de’Sperati, C. (2008). Motion-induced positional biases in the flash-lag configuration. Cognitive Neuropsychology, 25, 10271038.Google Scholar
Shi, Z., & Nijhawan, R. (2008). Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects. Journal of Vision, 8(7), 24.Google Scholar
Shioiri, S., Yamamoto, K., Oshida, H., Matsubara, K., & Yaguchi, H. (2010). Measuring attention using flash-lag effect. Journal of Vision, 10(10), 10.Google Scholar
Shulman, G., Popen, D., Astafiev, S., McAvoy, M., Snyder, A., & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. Journal of Neuroscience, 30, 36403651.Google Scholar
Shum, M. S., Bailenson, J., Hwang, S., Piland, L., & Uttal, D. (1998). Road climbing: Principles of route choice. In Proceedings of the 20th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.Google Scholar
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237250.Google Scholar
Silver, M., Ress, D., & Heeger, D. (2005). Topographic maps of visual spatial attention in human parietal cortex. Journal of Neurophysiology, 94(2), 13581371.Google Scholar
Silverman, I., Choi, J., & Peters, M. (2007). The Hunter-Gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36(2), 261268.Google Scholar
Silvia, P. J., & Barona, C. M. (2009). Do people prefer curved objects? Angularity, expertise, and aesthetic preference. Empirical Studies of the Arts, 27, 2542.Google Scholar
Simmering, V. R., Schutte, A. R., & Spencer, J. P. (2008). Generalizing the dynamic field theory of spatial cognition across real and developmental time scales. Brain Research, 1202, 6886.Google Scholar
Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In Proctor, R. W. & Reeve, T. G. (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 3186). Amsterdam: North-Holland.Google Scholar
Simon, J. R., Acosta, E., Mewaldt, S. P., & Speidel, C. R. (1976). The effect of an irrelevant directional cue on choice–reaction time: Duration of the phenomenon and its relation to stages of processing. Perception & Psychophysics, 19, 1622.Google Scholar
Simon, J. R., & Craft, J. L. (1971). Communicating directional information with an auditory display. Journal of Applied Psychology, 55, 241243.Google Scholar
Simon, J. R., Mewaldt, S. P., Acosta, E, & Hu, J. M. (1976). Processing auditory information: interaction of two spatial stereotypes. Journal of Applied Psychology, 61, 354358.Google Scholar
Simon, J. R., & Small, A. M. Jr. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53, 433435.Google Scholar
Sinai, M. J., Ooi, T. L., & He, Z. J. (1998). Terrain influences the accurate judgement of distance. Nature, 395(6701), 497500.Google Scholar
Sinico, M., Parovel, G., Casco, C., & Anstis, S. (2009). Perceived shrinkage of motion paths. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 948957.Google Scholar
Skarratt, P. A., Cole, G. G., & Gellatly, A. R. H. (2009). Prioritization of looming and receding objects: Equal slopes, different intercepts. Attention, Perception, & Psychophysics, 71(4), 964970.Google Scholar
Skarratt, P. A., Gellatly, A. R. H., Cole, G. G., Pilling, M., & Hulleman, J. (2014). Looming Motion Primes the Visuomotor System. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 566579.Google Scholar
Skinner, B. F. (1976). About behaviorism. New York: Vintage Books.Google Scholar
Slobin, D. (1996). From “thought and language” to “thinking for speaking.” In Gumperz, J. & Levinsohn, S. (Eds.), Rethinking linguistic relativity (pp. 7096). New York: Cambridge University Press.Google Scholar
Sloutsky, V. M. (2003). The role of similarity in the development of categorization. Trends in Cognitive Sciences, 7(6), 246251.Google Scholar
Sluzenski, J., Newcombe, N., & Ottinger, W. (2004). Changes in reality monitoring and episodic memory in early childhood. Developmental Science, 7(2), 225245.Google Scholar
Smith, A. T., Singh, K. D., & Greenlee, M. W. (2000). Attentional suppression of activity in the human visual cortex. NeuroReport, 11, 271277.Google Scholar
Smith, D. T., & Schenk, T. (2012). The premotor theory of attention: Time to move on? Neuropsychologia, 50, 11041114.Google Scholar
Smith, L. F. (2014). The science and aesthetics of astronomical images. Psychology of Aesthetics, Creativity, and the Arts, 8, 506513.Google Scholar
Smith, P. K., & Trope, Y. (2006). You focus on the forest when you’re in charge of the trees: Power priming and abstract information processing. Journal of Personality and Social Psychology, 90(4), 578596.Google Scholar
Snow, J. C., & Mattingley, J. B. (2006). Goal-driven selective attention in patients with right hemisphere lesions: How intact is the ipsilesional field? Brain, 129, 168181.Google Scholar
So, W. C., Shum, P. L. C., & Wong, M. K. Y. (2015). Gesture is more effective than spatial language in encoding spatial information. Quarterly Journal of Experimental Psychology, 68(12), 23842401.Google Scholar
Soechting, J. F., & Flanders, M. (1992). Moving in three-dimensional space: Frames of reference, vectors, and coordinate systems. Annual Review of Neuroscience, 15(1), 167191.Google Scholar
Solomon, J. A. (2009). The history of dipper functions. Attention, Perception, & Psychophysics, 71, 435443.Google Scholar
Solomon, J. A. (Ed.). (2011). Fechner’s legacy in psychology: 150 years of elementary psychophysics. Leiden: Brill.Google Scholar
Solomon, J. A., & Morgan, M. J. (2006) Stochastic re-calibration: Contextual effects on perceived tilt. Proceedings of the Royal Society, B, 273, 26812686.Google Scholar
Solomon, J. A., Morgan, M. J., & Chubb, C. (2011) Efficiences for the statistics of size discrimination. Journal of Vision, 11, 13.Google Scholar
Soto, D., & Humphreys, G. W. (2009). Semantically induced distortions of visual awareness in a patient with Balint’s syndrome. Cognition, 110(2), 237241.Google Scholar
Soto-Faraco, S., Kingstone, A., & Spence, C. (2003). Multisensory contributions to the perception of motion. Neuropsychologia, 41, 18471862.Google Scholar
Soto-Faraco, S., Lyons, J., Gazzaniga, M., Spence, C., & Kingstone, A. (2002). The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Cognitive Brain Research, 14, 139146.Google Scholar
Soto-Faraco, S., Spence, C., & Kingstone, A. (2004). Cross-modal dynamic capture: Congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology: Human Perception and Performance, 30, 330345.Google Scholar
Soto-Faraco, S., Spence, C., & Kingstone, A. (2005). Assessing automaticity in the audiovisual integration of motion. Acta Psychologica, 118, 7192.Google Scholar
Spanò, G., Intraub, H., & Edgin, J. O. (2017). Testing the “Boundaries” of boundary extension: Anticipatory scene representation across development and disorder. Hippocampus, 27, 726739.Google Scholar
Spelke, E., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34(5), 863884.Google Scholar
Spence, C. (2010). Crossmodal spatial attention. Annals of the New York Academy of Sciences (The Year in Cognitive Neuroscience), 1191, 182200.Google Scholar
Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73, 971995.Google Scholar
Spence, C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule. Annals of the New York Academy of Sciences, 1296, 3149.Google Scholar
Spence, C., & Deroy, O. (2013). How automatic are crossmodal correspondences? Consciousness and Cognition, 22, 245260.Google Scholar
Spence, C., Deroy, O., & Bremner, A. (2013). Questioning the utility of the concept of amodality: Towards a revised framework for understanding crossmodal relations. Multisensory Research, 26(Suppl.), 57.Google Scholar
Spence, J. T., Helmreich, R. L., & Stapp, J. (1974). The personal attributes questionnaire: A measure of sex-role stereotypes and masculinity and femininity. Journal Supplement Abstract Service: Catalog of Selected Documents in Psychology, 4, 4344.Google Scholar
Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131(1), 1637.Google Scholar
Spetch, M. L., Friedman, A., Bialowas, J., & Verbeek, E. (2010). Contributions of category and fine-grained information to location memory: When categories don’t weigh in. Memory & Cognition, 38(2), 154162.Google Scholar
Stafford, L. (2010). Geographic distance and communication during courtship. Communication Research, 37, 275297.Google Scholar
Stefanucci, J. K., & Proffitt, D. R. (2009). The roles of altitude and fear in the perception of height. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 424438.Google Scholar
Stefanucci, J. K., Proffitt, D. R., Banton, T., & Epstein, W. (2005). Distances appear different on hills. Perception & Psychophysics, 67(6), 10521060.Google Scholar
Steinman, B. A., Steinman, S. B., & Lehmkuhle, S. (1995). Visual attention mechanisms show a center-surround organization. Vision Research, 35, 18591869.Google Scholar
Stekelenburg, J. J., & Vroomen, J. (2005). An event-related potential investigation of the time-course of temporal ventriloquism. NeuroReport, 16, 641644.Google Scholar
