Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T17:39:39.865Z Has data issue: false hasContentIssue false

2 - Molecular strategies for studies of natural populations of sulphate-reducing microorganisms

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

An early focus on the use of molecular techniques to characterize natural populations of sulphate-reducing microorganisms (SRM) derived from the close relationship between their phylogenetic affiliation and their capability to anaerobically respire with sulphate. In other words, all so-far characterized SRM associate with lineages in the tree of life that predominantly consist of sulphate reducers. Known SRM are affiliated with two divisions (phyla) within the Archaea (the euryarchaeotal genus Archaeoglobus species and the crenarchaeotal genera Caldivirga and Thermocladium, affiliated with the Thermoproteales) and five divisions within the Bacteria (the Deltaproteobacteria, endospore-forming Desulfotomaculum, Desulfosporosinus, and Desulfosporomusa species within the Firmicutes division, Thermodesulfovibrio species within the Nitrospira division, and two divisions represented by Thermodesulfobacterium species and the recently isolated Thermodesulfobium narugense, the exact phylogenetic position of the latter is still ambiguous). Most described SRM are either Gram-positive bacteria with a low G+C content or Gram-negative Deltaproteobacteria. However, it is important to note that almost all major physiological properties of cultured and uncultured SRM, such as substrate usage patterns, the ability to completely oxidize a substrate to CO2, and alternative ways of anaerobic energy generation cannot be unambiguously determined from comparative analysis of their 16S rRNA genes.

The generally tight association between phylogenetic affiliation and sulphate-reducing physiology offered a foundation to directly associate the population structure determined by 16S rRNA sequence type and process. These studies have now been complemented by the use of highly conserved genes in the pathway for sulphate respiration.

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 39 - 116
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, J., Hesselsoe, M., Iversen, N.et al. (2003). The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol., 69, 6875–87CrossRefGoogle ScholarPubMed
Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. and Raskin, L. (1996). The oligonucleotide probe database. Appl. Environ. Microbiol., 62, 3557–9Google ScholarPubMed
Alm, E. W. and Stahl, D. A. (2000). Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments. J. Microbiol. Methods, 40, 153–62CrossRefGoogle ScholarPubMed
Alm, E. W., Zheng, D. and Raskin, L. (2000). The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl. Environ. Microbiol., 66, 4547–54CrossRefGoogle ScholarPubMed
Amann, R. and Schleifer, K.-H. (2001). Nucleic acid probes and their application in environmental microbiology. In Garrity, G. M. (ed.), Bergey's Manual of Systematic Bacteriology. 2nd edn. New York: Springer.Google Scholar
Amann, R. I., Binder, B. J., Olson, R. J.et al. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol., 56, 1919–25Google ScholarPubMed
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992). Molecular and microscopic identification of sulphate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol., 58, 614–23Google Scholar
Baker, B. J., Moser, D. P., MacGregor, B. J.et al. (2003). Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol., 5, 267–77CrossRefGoogle ScholarPubMed
Beller, H. R., Chain, P. S., Letain, T. E.et al. (2006). The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol., 188, 1473–88CrossRefGoogle ScholarPubMed
Blazejak, A., Erseus, C., Amann, R. and Dubilier, N. (2005). Coexistence of bacterial sulfide oxidizers, sulphate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl. Environ. Microbiol., 71, 1553–61CrossRefGoogle Scholar
Bodrossy, L. and Sessitsch, A. (2004). Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol., 7, 245–54CrossRefGoogle ScholarPubMed
Boetius, A., Ravenschlag, K., Schubert, C. J.et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6CrossRefGoogle ScholarPubMed
Brosius, J., Dull, T. L., Sleeter, D. D. and Noller, H. F. (1981). Gene organization and primary structure of a ribosomal operon from Escherichia coli. J. Mol. Biol., 148, 107–27CrossRefGoogle ScholarPubMed