Stern, E., & Leiser, D. (1988). Levels of spatial knowledge and urban travel modeling. Geographical Analysis, 20(2), 140155.Google Scholar
Stevens, S. S. (1935). The relation of pitch to intensity. The Journal of the Acoustical Society of America, 6, 150154.Google Scholar
Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10(4), 422437.Google Scholar
Stidwill, D., & Fletcher, R. (2011). Normal binocular vision: Theory, investigation and practical aspects. Oxford: Wiley-Blackwell.Google Scholar
Stieger, S., & Swami, V. (2015). Time to let go? No automatic aesthetic preference for the golden ratio in art pictures. Psychology of Aesthetics, Creativity, and the Arts, 9, 91100.Google Scholar
Stigler, R. (1910). Chronophotische Studien über den Umgebungskontrast [Chronophotic studies of the vicinity contrast]. Pflügers Archiv für die gesamte Physiologie, 134, 365435.Google Scholar
Stigmar, G. (1970). Observations on vernier and stereo acuity with special reference to their relationship. Acta Ophthalmologica (Copenhagen), 48(5), 979998.Google Scholar
Stoffregen, T. A., & Bardy, B. G. (2001). On specification and the senses. Behavioral and Brain Sciences, 24, 195261.Google Scholar
Stone, J. P., & McBeath, M. K. (2010). Gender differences in distance estimates when exposed to multiple routes. Environment and Behavior, 42(4), 469478.Google Scholar
Stork, S., & Müsseler, J. (2004). Perceived localizations and eye movements with action-generated and computer-generated vanishing points of moving stimuli. Visual Cognition, 11, 299314.Google Scholar
Streeck, J., & Jordan, J. S. (2009). Communication as a dynamical self-sustaining system: The importance of time-scales and nested contexts, Communication Theory, 19, 445464.Google Scholar
Strybel, T. Z., & Vatakis, A. (2004). A comparison of auditory and visual apparent motion presented individually and with crossmodal moving distractors. Perception, 33, 10331048.Google Scholar
Stulp, G., Buunk, A. P., Verhulst, S., & Pollet, T. V. (2012a). High and mighty: Height increases authority in professional refereeing. Evolutionary Psychology, 10(3), 588601.Google Scholar
Stulp, G., Buunk, A. P., Verhulst, S., & Pollet, T. V. (2012b). Tall claims? Sense and nonsense about the importance of height of US presidents. The Leadership Quarterly, 24(1), 113.Google Scholar
Stulp, G., Buunk, A. P., Verhulst, S., & Pollet, T. V. (2013). Tall claims? Sense and nonsense about the importance of height of US presidents. The Leadership Quarterly, 24(1), 159171.Google Scholar
Stulp, G., Buunk, A. P., Verhulst, S., & Pollet, T. V. (2015). Human height is positively related to interpersonal dominance in dyadic interactions. PLoS ONE, 10(2), 118.Google Scholar
Stumpf, C. (1883). Tonpsychologie. Leipzig: Verlag von S. Hirzel.Google Scholar
Stumpf, C. (1911/2012). The origins of music (Trippett, David, Ed. and Trans.). Oxford: Oxford University Press.Google Scholar
Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28, 13451363.Google Scholar
Suavansri, K., Falchook, A. D., Williamson, J. B., & Heilman, K. M. (2012). Right up there: Hemispatial and hand asymmetries of altitudinal pseudoneglect. Brain and Cognition, 79, 216220.Google Scholar
Sugar, D. G., & McBeath, M. K. (2001). Robotic modeling of mobile ball-catching as a tool for understanding biological interceptive behavior. Behavioral and Brain Sciences, 24(6), 10781080.Google Scholar
Sugar, T. G., McBeath, M. K., Suluh, A., & Mundhra, K. (2006). Mobile robot interception using human navigational principles: Comparison of active versus passive tracking algorithms. Autonomous Robots, 21(1), 4354.Google Scholar
Sugar, T. G., McBeath, M. K., & Wang, Z. (2006). A unified fielder theory for interception of moving objects either above or below the horizon. Psychonomic Bulletin & Review, 13(5), 908917.Google Scholar
Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It’s what you weigh, not what you think. Acta Psychologica, 165, 18.Google Scholar
Suitner, C., & Giacomantonio, M. (2012). Seeing the forest from left to right: How Construal Level affects the Spatial Agency Bias. Social Psychological and Personality Science, 3, 180185.Google Scholar
Suitner, C., & Maass, A. (2007). Positing bias in portraits and self-portraits: Do female artists make different choices? Empirical Studies of the Arts, 25, 7195.Google Scholar
Suitner, C., & Maass, A. (2016). Spatial agency bias: Representing people in space. Advances in Experimental Social Psychology, 53, 245301.Google Scholar
Suitner, C., Maass, A., Bettinsoli, M. L., Carraro, L., & Kumar, S. (2017). Left-handers’ struggle in a rightward wor(l)d: The relation between horizontal spatial bias and effort in directed movements. Laterality: Asymmetries of Body, Brain and Cognition, 22(1) 6089.Google Scholar
Suitner, C., Maass, A., & Ronconi, L. (2017). From spatial to social asymmetry: Spontaneous and conditioned associations of gender and space. Psychology of Women Quarterly, 41(1), 4664.Google Scholar
Suitner, C., & McManus, I. C. (2011). Aesthetic asymmetries, spatial agency, and art history: A social psychological perspective. In Schubert, T. & Maass, A. (Eds.), Spatial dimensions of social thought (pp. 277302). Berlin & New York: Mouton de Gruyter.Google Scholar
Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13, 283286.Google Scholar
Sussman, A. L. (2001). Reality monitoring of performed and imagined interactive events: Developmental and contextual effects. Journal of Experimental Child Psychology, 79(2), 115138.Google Scholar
Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 443463.Google Scholar
Swartz, P., & Hewitt, D. (1970). Lateral organization in pictures and aesthetic preference. Perceptual and Motor Skills, 30, 9911007.Google Scholar
Tabata, T., & Okuda, S. (2000). Mirror reversal simply explained without recourse to psychological processes. Psychonomic Bulletin & Review, 7(1), 170173.Google Scholar
Tagliabue, M., Zorzi, M., & Umiltà, C. (2002). Cross-modal remapping influences the Simon effect. Memory & Cognition, 30, 1823.Google Scholar
Tagliabue, M., Zorzi, M., Umiltà, C., & Bassignani, F. (2000). The role of LTM links and STM links in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 26, 648670.Google Scholar
Tajadura-Jimenez, A., Vakali, M., Fairhurst, M. F., Mandringin, A., Bianchi-Berthouze, N., & Deroy, O. (2017). Contingent sounds change the mental representation of one’s finger length. Scientific Reports, 7, 5748.Google Scholar
Tajadura-Jimenez, A., Valjamae, A., Asutay, E., & Vastfjall, D. (2010). Embodied auditory perception: The emotional impact of approaching and receding sound sources. Emotion, 10(2). doi:10.1037/a0018422Google Scholar
Tajfel, H., Billig, M. G., Bundy, R. P., & Flament, C. (1971). Social categorization and intergroup behaviour. European Journal of Social Psychology, 1(2), 149178.Google Scholar
Tajfel, H. (1974). Social identity and intergroup behaviour. Social Science Information/sur les sciences sociales, 13(2), 6593.Google Scholar
Takano, Y. (1998). Why does a mirror image look left–right reversed? A hypothesis of multiple processes. Psychonomic Bulletin & Review, 5(1), 3755.Google Scholar
Takeuchi, T. (1997). Visual search of expansion and contraction. Vision Research, 37(15), 20832090.Google Scholar
Talgar, C. P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychonomic Bulletin & Review, 9(4), 714722.Google Scholar
Talmy, L. (1983). How language structures space. In Pick, H. & Acredolo, L. (Eds.), Spatial orientation: Theory, research and application (pp. 225282). New York: Plenum Press.Google Scholar
Talmy, L. (2000). Towards a cognitive semantics: Concept structuring systems. Cambridge, MA: MIT Press.Google Scholar
Tan, S., & Dixon, P. (2011). Repetition and the SNARC effect with one-and two-digit numbers. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 65(2), 8497.Google Scholar
Tanner, W. P., & Swets, J. A. (1954). A decision-making theory of visual detection. Psychological Review, 61(6), 401409.Google Scholar
Tarnutzer, A. A., Bockisch, C., Straumann, D., & Olasagasti, I. (2009). Gravity dependence of subjective visual vertical variability. Journal of Neurophysiology, 102(3), 16571671.Google Scholar
Taya, S., & Miura, K. (2010). Cast shadow can modulate the judged final position of a moving target. Attention, Perception, & Psychophysics, 72, 19301937.Google Scholar
Taylor, H. A., & Tversky, B. (1996). Perspective in spatial descriptions. Journal of Memory and Language, 35(3), 371391.Google Scholar
Taylor, J. E. T., Witt, J. K., & Sugovic, M. (2011). When walls are no longer barriers: Perception of wall height in parkour. Perception, 40(6), 757760.Google Scholar
Taylor, N. M., & Jakobson, L. S. (2010). Representational momentum in children born preterm and at term. Brain and Cognition, 72, 464471.Google Scholar
Taylor, T. L., & Ivanoff, J. (2003). The interplay of stop signal inhibition and inhibition of return. Quarterly Journal of Experimental Psychology, 56A, 13491371.Google Scholar
Taylor, T. L., & Klein, R. M. (2000). Visual and motor effects in inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 26, 16391656.Google Scholar
Taylor-Covill, G. A. H., & Eves, F. F. (2013). Slant perception for stairs and screens: Effects of sex and fatigue in a laboratory environment. Perception, 42(4), 459469.Google Scholar
Taylor-Covill, G. A. H., & Eves, F. F. (2014). When what we need influences what we see: Choice of energetic replenishment is linked with perceived steepness. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 915919.Google Scholar
Taylor-Covill, G. A. H., & Eves, F. F. (2016). Carrying a biological “backpack”: Quasi-experimental effects of weight status and body fat change on perceived steepness. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 331338.Google Scholar
Teghtsoonian, M., & Teghtsoonian, R. (1969). Scaling apparent distance in natural indoor settings. Psychonomic Science, 16(6), 281283.Google Scholar
Teghtsoonian, R., Teghtsoonian, M., & Canevet, G. (2005). Sweep-induced acceleration in loudness change and the “bias for rising intensities.” Perception & Psychophysics, 67(4), 699712.Google Scholar
Teneggi, C., Canzoneri, E., di Pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal space boundaries. Current Biology, 23(5), 406411.Google Scholar
Tenhundfeld, N. L., & Witt, J. K. (2017). Distances on hills look farther than distances on flat ground: Evidence from converging measures. Attention, Perception, & Psychophysics, 79(4), 11651181.Google Scholar
Teramoto, W., Hidaka, S., Gyoba, J., & Suzuki, Y. (2010). Auditory temporal cues can modulate visual representational momentum. Attention, Perception, & Psychophysics, 72, 22152226.Google Scholar
Teramoto, W., Hidaka, S., & Sugita, Y. (2010). Sounds move a static visual object. PLoS ONE, 5, e12255.Google Scholar
Teramoto, W., Hidaka, S., Sugita, Y., Sakamoto, S., Gyoba, J., Iwaya, Y., & Suzuki, Y. (2012). Sounds can alter the perceived direction of a moving visual object. Journal of Vision, 12, 11.Google Scholar
Teramoto, W., Kobayashi, M., Hidaka, S., & Sugita, Y. (2013). Vision contingent auditory pitch aftereffects. Experimental Brain Research, 229, 97102.Google Scholar
Teramoto, W., Manaka, Y., Hidaka, S., Sugita, Y., Miyauchi, R., Sakamoto, S., Iwaya, Y. & Suzuki, Y. (2010). Visual motion perception induced by sounds in vertical plane. Neuroscience Letters, 479, 221225.Google Scholar
Terhardt, E. (1974). On the perception of periodic sound fluctuations (roughness). Acustica, 30, 201213.Google Scholar
Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S., Simmons, A., Vergani, F., Murphy, D., et al. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 12451246.Google Scholar
Thiebaut de Schotten, M., Tomaiuolo, F., Aiello, M., Merola, S., Silvetti, M., Lecce, F., et al. (2012). Damage to white matter pathways in sub-acute and chronic spatial neglect: A group study and two single-case studies with complete virtual “in-vivo” tractography dissection. Cerebral Cortex, 24(3), 691706.Google Scholar
Thiebaut de Schotten, M., Urbanski, M., Duffau, E., Volle, E., Levy, R., Dubois, B., et al. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309, 22262228.Google Scholar
Thomas, B. (1971). Geometry in pictorial composition. Newcastle, UK: Oriela Press.Google Scholar
Thomas, C., Kveraga, K., Huberle, E., Karnath, H.-O., & Bar, M. (2012). Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain, 135(5), 15781585.Google Scholar
Thomas, N. A., Burkitt, J. A., & Saucier, D. M. (2006). Photographer preference or image bias? An investigation of posing bias in mammalian and non-mammalian species. Laterality, 11, 350354.Google Scholar
Thomas, N. A., & Elias, L. J. (2011). Upper and lower visual field differences in perceptual asymmetries. Brain Research, 1387, 108115.Google Scholar
Thompson, P. (1980). Margaret Thatcher: A new illusion. Perception, 9, 483484.Google Scholar
Thomsen, L., & Carey, S. (2013). Core cognition of social relations. In Banaji, M. R. & Gelman, S. (Eds.), Navigating the social world: What infants, children, and other species can teach us (pp. 1722). New York: Oxford University Press.Google Scholar
Thomsen, L., Frankenhuis, W. E., Ingold-Smith, M., & Carey, S. (2011). Big and mighty: Preverbal infants mentally represent social dominance. Science, 331(6016), 477480.Google Scholar
Thorndyke, P. W. (1981). Distance estimation from cognitive maps. Cognitive Psychology, 13, 526550.Google Scholar
Thorndyke, P. W., & Hayes-Roth, B. (1982) Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560589.Google Scholar
Thornton, I. M. (2002). The onset repulsion effect. Spatial Vision, 15(2), 219243.Google Scholar
Thornton, I. M. (2014). Representational momentum and the human face: An empirical note. Xjena Online – Journal of the Malta Chamber of Scientists. doi: 10.7423/XJENZA.2014.2.09Google Scholar
Thornton, I. M., & Hayes, A. E. (2004). Anticipating action in complex scenes. Visual Cognition, 11, 341370.Google Scholar
Tian, Y., Huang, Y., Zhou, K., Humphreys, G. W., Riddoch, M. J., & Wang, K. (2011). When Connectedness Increases Hemispatial Neglect. PLoS ONE, 6(9), e24760.Google Scholar
Tibber, M. S., Anderson, E. J., Melmoth, D. R., Rees, G., & Morgan, M. J. (2009). Common cortical loci are activated during visuospatial interpolation and orientation discrimination judgements. PLoS ONE, 4(2), e4585.Google Scholar
Tibber, M. S., Melmoth, D. R., & Morgan, M. J. (2008). Biases and sensitivities in the Poggendorff effect when driven by subjective contours. Invesigative Ophthalmology & Visual Science, 49(1), 474478.Google Scholar
Tillman, B., & Bharucha, J. J. (1999). Perceiving and learning harmonic structure: Some news from MUSACT. International Journal of Computing Anticipatory Systems, 4, 289300.Google Scholar
Tinbergen, N., Impekoven, M., & Franck, D. (1967). An experiment on spacing-out as a defence against predation. Behaviour, 28, 307321.Google Scholar
Tlauka, M. (2002). The processing of numbers in choice-reaction tasks. Australian Journal of Psychology, 54(2), 9498.Google Scholar
Toba, M.-N., Cavanagh, P., & Bartolomeo, P. (2011). Attention biases the perceived midpoint of horizontal lines. Neuropsychologia, 49(2), 238246.Google Scholar
Todd, J. T. (1981). Visual information about moving-objects. Journal of Experimental Psychology-Human Perception and Performance, 7(4), 795810.Google Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189208.Google Scholar
Tomassini, A., Morgan, M. J., & Solomon, J. S. (2010) Orientation uncertainly reduces perceived obliquity. Vision Research, 50, 541547.Google Scholar
Torralbo, A., Santiago, J., & Lupiáñez, J. (2006). Flexible conceptual projection of time onto spatial frames of reference. Cognitive Science, 30, 745757.Google Scholar
Toth, C., & Kirk, A. (1996). A normal bias towards a pictorially defined top in line bisection. Canadian Journal of Neurological Science, 23, 110113.Google Scholar
Tozawa, J. (2010). Role of texture gradient in the perception of relative size. Perception, 39(5), 641660.Google Scholar
Tozawa, J., & Oyama, T. (2006). Effects of motion parallax and perspective cues on perceived size and distance. Perception, 35(8), 10071023.Google Scholar
Tresilian, J. R. (1993). Four questions of time to contact – a critical examination of research on interceptive timing. Perception, 22(6), 653680.Google Scholar
Tresilian, J. R. (1994). Approximate information-sources and perceptual variables in interceptive timing. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 154173.Google Scholar
Tresilian, J. R. (1995). Perceptual and cognitive-processes in time-to-contact estimation – analysis of prediction-motion and relative judgment tasks. Perception & Psychophysics, 57(2), 231245.Google Scholar
Tresilian, J. R. (1999). Visually timed action: Time-out for “tau”? Trends in Cognitive Sciences, 3(8), 301310.Google Scholar
Troje, N. F. (2003). Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception, 32, 201210.Google Scholar
Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector?” Current Biology, 16, 821824.Google Scholar
Trope, Y., & Liberman, N. (2003). Temporal construal. Psychological Review, 110, 403421.Google Scholar
Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117(2), 440463.Google Scholar
Tsal, Y., & Bareket, T. (1999). Effects of attention on localization of stimuli in the visual field. Psychonomic Bulletin & Review, 6(2), 292296.Google Scholar
Tsal, Y., & Bareket, T. (2005). Localization judgments under various levels of attention. Psychonomic Bulletin & Review, 12, 559566.Google Scholar
Tsal, Y., Meiran, N., & Lamy, D. (1995). Towards a resolution theory of visual attention. Visual Cognition, 2, 313330.Google Scholar
Tseng, R. (2003). The sceptical idealist: Michael Oakeshott as a critic of the Enlightenment (Vol. 1). Charlottesville, VA: Imprint Academic.Google Scholar