Castro, H., Newman, S., Reddy, K. R. and Ogram, A. (2005). Distribution and stability of sulphate-reducing prokaryotic and hydrogenotrophic methanogenic assemblages in nutrient-impacted regions of the Florida Everglades. Appl. Environ. Microbiol., 71, 2695–704CrossRefGoogle Scholar
Castro, H., Reddy, K. R. and Ogram, A. (2002). Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol., 68, 6129–37CrossRefGoogle Scholar
Chang, Y. J., Peacock, A. D., Long, P. E.et al. (2001). Diversity and characterization of sulphate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol., 67, 3149–60CrossRefGoogle Scholar
Chhabra, S. R., He, Q., Huang, K. H.et al. (2006). Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J. Bacteriol., 188, 1817–28CrossRefGoogle ScholarPubMed
Dahl, C., Engels, S., Pott-Sperling, A. S.et al. (2005). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J. Bacteriol., 187, 1392–404CrossRefGoogle ScholarPubMed
Daims, H., Nielsen, P. H., Nielsen, J. L., Juretschko, S. and Wagner, M. (2000). Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Wat. Sci. Tech., 41, 85–90CrossRefGoogle Scholar
Daims, H., Stoecker, K. and Wagner, M. (2005). Fluorescence in situ hybridization for the detection of prokaryotes. In Osborn, A. M. and Smith C. J. (eds) Advanced Methods in Molecular Microbial Ecology. Abingdon, UK: BIOS Scientific Publishers.Google Scholar
Daly, K., Sharp, R. J. and McCarthy, A. J. (2000). Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulphate-reducing bacteria. Microbiology, 146, 1693–705CrossRefGoogle Scholar
Dar, S. A., Kuenen, J. G. and Muyzer, G. (2005). Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulphate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol., 71, 2325–30CrossRefGoogle Scholar
Davies, M. J., Shah, A. and Bruce, I. J. (2000). Synthesis of fluorescently labelled oligonucleotides and nucleic acids. Chem. Soc. Rev., 29, 97–107CrossRefGoogle Scholar
Bok, F. A., Harmsen, H. J., Plugge, C. M.et al. (2005). The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol., 55, 1697–703CrossRefGoogle ScholarPubMed
Deplancke, B., Hristova, K. R., Oakley, H. A.et al. (2000). Molecular ecological analysis of the succession and diversity of sulphate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol., 66, 2166–74CrossRefGoogle Scholar
Detmers, J., Strauss, H., Schulte, U.et al. (2004). FISH shows that Desulfotomaculum spp. are the dominating sulphate-reducing bacteria in a pristine aquifer. Microb. Ecol., 47, 236–42CrossRefGoogle Scholar
Devereux, R., Delaney, M., Widdel, F. and Stahl, D. A. (1989). Natural relationships among sulphate-reducing eubacteria. J. Bacteriol., 171, 6689–95CrossRefGoogle Scholar
Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A. (1992). Genus- and group-specific hybridization probes for determinative and environmental studies of sulphate-reducing bacteria. Syst. Appl. Microbiol., 15, 601–9CrossRefGoogle Scholar
Devereux, R., Winfrey, M. R., Winfrey, J. and Stahl, D. A. (1996). Depth profile of sulphate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol., 20, 23–31CrossRefGoogle Scholar
Dhillon, A., Goswami, S., Riley, M., Teske, A. and Sogin, M. (2005). Domain evolution and functional diversification of sulfite reductases. Astrobiology, 5, 18–29CrossRefGoogle ScholarPubMed
Dhillon, A., Teske, A., Dillon, J., Stahl, D. A. and Sogin, M. L. (2003). Molecular characterization of sulphate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol., 69, 2765–72CrossRefGoogle Scholar
Dubilier, N., Mulders, C., Ferdelman, T.et al. (2001). Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature, 411, 298–302CrossRefGoogle Scholar
Eisen, J. A., Nelson, K. E., Paulsen, I. T.et al. (2002). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc. Natl. Acad. Sci. USA, 99, 9509–14CrossRefGoogle ScholarPubMed
Fishbain, S., Dillon, J. G., Gough, H. L. and Stahl, D. A. (2003). Linkage of high rates of sulphate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulphate respiration pathway. Appl. Environ. Microbiol., 69, 3663–7CrossRefGoogle ScholarPubMed
Fitz-Gibbon, S. T., Ladner, H., Kim, U. J.et al. (2002). Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA, 99, 984–9CrossRefGoogle ScholarPubMed
Friedrich, M. W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol., 184, 278–89CrossRefGoogle Scholar
Fukui, M., Suwa, Y. and Urushigawa, Y. (1996). High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation. FEMS Microbiol. Ecol., 19, 17–25CrossRefGoogle Scholar
Fukui, M., Teske, A., Assmus, B., Muyzer, G. and Widdel, F. (1999). Physiology, phylogenetic relationships, and ecology of filamentous sulphate-reducing bacteria (genus Desulfonema). Arch. Microbiol., 172, 193–203CrossRefGoogle Scholar