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846.Google Scholar
Turvey, M. T., & Carello, C. (1986). The ecological approach to perceiving-acting: A pictorial essay. Acta Psychologica, 63(1–3), 133155.Google Scholar
Turvey, M. T., & Shaw, R. E. (1999). Ecological foundations of cognition. I. Symmetry and specificity of animal-environment systems. Journal of Consciousness Studies, 6(11–12), 95110.Google Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.Google Scholar
Tversky, A., & Gati, I. (1978). Studies of similarity. In Rosch, E. & Lloyd, B. B. (Eds.), Cognition and categorization (pp. 7998). Hillsdale, NJ: Erlbaum.Google Scholar
Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13(3), 407433.Google Scholar
Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In Frank, A. U. & Campari, I. (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 1424). Berlin: Springer-Verlag.Google Scholar
Tversky, B. (1996). Spatial perspective in descriptions. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. (Eds.), Language and space (pp. 463491). Cambridge, MA: MIT Press.Google Scholar
Tversky, B. (1998). Three dimensions of spatial cognition. In Conway, M. A., Gathercole, S. E., & Cornoldi, C. (Eds.), Theories of memory II (pp. 259275). Hove, East Sussex: Psychological Press.Google Scholar
Tversky, B. (2000). Remembering space. In Tulving, E. & Craik, F. I. M. (Eds.), Handbook of Memory (pp. 363378). New York: Oxford University Press.Google Scholar
Tversky, B. (2001). Spatial schemas in depictions. In Gattis, M. (Ed.), Spatial schemas and abstract thought (pp. 79111). Cambridge, MA: MIT Press.Google Scholar
Tversky, B. (2003). Navigating by mind and by body. In Freksa, C., Brauer, W., Habel, C., & Wender, K. F. (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning (pp. 110). Berlin: Springer Verlag.Google Scholar
Tversky, B. (2005a). Functional significance of visuospatial representations. In Shah, P. & Miyake, A. (Eds.), Handbook of higher-level visuospatial thinking (pp. 134). Cambridge: Cambridge University Press.Google Scholar
Tversky, B. (2005b). Visuospatial reasoning. In Holyoak, K. & Morrison, R. (Eds.), The Cambridge handbook of thinking and reasoning (pp. 209241). Cambridge: Cambridge University Press.Google Scholar
Tversky, B. (2009). Spatial cogntion: Embodied and situated. In Robbins, P. & Aydede, M. (Eds.), The Cambridge handbook of situated cognition (pp. 201216). Cambridge: Cambridge University Press.Google Scholar
Tversky, B. (2011a). Spatial thought, social thought. In Schubert, T. & Maass, A. (Eds.), Spatial schemas in social thought (pp. 7538). Berlin: Mouton de Gruyter.Google Scholar
Tversky, B. (2011b). Visualizations of thought. Topics in Cognitive Science, 3, 499535.Google Scholar
Tversky, B. (2016). Lines: Orderly and messy. In Portugali, Y. & Stolk, E. (Eds.), Complexity, cognition, urban planning, and design (pp. 237250). Dordrecht: Springer.Google Scholar
Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental trends in graphic productions. Cognitive Psychology, 23, 515557.Google Scholar
Tversky, B., & Hard, B. M. (2009). Embodied and disembodied cognition: Spatial perspective-taking. Cognition, 110(1), 124129.Google Scholar
Tversky, B., & Hemenway, K. (1983). Categories of scenes. Cognitive Psychology, 15, 121149.Google Scholar
Tversky, B., Lee, P. U., & Mainwaring, S. (1999). Why speakers mix perspectives. Journal of Spatial Cognition and Computation, 1, 399412.Google Scholar
Tversky, B., & Schiano, D. J. (1989). Perceptual and conceptual factors in distortions in memory for graphs and maps. Journal of Experimental Psychology: Human Perception and Performance, 118(4), 387398.Google Scholar
Tversky, B., & Schiano, D. J. (1997). Distortions in visual memory: Reply to Engebretson and Huttenlocher (1996). Journal of Experimental Psychology: General, 126(3), 312314.Google Scholar
Tversky, B., Zacks, J. M., & Hard, B. M. (2008). The structure of experience. In Shipley, T. & Zacks, J. M. (Eds.), Understanding events (pp. 436464). Oxford: Oxford University.Google Scholar
Tyler, C. W. (1973). Periodic vernier acuity. Journal of Physiology, 228(3), 637647.Google Scholar
Tyler, C. W. (1998). Painters centre one eye in portraits. Nature, 392, 877878.Google Scholar
Tyler, C. W. (2011). Paradoxical perception of surfaces in the Shepard tabletop illusion. I-Perception, 2(2), 137141.Google Scholar
Tyler, C. W., & Nakayama, K. (1984). Size interactions in the perception of orientation. In Spillman, L. & Wooton, B. R. (Eds.), Sensory experience, adaptation and perception (pp. 529546). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Tyll, S., Bonath, B., Schoenfeld, M. A., Heinze, H. J., Ohl, F. W., & Noesselt, T. (2013). Neural basis of multisensory looming signals. Neuroimage, 65, 1322.Google Scholar
Udo De Haes, H. A. (1970). Stability of apparent vertical and ocular counter-torsion as a function of lateral tilt. Perception & Psychophysics, 8, 137142.Google Scholar
Ulrich, R., & Maieborn, C. (2010). Left–right coding of past and future in language: The mental timeline during sentence processing. Cognition, 117(2), 126138.Google Scholar
Umiltà, C. (1991). Problems of the salient-features coding hypothesis: Comment on Weeks and Proctor. Journal of Experimental Psychology: General, 120, 8386.Google Scholar
Umiltà, C., & Nicoletti, R. (1985). Attention and coding effects in S-R compatibility due to irrelevant spatial cues. In Posner, M. I. & Marin, O. S. M. (Eds.), Attention and performance XI (pp. 457471). Hillsdale, NJ: Erlbaum.Google Scholar
Umiltà, C., & Nicoletti, R. (1990). Spatial stimulus–response compatibility. In Proctor, R. W. & Reeve, T. G. (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 89143). Amsterdam: North-Holland.Google Scholar
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., & Mansfield, R. J. W. (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
Uono, S., Sato, W., & Toichi, M. (2010). Brief report: Representational momentum for dynamic facial expressions in pervasive developmental disorder. Journal of Autism and Developmental Disorders, 40, 371377.Google Scholar
Uono, S., Sato, W., & Toichi, M. (2014). Reduced representational momentum for subtle dynamic facial expressions in individuals with autism spectrum disorders. Research in Autism Spectrum Disorders, 8, 10901099.Google Scholar
Urbanski, M., & Bartolomeo, P. (2008). Line bisection in left neglect: The importance of starting right. Cortex, 44, 782793.Google Scholar
Uttal, D. H., Friedman, A., Hand, L. L., & Warren, C. (2010). Learning fine-grained and category information in navigable real-world space. Memory & Cognition, 38(8), 10261040.Google Scholar
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2012). Threat modulates perception of looming visual stimuli. Current Biology, 22(19), R826R827.Google Scholar
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2015). Threat modulates neural responses to looming visual stimuli. European Journal of Neuroscience, 42(5), 21902202.Google Scholar
Vaid, J., Singh, M., Sakhuja, T., & Gupta, G. C. (2002). Stroke direction asymmetry in figure drawing: Influence of handedness and reading/writing habits. Brain and Cognition, 48, 597602.Google Scholar
Vallacher, R. R., Wegner, D. M., & Somoza, M. P. (1989). That’s easy for you to say! Action identification and speech fluency. Journal of Personality and Social Psychology, 56(2), 199208.Google Scholar
Vallar, G. (2001). Extrapersonal visual unilateral spatial neglect and its neuroanatomy. Neuroimage, 14(1), 5258.Google Scholar
Vallar, G., Daini, R., & Antonucci, G. (2000). Processing of illusion of length in spatial hemineglect: A study of line bisection. Neuropsychologia, 38(7), 10871097.Google Scholar
Vallar, G., & Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia, 24(5), 609622.Google Scholar
Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal association of time. Cognition, 107, 501527.Google Scholar
Vallesi, A., Weisblatt, Y., Semenza, C., & Shaki, S. (2014). Cultural modulations of space-time compatibility effects. Psychonomic Bulletin & Review, 21, 666669.Google Scholar
van Beers, R. J., Wolpert, D. M., & Haggard, P. (2001). Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. Journal of Neurophysiology, 85, 19141922.Google Scholar
van de Grind, W. (2002). Physical, neural, and mental timing. Consciousness and Cognition, 11, 241264.Google Scholar
van der Hoort, B., & Ehrsson, H. H. (2014). Body ownership affects visual perception of object size by rescaling the visual representation of external space. Attention, Perception, & Psychophysics, 76(5), 14141428.Google Scholar
van der Hoort, B., Guterstam, A., & Ehrsson, H. H. (2011). Being Barbie: The size of one’s own body determines the perceived size of the world. PLoS ONE, 6(5), e20195.Google Scholar
Van der Lubbe, R. H. J., & Abrahamse, E. L. (2011). The premotor theory of attention and the Simon effect. Acta Psychologica, 136, 259264.Google Scholar
Van der Lubbe, R. H. J., Abrahamse, E. L., & De Kleine, E. (2012). The premotor theory of attention as an account of the Simon effect. Acta Psychologica, 140, 2534.Google Scholar
Van der Lubbe, R. H. J., & Verleger, R. (2002). Aging and the Simon task. Psychophysiology, 39, 100110.Google Scholar
van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114119.Google Scholar
van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248253.Google Scholar
van Dijck, J. P., Gevers, W., Lafosse, C., Doricchi, F., & Fias, W. (2011). Non-spatial neglect for the mental number line. Neuropsychologia, 49, 25702583.Google Scholar
van Ee, R., & Erkelens, C. J. (2000). Is there an interaction between perceived direction and perceived aspect ratio in stereoscopic vision? Perception & Psychophysics, 62(5), 910926.Google Scholar
van Elk, M., van Schie, H. T., & Bekkering, H. (2010). From left to right: Processing acronyms referring to names of political parties activates spatial associations. Quarterly Journal of Experimental Psychology, 63, 22022219.Google Scholar
van Gelder, T. J. (1998) The dynamical hypothesis in cognitive science, Behavioral and Brain Sciences, 21, 114.Google Scholar
van Hasselt, P. C. (1972). The centrifugal control of retinal function. Benschop: Nijimegen.Google Scholar
Van Opstal, A. J., & Van Gisbergen, J. A. (1987). Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades. Vision Research, 27(5), 731745.Google Scholar
Van Orden, G. C., & Holden, J. G. (2002) Intentional contents and self-control. Ecological Psychology, 14, 87109.Google Scholar
van Quaquebeke, N., & Giessner, S. R. (2010). How embodied cognitions affect judgments: Height-related attribution bias in football foul calls. Journal of Sport & Exercise Psychology, 32(1), 322.Google Scholar
van Vugt, P., Fransen, I., Creten, W., & Paquier, P. (2000). Line bisection performances of 650 normal children. Neuropsychologia, 38(6), 886895.Google Scholar
Vandervert, L. (1995) Chaos theory and the evolution of consciousness and mind: A thermodynamic-holographic resolution to the mind-body problem. New Ideas in Psychology, 13(2), 107127.Google Scholar
Vartanian, O., Martindale, C., Podsaidlo, J., Overbay, S., & Borkum, J. (2005). The link between composition and balance in masterworks vs. paintings of lower artistic quality. British Journal of Psychology, 96, 493503.Google Scholar
Vartanian, O., & Nadal, M. (2007). A biological approach to a model of aesthetic experience. In Dorfman, L., Martindale, C., & Petrov, V. (Eds.), Aesthetics and innovation (pp. 429444). Newcastle, UK: Cambridge Scholars Publishing.Google Scholar
Vaziri-Pashkam, M., & Cavanagh, P. (2011). Effect of speed overestimation on flash-lag effect at low luminance. i-Perception, 2, 10631075.Google Scholar
Vera-Constán, F. Rodríguez-Cuadrado, S., Romero-Rivas, C., Puigcerver, , Fernández-Prieto, I., & Navarra, J. (submitted). Seeing music: The perception of melodic “ups and downs” modulates the spatial processing of visual stimuli.Google Scholar
Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9, 217232.Google Scholar
Verfaillie, K., De Troy, A., & Van Rensbergen, J. (1994). Transsaccadic integration of biological motion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 649670.Google Scholar
Verfaillie, K., & d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 302313.Google Scholar
Verschuure, J., & Van Meeteren, A. A. (1975). The effect of intensity on pitch. Acta Acustica, 32, 3344.Google Scholar
Viarouge, A., Hubbard, E. M., & Dehaene, S. (2014). The organization of spatial reference frames involved in the SNARC effect. The Quarterly Journal of Experimental Psychology, 67(8), 14841499.Google Scholar
Vickers, J. N. (1992). Gaze control in putting. Perception, 21(1), 117132.Google Scholar
Vingerhoets, R. A. A., De Vrijer, M., van Gisbergen, J. A. M., & Medendorp, W. P. (2009). Fusion of visual and vestibular tilt cues in the perception of visual vertical. Journal of Neurophysiology, 101, 13211333.Google Scholar
Vinson, D. W., Jordan, J. S., & Hund, A. M. (2017). Perceptually walking in another’s shoes: Goals and memories constrain spatial perception. Psychological Research, 81(1), 6674.Google Scholar
Vinson, N. G., & Reed, C. L. (2002). Sources of object-specific effects in representational momentum. Visual Cognition, 9, 4165.Google Scholar
Vishton, P. M., Reardon, K. M., & Stevens, J. A. (2010). Timing of anticipatory muscle tensing control: Responses before and after expected impact. Experimental Brain Research, 202(3), 661667.Google Scholar
Viswanathan, G. M. (2011). The physics of foraging: An introduction to random searches and biological encounters. Cambridge: Cambridge University Press.Google Scholar
Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (2001). Lévy flights search patterns of biological organisms. Physica A: Statistical Mechanics and its Applications 295(1–2), 8588.Google Scholar
Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401(6756), 911914.Google Scholar
von Hecker, U., Klauer, K. C., & Sankaran, S. (2013). Embodiment of social status: Verticality effects in multilevel rank-orders. Social Cognition, 31, 374389.Google Scholar
von Hecker, U., Klauer, K. C., Wolf, L., & Fazilat-Pour, M. (2016). Spatial processes in linear ordering. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 10031033.Google Scholar
von Muhlenen, A., & Lleras, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 12971310.Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex-differences in spatial abilities – a metaanalysis and consideration of critical variables. Psychological Bulletin, 117(2), 250270.Google Scholar
Vreven, D., & Verghese, P. (2005). Predictability and the dynamics of position processing in the flash-lag effect. Perception, 34, 3144.Google Scholar
Vroomen, J., & de Gelder, B. (2004). Temporal ventriloquism: Sound modulates the flash-lag effect. Journal of Experimental Psychology: Human Perception and Performance, 30, 513518.Google Scholar
Vu, K.-P., Minakata, K., & Ngo, M. K. (2014). Influence of auditory and audiovisual stimuli on the right-left prevalence effect. Psychological Research, 78, 400410.Google Scholar
Vu, K.-P., Proctor, R. W., & Pick, D. F. (2000). Vertical versus horizontal spatial compatibility: Right-left prevalence with bimanual responses. Psychological Research, 64, 2540.Google Scholar
Vuilleumier, P., Ortigue, S., & Brugger, P. (2004). The number space and neglect. Cortex, 40(2), 399410.Google Scholar
Vuilleumier, P., & Rafal, R. D. (2000). A systematic study of visual extinction: Between- and within-field deficits of attention in hemispatial neglect. Brain, 123, 12631279.Google Scholar
Vuilleumier, P., Valenza, N., Mayer, E., Reverdin, A., & Landis, T. (1998). Near and far visual space in unilateral neglect. Annals of Neurology, 43, 406410.Google Scholar
Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 932.Google Scholar
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138, 11721271.Google Scholar
Wagner, M. (1985). The metric of visual space. Perception & Psychophysics, 38, 483495.Google Scholar
Wagner, M. (2006). The geometries of visual space. London: Erlbaum.Google Scholar
Wagner, M., & Gambino, A. J. (2015). Variations in the anisotropy and affine structure of visual space: A geometry of visibles with a third dimension. Topoi – An International Review of Philosophy. Advance online publication. doi: http://link.springer.com/article/10.1007/s11245-015-9303-x.Google Scholar
Walker, B. N., & Ehrenstein, A. (2000). Pitch and pitch change interact in auditory displays. Journal of Experimental Psychology: Applied, 6, 1530.Google Scholar
Walker, P. (2012). Cross-sensory correspondences and cross talk between dimensions of connotative meaning: Visual angularity is hard, high-pitched, and bright. Attention, Perception, & Psychophysics, 74, 17921809.Google Scholar
Walker, P. (2015). Depicting visual motion in still images: Forward leaning and a left to right bias for lateral movement. Perception, 44, 111128.Google Scholar
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synesthetic cross-modality correspondences. Psychological Science, 21, 2125.Google Scholar
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2014). Preverbal infants are sensitive to cross-sensory correspondences: Much ado about the null results of Lewkowicz and Minar (2014). Psychological Science, 25, 835836.Google Scholar
Walker, P., & Smith, S. (1986). The basis of Stroop interference involving the multimodal correlates of auditory pitch. Perception, 15, 491496.Google Scholar
Walker, R. (1987). The effects of culture, environment, age, and musical training on choices of visual metaphors for sound. Perception & Psychophysics, 42, 491502.Google Scholar
Walker, R., Findlay, J. M., Young, A. W., & Lincoln, N. (1996). Saccadic eye movements in object-based neglect. Cognitive Neuropsychology, 13, 569615.Google Scholar