Geets, J., Borremans, B., Diels, L.et al. (2006). DsrB gene-based DGGE for community and diversity surveys of sulphate-reducing bacteria. J. Microbiol. Methods, 66, 194–205CrossRefGoogle Scholar
Gibson, A. H., Jenkins, B. D., Wilkerson, F. P., Short, S. M. and Zehr, J. P. (2006). Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiol. Ecol., 55, 391–402CrossRefGoogle ScholarPubMed
Greene, E. A. and Voordouw, G. (2003). Analysis of environmental microbial communities by reverse sample genome probing. J. Microbiol. Methods, 53, 211–19CrossRefGoogle ScholarPubMed
Heidelberg, J. F., Seshadri, R., Haveman, S. A.et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol., 22, 554–9CrossRefGoogle Scholar
Hipp, W. M., Pott, A. S., Thum-Schmitz, N.et al. (1997). Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulphate-reducing and sulfur-oxidizing prokaryotes. Microbiology, 143, 2891–902CrossRefGoogle Scholar
Hristova, K. R., Mau, M., Zheng, D.et al. (2000). Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ. Microbiol., 2, 143–59CrossRefGoogle ScholarPubMed
Imachi, H., Sekiguchi, Y., Kamagata, Y.et al. (2002). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol., 52, 1729–35Google ScholarPubMed
Imachi, H., Sekiguchi, Y., Kamagata, Y.et al. (2006). Non-sulphate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl. Environ. Microbiol., 72, 2080–91CrossRefGoogle Scholar
Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. and Harada, H. (2000). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol., 66, 3608–15CrossRefGoogle Scholar
Ito, T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002). Phylogenetic identification and substrate uptake patterns of sulphate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl. Environ. Microbiol., 68, 356–64CrossRefGoogle Scholar
Kane, M. D., Poulsen, L. K. and Stahl, D. A. (1993). Monitoring the enrichment and isolation of sulphate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol., 59, 682–6Google Scholar
Karkhoff-Schweizer, R. R., Huber, D. P. and Voordouw, G. (1995). Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl. Environ. Microbiol., 61, 290–6Google ScholarPubMed
Karnachuk, O. V., Pimenov, N. V., Yusupov, S. K.et al. (2006). Distribution, diversity, and activity of sulphate-reducing bacteria in the water column in Gek-Gel Lake, Azerbaijan. Microbiologiya, 75, 101–9Google Scholar
Kjeldsen, K. U., Loy, A., Thomsen, T. R., et al. (2007). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah, USA). FEMS Microbiol. Ecol., in press.CrossRef
Kleikemper, J., Schroth, M. H., Sigler, W. V.et al. (2002). Activity and diversity of sulphate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., 68, 1516–23CrossRefGoogle Scholar
Klein, M., Friedrich, M., Roger, A. J.et al. (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulphate-reducing prokaryotes. J. Bacteriol., 183, 6028–35CrossRefGoogle Scholar
Klenk, H.-P., Clayton, R. A., Tomb, J.-F.et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70CrossRefGoogle ScholarPubMed
Koizumi, Y., Kojima, H. and Fukui, M. (2004). Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Appl. Environ. Microbiol., 70, 4930–40CrossRefGoogle ScholarPubMed
Küsel, K., Pinkart, H. C., Drake, H. L. and Devereux, R. (1999). Acetogenic and sulphate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl. Environ. Microbiol., 65, 5117–23Google Scholar
Larsen, O., Lien, T. and Birkeland, N. K. (1999). Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles, 3, 63–70CrossRefGoogle ScholarPubMed
Laue, H., Friedrich, M., Ruff, J. and Cook, A. M. (2001). Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulphate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol, 183, 1727–33CrossRefGoogle Scholar
Lie, T. J., Godchaux, W. and Leadbetter, E. R. (1999). Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulphate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl. Environ. Microbiol., 65, 4611–17Google Scholar
Lin, C., Flesher, B., Capman, W. C., Amann, R. I. and Stahl, D. A. (1994). Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst. Appl. Microbiol., 17, 418–24CrossRefGoogle Scholar
Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63, 4516–22Google ScholarPubMed
Llobet-Brossa, E., Rabus, R., Bottcher, M. E.et al. (2002). Community structure and activity of sulphate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquatic Microbial Ecology, 29, 211–26CrossRefGoogle Scholar
Loy, A. and Bodrossy, L. (2006). Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin. Chim. Acta, 363, 106–19CrossRefGoogle ScholarPubMed
Loy, A., Horn, M. and Wagner, M. (2003). probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res., 31, 514–16CrossRefGoogle ScholarPubMed
Loy, A., Küsel, K., Lehner, A., Drake, H. L. and Wagner, M. (2004). Microarray and functional gene analyses of sulphate-reducing prokaryotes in low sulphate, acidic fens reveal co-occurence of recognized genera and novel lineages. Appl. Environ. Microbiol., 70, 6998–7009CrossRefGoogle Scholar
Loy, A., Lehner, A., Lee, N., Adamczyk, J.et al. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulphate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 68, 5064–81CrossRefGoogle Scholar
Loy, A., Taylor, M. W., Bodrossy, L. and Wagner, M. (2006). Applications of nucleic acid microarrays in soil microbial ecology. In Cooper, J. E. and Rao, J. R. (eds.), Molecular approaches to soil, rhizosphere and plant microorganism analysis. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Lueders, T., Pommerenke, B. and Friedrich, M. W. (2004). Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol., 70, 5778–86CrossRefGoogle ScholarPubMed
Lümann, H., Arth, I. and Liesack, W. (2000). Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol., 66, 754–62CrossRefGoogle Scholar
Mansfield, E. S., Worley, J. M., McKenzie, S. E.et al. (1995). Nucleic-acid detection using nonradioactive labeling methods. Mol. Cell. Probes, 9, 145–56CrossRefGoogle Scholar
Manz, W., Eisenbrecher, M., Neu, T. R. and Szewzyk, U. (1998). Abundance and spatial organization of Gram-negative sulphate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol., 25, 43–61CrossRefGoogle Scholar
Martin-Laurent, F., Philippot, L., Hallet, S.et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol., 67, 2354–9CrossRefGoogle ScholarPubMed
Matsui, G. Y., Ringelberg, D. B. and Lovell, C. R. (2004). Sulphate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Appl. Environ. Microbiol., 70, 7053–65CrossRefGoogle Scholar
Maukonen, J., Saarela, M. and Raaska, L. (2006). Desulfovibrionales-related bacteria in a paper mill environment as detected with molecular techniques and culture. J. Ind. Microbiol. Biotechnol., 33, 45–54CrossRefGoogle Scholar
Minz, D., Fishbain, S., Green, S. J.et al. (1999a). Unexpected population distribution in a microbial mat community: sulphate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol., 65, 4659–65Google Scholar
Minz, D., Flax, J. L., Green, S. J.et al. (1999b). Diversity of sulphate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol., 65, 4666–71Google Scholar
Molitor, M., Dahl, C., Molitor, I.et al. (1998). A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology, 144, 529–41CrossRefGoogle ScholarPubMed
Mussmann, M., Ishii, K., Rabus, R. and Amann, R. (2005a). Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ. Microbiol., 7, 405–18CrossRefGoogle Scholar
Mussmann, M., Richter, M., Lombardot, T.et al. (2005b). Clustered genes related to sulphate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J. Bacteriol., 187, 7126–37CrossRefGoogle Scholar
Nakagawa, T., Ishibashi, J., Maruyama, A.et al. (2004). Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl. Environ. Microbiol., 70, 393–403CrossRefGoogle ScholarPubMed
Neretin, L. N., Schippers, A., Pernthaler, A.et al. (2003). Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ. Microbiol., 5, 660–71CrossRefGoogle ScholarPubMed
Nielsen, J. L. and Nielsen, P. H. (2002). Quantification of functional groups in activated sludge by microautoradiography. Water Sci. Technol., 46, 389–95CrossRefGoogle ScholarPubMed
Okabe, S., Itoh, T., Satoh, H. and Watanabe, Y. (1999). Analyses of spatial distributions of sulphate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol., 65, 5107–16Google Scholar
Okabe, S., Santegoeds, C. M., Watanabe, Y. and Beer, D. (2002). Successional development of sulphate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Biotechnol. Bioengineering, 78, 119–30CrossRefGoogle Scholar
Omelchenko, M. V., Makarova, K. S., Wolf, Y. I., Rogozin, I. B. and Koonin, E. V. (2003). Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol., 4, R55.CrossRefGoogle ScholarPubMed
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–7CrossRefGoogle ScholarPubMed
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2002). Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA, 99, 7663–8CrossRefGoogle ScholarPubMed
Overmann, J., Coolen, M. J. L. and Tuschak, C. (1999). Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch. Microbiol., 172, 83–94CrossRefGoogle ScholarPubMed