Walker, R., & Young, A. W. (1996). Object-based neglect: An investigation of the contributions of eye movements and perceptual completion. Cortex, 32(2), 279285.Google Scholar
Walker-Andrews, A. S., & Lennon, E. M. (1985). Auditory-visual perception of changing distance by human infants. Child Development, 56(3), 544548.Google Scholar
Walsh, P. D. (1996). Area-restricted search and the scale dependence of path quality discrimination. Journal of Theoretical Biology, 183(4), 351361.Google Scholar
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483488.Google Scholar
Wang, W., McBeath, M. K., & Sugar, T. (2015a). Optical angular constancy is maintained as a navigational control strategy when pursuing robots moving along complex pathways. Journal of Vision, 15(3), 16.Google Scholar
Wang, W., McBeath, M. K., & Sugar, T. (2015b). Navigational strategy used to intercept fly balls under real-world conditions with moving visual background fields. Attention, Perception, & Psychophysics, 77(2), 613625.Google Scholar
Wang, Z., & Klein, R. M. (2010) Searching for inhibition of return in visual search: A review. Vision Research, 50, 220228.Google Scholar
Wansard, M., Bartolomeo, P., Bastin, C., Segovia, F., Gillet, S., Duret, C., and Meulemans, T. (2015). Support for distinct subcomponents of spatial working memory: a double dissociation between spatial-simultaneous and spatial-sequential performance in unilateral neglect. Cognitive Neuropsychology, 32, 1428.Google Scholar
Wansard, M., Meulemans, T., Gillet, S., Segovia, F., Bastin, C., Toba, M. N., et al. (2014). Visual neglect: Is there a relationship between impaired spatial working memory and re-cancellation? Experimental Brain Research, 232(10), 33333343.Google Scholar
Ward, L. M., Porac, C., Coren, S. & Girgus, J. S. (1977). The case for misapplied constancy scaling: Depth associations elicited by illusion configurations. American Journal of Psychology, 90, 609620.Google Scholar
Ward, R., Goodrich, S., & Driver, J. (1994). Grouping reduces visual extinction: Neuropsychological evidence for weight-linkage in visual selection. Visual Cognition, 1(1), 101129.Google Scholar
Warren, W. H., Rothman, D. B., Schnapp, B. H., & Ericson, J. D. (2017). Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166, 152163.Google Scholar
Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731751.Google Scholar
Wasner, M., Moeller, K., Fischer, M. H., & Nuerk, H.-C. (2014). Aspects of situated cognition in embodied numerosity: The case of finger counting. Cognitive Processing, 15(3), 317328.Google Scholar
Watanabe, K. (2004). Visual grouping by motion precedes the relative localization between moving and flashed stimuli. Journal of Experimental Psychology: Human Perception and Performance, 30, 504512.Google Scholar
Watanabe, K., Nijhawan, R., Khurana, B., & Shimojo, S. (2001). Perceptual organization of moving stimuli modulates the flash-lag effect. Journal of Experimental Psychology: Human Perception and Performance, 27, 879894.Google Scholar
Watanabe, K., & Yokoi, K. (2006). Object-based anisotropies in the flash-lag effect. Psychological Science, 17, 728735.Google Scholar
Watanabe, K., & Yokoi, K. (2007). Object-based anisotropic mislocalization by retinotopic motion signals. Vision Research, 47, 16621667.Google Scholar
Watson, C., Cardillo, E., Bromberger, B., & Chatterjee, A. (2014). The specificity of action knowledge in sensory and motor systems. Frontiers in Psychology, 5, 494.Google Scholar
Watt, R. J. (1984). Further evidence concerning the analysis of curvature in human foveal vision. Vision Research, 24, 251253.Google Scholar
Watt, R. J. (1988). Visual processing: Computational, psychological and cognitive research. London: Lawrence Erlbaum Associates.Google Scholar
Watt, R. J. (1991). Understanding vision. London: Academic Press.Google Scholar
Watt, R. J., & Andrews, D. P. (1982). Contour curvature analysis: Hyperacuities in the discrimination of detailed shape. Vision Research, 22, 449460.Google Scholar
Watt, R. J., & Morgan, M. J. (1984). Spatial filters and the localization of luminance changes in human vision. Vision Research, 24, 13871397.Google Scholar
Watts, R. G., & Bahill, A. T. (2000). Keep your eye on the ball: Curve balls, knuckleballs, and fallacies of baseball. Patomac Books.Google Scholar
Wearden, J. H., Norton, R., Martin, S., & Montford-Bebb, O. (2007). Internal clock processes and the filled-duration illusion. Journal of Experimental Psychology: Human Perception and Performance, 33, 716729.Google Scholar
Wedell, D. H., Fitting, S., & Allen, G. L. (2007). Shape effects on memory for location. Psychonomic Bulletin & Review, 14(4), 681686.Google Scholar
Weeks, D. J., & Proctor, R. W. (1990). Salient-features coding in the translation between orthogonal stimulus–response dimensions. Journal of Experimental Psychology: General, 119, 355366.Google Scholar
Weger, U. W., & Pratt, J. (2008). Time flies like an arrow: Space-time compatibility effects suggest the use of a mental timeline. Psychonomic Bulletin & Review, 15, 426430.Google Scholar
Weintraub, D. J., Krantz, D. H., & Olson, T. P. (1980). The Poggendorff illusion: Consider all the angles. Journal of Experimental Psychology: Human Perception and Performance, 6(4), 718725.Google Scholar
Weintraub, D. J., & Schneck, M. K. (1986). Fragments of Delboef and Ebbinghaus illusions. Perception & Psychophysics, 40, 147158.Google Scholar
Weis, T., Estner, B., van Leeuwen, C., & Lachmann, T. (2016). SNARC (spatial–numerical association of response codes) meets SPARC (spatial–pitch association of response codes): Automaticity and interdependency in compatibility effects. Quarterly Journal of Experimental Psychology, 69(7), 13661383.Google Scholar
Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 768785.Google Scholar
Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 669682.Google Scholar
Welch, R. B., DutionHurt, L. D., & Warren, D. H. (1986). Contributions to audition and vision to temporal rate perception. Perception & Psychophysics, 39, 294300.Google Scholar
Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638667.Google Scholar
Welch, R. B., & Warren, D. H. (1986). Intersensory interactions. In Boff, K. R., Kaufman, L., & Thomas, J. P. (Eds.), Handbook of perception and human performance (Vol. 2, pp. 25.125.36). New York: Wiley.Google Scholar
Wen, W., & Kawabata, H. (2013). The best route is not always the easiest one: Spatial references in heuristics of route choice. Psychology, 4(9), 704710.Google Scholar
Wenderoth, P. (1994). The salience of vertical symmetry. Perception, 23, 221236.Google Scholar
Wenderoth, P., White, D., & Beh, H. (1978). The effects of peripheral and central fixation on a Poggendorff-like vernier alignment task. Perception & Psychophysics, 24(4), 377386.Google Scholar
Werner, S., & Schmidt, K. (2000). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1, 447473.Google Scholar
Wesp, R., Cichello, P., Gracia, E. B., & Davis, K. (2004). Observing and engaging in purposeful actions with objects influences estimates of their size. Perception & Psychophysics, 66(8), 12611267.Google Scholar
Westheimer, G. (1981). Visual hyperacuity. Progress in Sensory Physiology, 1, 229.Google Scholar
Westheimer, G. (2003). The distribution of preferred orientations in the peripheral visual field. Vision Research, 43, 5357.Google Scholar
Westheimer, G. (2005). Anisotropies in peripheral Vernier acuity. Spatial Vision, 18, 159167.Google Scholar
Westheimer, G., & McKee, S. P. (1977). Spatial configurations for hyperacuity. Vision Research, 17, 941947.Google Scholar
Westphal-Fitch, G., Oh, J., & Fitch, W. T. (2013). Studying aesthetics with the method of production: Effects of context and local symmetry. Journal of Aesthetics, Creativity, and the Arts, 7, 1326.Google Scholar
Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press.Google Scholar
Whipp, B. J., & Ward, S. A. (1992). Will women soon outrun men. Nature, 355(6355), 2525.Google Scholar
White, E. J., Shockley, K., & Riley, M. A. (2013). Multimodally specified energy expenditure and action-based distance judgments. Psychonomic Bulletin & Review, 20(6), 13711377.Google Scholar
White, H., Minor, S. W., Merrell, J., & Smith, T. (1993). Representational momentum effects in the cerebral hemispheres. Brain and Cognition, 22, 161170.Google Scholar
White, P. A. (2011). Visual impressions of forces between objects: Entraining, enforced disintegration, and shattering. Visual Cognition, 19, 635674.Google Scholar
White, P. A. (2012). The experience of force: The role of haptic experience of forces in visual perception of object motion and interactions, mental simulation, and motion-related judgments. Psychological Bulletin, 138, 589615.Google Scholar
Whitney, D. (2002). The influence of visual motion on perceived position. Trends in Cognitive Sciences, 6, 211216.Google Scholar
Whitney, D. (2008). Visuomotor extrapolation. Behavioral and Brain Sciences, 31(2), 220221.Google Scholar
Whitney, D., & Cavanagh, P. (2000a). The position of moving objects. Science, 289, 1107a.Google Scholar
Whitney, D., & Cavanagh, P. (2000b). Motion distorts visual space: Shifting the perceived position of remote stationary objects. Nature Neuroscience, 3, 954959.Google Scholar
Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition, 9, 139152.Google Scholar
Whitney, D., Cavanagh, P., & Murakami, I. (2000). Temporal facilitation for moving stimuli is independent of changes in direction. Vision Research, 40, 38293839.Google Scholar
Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1, 656657.Google Scholar
Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40, 137149.Google Scholar
Wickelgren, W. A. (1968). Sparing of short-term memory in an amnesic patient: Implications for strength theory of memory. Neuropsychologia, 6, 235244.Google Scholar
Wiegand, K., & Wascher, E. (2005). Dynamic aspects of S-R correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31, 453464.Google Scholar
Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41(1), 6785.Google Scholar
Wiegand, K., & Wascher, E. (2007). The Simon effect for vertical S-R relations: Changing the mechanism by randomly varying the S-R mapping rule? Psychological Research, 71, 219233.Google Scholar
Wiener, J. M., Büchner, S., & Hölscher, C. (2009). Taxonomy of human wayfinding: A knowledge-based approach. Spatial Cognition and Computation, 9, 152165.Google Scholar
Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. Journal of Neuroscience, 33, 60126017.Google Scholar
Wiener, J. M., Hölscher, C., Büchner, S., & Konieczny, L. (2012). Gaze behaviour during space perception and spatial decision making. Psychological Research, 76(6), 713729.Google Scholar
Wiener, J. M., & Mallot, H. A. (2003). “Fine-to-coarse” route planning and navigation in regionalized environments. Spatial Cognition & Computation: An Interdisciplinary Journal, 3(4), 331358.Google Scholar
Wiener, J. M., Schnee, A., & Mallot, H. A. (2004). Use and interaction of navigation strategies in regionalized environments. Journal of Environmental Psychology, 24(4), 475493.Google Scholar
Wilkins, A. J., Shallice, T., & McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359365.Google Scholar
Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24, 5562.Google Scholar
Williams, L. E., & Bargh, J. A. (2008). Keeping one’s distance: The influence of spatial distance cues on affect and evaluation. Psychological Science, 19(3), 302308.Google Scholar
Williams, P. A., & Enns, J. T. (1996). Pictorial depth and framing have independent effects on the horizontal-vertical illusion. Perception, 25(8), 921926.Google Scholar
Williamson, V. J., Cocchini, G., & Stewart, L. (2011). The relationship between pitch and space in congenital amusia. Brain and Cognition, 76, 7076.Google Scholar
Wilson, A., & Bingham, G. P. (2001). Dynamics, not kinematics, is an adequate basis for perception. Behavioral and Brain Sciences, 24, 709710.Google Scholar
Wilson, H. R. (1986) Responses of spatial mechanisms can explain hyperacuity. Vision Research, 26, 453469.Google Scholar
Wilson, M., Lancaster, J., & Emmorey, K. (2010). Representational momentum for the human body: Awkwardness matters, experience does not. Cognition, 116, 242250.Google Scholar
Wilson, P. R. (1968). Perceptual distortion of height as a function of ascribed academic status. Journal of Social Psychology, 74, 97102.Google Scholar
Wilton, R. N. (1979) Knowledge of spatial relations: The specification of information used in making inferences. Quarterly Journal of Experimental Psychology, 31, 133146.Google Scholar
Winawer, J., Huk, A. C., & Boroditsky, L. (2008). A motion aftereffect from still photographs depicting motion. Psychological Science, 19, 276283.Google Scholar
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104(19), 77807785.Google Scholar
Winner, E., Dion, J., Rosenblatt, E., & Gardner, H. (1987). Do lateral or vertical reversal affect balance in paintings? Visual Arts Research, 13, 19.Google Scholar
Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience & Biobehavioral Reviews, 57, 209219.Google Scholar
Witkin, H. A. (1949). Perception of body position and of the position of the visual field. Psychological Monographs: General and Applied, 63(7), i46.Google Scholar
Witt, J. K. (2011a). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201206.Google Scholar
Witt, J. K. (2011b). Tool use influences perceived shape and perceived parallelism, which serve as indirect measures of perceived distance. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 11481156.Google Scholar
Witt, J. K. (2015). Awareness is not a necessary characteristic of a perceptual effect: Commentary on Firestone (2013). Perspectives on Psychological Science, 10(6), 865872.Google Scholar
Witt, J. K. (2017). Action potential influences spatial perception: Evidence for genuine top-down effects on perception. Psychonomic Bulletin & Review, 24(4), 9991021.Google Scholar
Witt, J. K., & Dorsch, T. E. (2009). Kicking to bigger uprights: Field goal kicking performance influences perceived size. Perception, 38(9), 13281340.Google Scholar
Witt, J. K., Linkenauger, S. A., Bakdash, J. Z., & Proffitt, D. R. (2008). Putting to a bigger hole: Golf performance relates to perceived size. Psychonomic Bulletin & Review, 15(3), 581585.Google Scholar
Witt, J. K., Linkenauger, S. A., & Proffitt, D. R. (2012). Get me out of this slump! Visual illusions improve sports performance. Psychological Science, 23(4), 397399.Google Scholar
Witt, J. K., Linkenauger, S. A., & Wickens, C. D. (2016). Action-specific effects in perception and their potential applications. Journal of Applied Research in Memory and Cognition, 5(1), 6976.Google Scholar
Witt, J. K., & Proffitt, D. R. (2005). See the ball, hit the ball: Apparent ball size is correlated with batting average. Psychological Science, 16(12), 937938.Google Scholar
Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 14791492.Google Scholar
Witt, J. K., Proffitt, D. R., & Epstein, W. (2004). Perceiving distance: A role of effort and intent. Perception, 33(5), 577590.Google Scholar
Witt, J. K., Proffitt, D. R., & Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 880888.Google Scholar
Witt, J. K., Proffitt, D. R., & Epstein, W. (2010). When and how are spatial perceptions scaled? Journal of Experimental Psychology: Human Perception and Performance, 36(5), 11531160.Google Scholar
Witt, J. K., & Riley, M. A. (2014). Discovering your inner Gibson: Reconciling action-specific and ecological approaches to perception-action. Psychonomic Bulletin & Review, 21(6), 13531370.Google Scholar
Witt, J. K., Schuck, D. M., & Taylor, J. E. T. (2011). Action-specific effects underwater. Perception, 40(5), 530537.Google Scholar
Witt, J. K., & Sugovic, M. (2010). Performance and ease influence perceived speed. Perception, 39(10), 13411353.Google Scholar
Witt, J. K., & Sugovic, M. (2012). Does ease to block a ball affect perceived ball speed? Examination of alternative hypotheses. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 12021214.Google Scholar
Witt, J. K., & Sugovic, M. (2013a). Catching ease influences perceived speed: Evidence for action-specific effects from action-based measures. Psychonomic Bulletin & Review, 20, 13641370.Google Scholar
Witt, J. K., & Sugovic, M. (2013b). Response bias cannot explain action-specific effects: Evidence from compliant and non-compliant participants. Perception, 42, 138152.Google Scholar
Witt, J. K., Sugovic, M., & Dodd, M. D. (2016). Action-specific perception of speed is independent of attention. Attention, Perception, & Psychophysics, 78(3), 880890.Google Scholar
Witt, J. K., Sugovic, M., Tenhundfeld, N. T., & King, Z. R. (2016). An action-specific effect on perception that avoids all pitfalls. Behavioral and Brain Sciences, 39, e261.Google Scholar
Witt, J. K., Taylor, J. E. T., Sugovic, M., & Wixted, J. T. (2015). Signal detection measures cannot distinguish perceptual biases from response biases. Perception, 44(3), 289300.Google Scholar
Witt, J. K., Taylor, J. E. T., Sugovic, M., & Wixted, J. T. (2016). Further clarifying signal detection theoretic interpretations of the Müller-Lyer and sound-induced flash illusions. Journal of Vision, 16(11), 19 (1–7).Google Scholar
Witt, J. K., Tenhundfeld, N. L., & Tymoski, M. J. (2018). Is there a chastity belt on perception? Psychological Science, 29(1), 139146.Google Scholar
Wohlgemuth, A. (1911). On the after-effect of seen movement. British Journal of Psychology, Monograph Supplement, 1, 1117.Google Scholar
Wojciulik, E., Husain, M., Clarke, K., & Driver, J. (2001). Spatial working memory deficit in unilateral neglect. Neuropsychologia, 39, 390396.Google Scholar
Wojciulik, E., Rorden, C., Clarke, K., Husain, M., & Driver, J. (2004). Group study of an “undercover” test for visuospatial neglect: Invisible cancellation can reveal more neglect than standard cancellation. Journal of Neurology, Neurosurgery and Psychiatry, 75, 13561358.Google Scholar
Wojtach, W. T., Sung, K., Truong, S., & Purves, D. (2008). An empirical explanation of the flash-lag effect. Proceedings of the National Academy of Sciences of the United States of America, 105, 1633816343.Google Scholar
Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Frontiers in Human Neuroscience, 8, 571.Google Scholar
Wolfe, U., Maloney, L. T., & Tam, M. (2005). Distortions of perceived length in the frontoparallel plane: Tests of perspective theories. Perception & Psychophysics, 67(6), 967979.Google Scholar
Wölfflin, H. (1994). Prolegomena zu einer Psychologie der Architektur [Prolegomena to a psychology of architecture]. In Mallgrave, H. F. & Ikonomou, E. (Eds.), Empathy, form, and space: Problems in German aesthetics 1873–1893 (pp. 149190). Santa Monica, CA: Getty Center for the History of Art and the Humanities (original work published 1886).Google Scholar
Wolfe, U., Maloney, L. T., & Tam, M. (2005). Distortions of perceived length in the frontoparallel plane: Tests of perspective theories. Perception & Psychophysics, 67(6), 967979.Google Scholar
Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B Biological Sciences, 358, 593602.Google Scholar
Wood, G., Nuerk, H.-C., & Willmes, K. (2006a). Crossed hands and the SNARC effect: A failure to replicate Dehaene, Bossini and Giraux (1993). Cortex, 42(8), 10691079.Google Scholar
Wood, G., Nuerk, H.-C., & Willmes, K. (2006b). Variability of the SNARC effect: Systematic interindividual differences or just random error? Cortex, 42(8), 11191123.Google Scholar
Wood, G., Vine, S. J., & Wilson, M. R. (2013). The impact of visual illusions on perception, action planning, and motor performance. Attention, Perception, & Psychophysics, 75, 830834.Google Scholar
Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489525.Google Scholar
Woodworth, R. S. (1938). Experimental psychology. New York: Holt.Google Scholar
Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving distances accurately by a directional process of integrating ground information. Nature, 428, 7377.Google Scholar
Wu, D. H., Waller, S., & Chatterjee, A. (2007). The functional neuroanatomy of thematic role and locative relational knowledge. The Journal of Cognitive Neuroscience, 19, 15421555.Google Scholar
Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and visual motion signals at threshold. Perception & Psychophysics, 65, 11881196.Google Scholar
Wühr, P., Fasold, F., & Memmert, D. (2015). Soccer offside judgments in laypersons with different types of static displays. PLoS ONE, 10(8), e0133687.Google Scholar
Xiao, Y. J., & Van Bavel, J. J. (2012). See your friends close and your enemies closer: social identity and identity threat shape the representation of physical distance. Personality and Social Psychology Bulletin, 38(7), 959972.Google Scholar
Xu, Y. (2007). The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature objects. The Journal of Neuroscience, 24(43), 1167611686.Google Scholar
Xu, Y. (2009). Distinctive neural mechanisms supporting visual object individuation and identification. Journal of Cognitive Neuroscience, 21(3), 511518.Google Scholar
Yang, T. L., Dixon, M. W., & Proffitt, D. R. (1999). Seeing big things: Overestimation of heights is greater for real objects than for objects in pictures. Perception, 28(4), 445467.Google Scholar
Yang, Z., & Purves, D. (2003). A statistical explanation of visual space. Nature Neuroscience, 6, 632640.Google Scholar
Yap, A. J., Mason, M. F., & Ames, D. R. (2013). The powerful size others down: The link between power and estimates of others’ size. Journal of Experimental Social Psychology, 49, 591594.Google Scholar
Yau, J. M., Olenczak, J. B., Dammann, J. F., & Bensmaia, S. J. (2009). Temporal frequency channels are linked across audition and touch. Current Biology, 19, 561566.Google Scholar
Yeshurun, Y., & Carrasco, M. (1999). Spatial attention improves performance in spatial resolution tasks. Vision Research, 39, 293306.Google Scholar
Yilmaz, M., & Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 20112015.Google Scholar
Yin, R. K, (1969) Looking at upside-down faces. Journal of Experimental Psychology, 81, 141145.Google Scholar
Yoshikawa, S., & Sato, W. (2006). Enhanced perceptual, emotional, and motor processing in response to dynamic facial expressions of emotion. Japanese Psychological Research, 48, 213222.Google Scholar
Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive, Affective & Behavioral Neuroscience, 8, 2531.Google Scholar
Yost, W. A. (2007). Fundamentals of hearing (5th ed.). London: Academic Press.Google Scholar
Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2004). Internal models of target motion: Expected dynamics overrides measured kinematics in timing manual interceptions, Journal of Neurophysiology, 91, 16201634.Google Scholar
Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2005). Fast adaptation of the internal model of gravity for manual interceptions: Evidence for event-dependent learning, Journal of Neurophysiology, 93, 10551068.Google Scholar
Zago, M., La Scaleia, B., Miller, W. L., & Lacquaniti, F. (2011). Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions. Journal of Vision, 11(10), 13.Google Scholar
Zago, M., & Lacquaniti, F. (2005). Internal model of gravity for hand interception: Parametric adaptation to zero-gravity visual targets on Earth. Journal of Neurophysiology, 94, 13461357.Google Scholar
Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2008). Internal models and prediction of visual gravitational motion, Vision Research, 48, 15321538.Google Scholar
Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-motor coordination and internal models for object interception, Experimental Brain Research, 192, 571604.Google Scholar
Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of Personality and Social Psychology, 9, 127.Google Scholar
Zanolie, K., van Dantzig, S., Boot, I., Wijnen, J., Schubert, T. W., Giessner, S. R., & Pecher, D. (2012). Mighty metaphors: Behavioral and ERP evidence that power shifts attention on a vertical dimension. Brain and Cognition, 78, 374389.Google Scholar
Zanutti, L. (1976). A new explanation for the Poggendorff illusion. Perception & Psychophysics, 20, 2932.Google Scholar
Zbikowski, L. (1998). Metaphor and music theory: Reflections from cognitive science. Music Theory Online 4:1. Santa Barbara, CA: Society for Music Theory.Google Scholar
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165190.Google Scholar
Zeki, S. (1999). Art and the brain. Journal of Consciousness Studies, 6, 7696.Google Scholar
Zetzsche, C., Wolter, J., Galbraith, C., & Schill, K. (2009). Representation of space: Image-like or sensorimotor? Spatial Vision, 22(5), 409424.Google Scholar
Zhang, J., & Kornblum, S. (1997). Distributional analysis and De Jong, Liang, and Lauber’s (1994) dual-process model of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 23, 15431551.Google Scholar
Zhao, M., & Warren, W. H. (2015a). Environmental stability modulates the role of path integration in human navigation. Cognition, 142, 96109.Google Scholar
Zhao, M., & Warren, W. H. (2015b). How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychological Science, 26(6), 915924.Google Scholar
Zhou, H., Ge, Y., Wang, L., Zhang, P., & He, S. (2015). Feedback signal contributes to the flash grab effect: Evidence from fMRI and ERP study. Journal of Vision, 15(12), 12481284.Google Scholar
Zhou, L., Yan, J. J., Liu, Q., Li, H., & Xie, C. X. (2007). Visual and auditory information specifying an impending collision of an approaching object. Human-Computer Interaction, Pt 2, Proceedings, 4551, 720729.Google Scholar
Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138139.Google Scholar
Zorzi, M., & Umiltà, C. (1995). A computational model of the Simon effect. Psychological Research, 58, 193205.Google Scholar
Zuckerkandl, V. (1956). Sound and symbol (Willard R. Trask, Trans.). New York: Pantheon Books.Google Scholar
Zurek, D. B., Perkins, M. Q., & Gilbert, C. (2014). Dynamic visual cues induce jaw opening and closing by tiger beetles during pursuit of prey. Biology Letters, 10(11). doi:10.1098/rsbl.2014.0760Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Timothy L. Hubbard, Arizona State University
  • Book: Spatial Biases in Perception and Cognition
  • Online publication: 04 August 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Timothy L. Hubbard, Arizona State University
  • Book: Spatial Biases in Perception and Cognition
  • Online publication: 04 August 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Timothy L. Hubbard, Arizona State University
  • Book: Spatial Biases in Perception and Cognition
  • Online publication: 04 August 2018
Available formats
×