Palmer, C., Bik, E. M., Eisen, M. B.et al. (2006). Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res., 34, e5.CrossRefGoogle ScholarPubMed
Palumbo, A. V., Schryver, J. C., Fields, M. W.et al. (2004). Coupling of functional gene diversity and geochemical data from environmental samples. Appl. Environ. Microbiol., 70, 6525–34CrossRefGoogle ScholarPubMed
Perez-Jimenez, J. R. and Kerkhof, L. J. (2005). Phylogeography of sulphate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl. Environ. Microbiol., 71, 1004–11CrossRefGoogle Scholar
Pernthaler, A. and Amann, R. (2004). Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol., 70, 5426–33CrossRefGoogle ScholarPubMed
Pernthaler, A., Pernthaler, J. and Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol., 68, 3094–101CrossRefGoogle ScholarPubMed
Poulsen, L. K., Ballard, G. and Stahl, D. A. (1993). Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol., 59, 1354–60Google Scholar
Rabus, R., Fukui, M., Wilkes, H. and Widdle, F. (1996). Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulphate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol., 62, 3605–13Google Scholar
Rabus, R., Hansen, T. and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The Prokaryotes: An evolving electronic resource for the microbiological community. 3rd ed. New York: Springer-Verlag.Google Scholar
Rabus, R., Ruepp, A., Frickey, T.et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol., 6, 887–902CrossRefGoogle Scholar
Ramsing, N. B., Fossing, H., Ferdelman, T. G., Andersen, F. and Thamdrup, B. (1996). Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. Environ. Microbiol., 62, 1391–404Google Scholar
Ramsing, N. B., Kühl, M. and Jørgensen, B. B. (1993). Distribution of sulphate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol., 59, 3840–9Google Scholar
Raskin, L., Capman, W. C., Kane, M. D., Rittmann, B. E. and Stahl, D. A. (1996a). Critical evaluation of membrane supports for use in quantitative hybridizations. Appl. Environ. Microbiol., 62, 300–3Google Scholar
Raskin, L., Rittmann, B. E. and Stahl, D. A. (1996b). Competition and coexistence of sulphate-reducing and methanogenic populations in anaerobic biofilms. Appl. Environ. Microbiol., 62, 3847–57Google Scholar
Raskin, L., Stromley, J. M., Rittmann, B. E. and Stahl, D. A. (1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol., 60, 1232–40Google ScholarPubMed
Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B. B. and Amann, R. (2000). Community structure, cellular rRNA content, and activity of sulphate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol., 66, 3592–602CrossRefGoogle Scholar
Ricke, P., Kolb, S. and Braker, G. (2005). Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol., 71, 1671–3CrossRefGoogle Scholar
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci., 91, 10173–7CrossRefGoogle ScholarPubMed
Sabehi, G., Loy, A., Jung, K. H.et al. (2005). New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol., 3, e273.CrossRefGoogle ScholarPubMed
Sahm, K., Knoblauch, C. and Amann, R. (1999). Phylogenetic affiliation and quantification of psychrophilic sulphate-reducing isolates in marine arctic sediments. Appl. Environ. Microbiol., 65, 3976–81Google Scholar
Santegoeds, C. M., Ferdelman, T. G., Muyzer, G. and Beer, D. (1998). Structural and functional dynamics of sulphate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol., 64, 3731–9Google Scholar
Schadt, C. W., Liebich, J., Chong, S. C.et al. (2005). Design and use of functional gene microarrays (FGAs) for the characterization of microbial communities. Methods Microbiol., 34, 331–68CrossRefGoogle Scholar
Schedel, M. and Trüper, H. G. (1980). Anaerobic oxidation of thiosulphate and elemental sulfur in Thiobacillus denitrificans. Arch. Microbiol., 124, 205–10CrossRefGoogle Scholar
Scheid, D. and Stubner, S. (2001). Structure and diversity of Gram-negative sulphate-reducing bacteria on rice roots. FEMS Microbiol. Ecol., 36, 175–83CrossRefGoogle Scholar
Schwenn, J. D. and Biere, M. (1979). APS-reductase activity in the chromatophores of Chromatium vinosum strain D. FEMS Microbiol. Lett., 6, 19–22CrossRefGoogle Scholar
Stackebrandt, E., Sproer, C., Rainey, F. A.et al. (1997). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int. J. Syst. Bacteriol., 47, 1134–9CrossRefGoogle ScholarPubMed
Stahl, D. A. (2004). High-throughput techniques for analyzing complex bacterial communities. Adv. Exp. Med. Biol., 547, 5–17CrossRefGoogle ScholarPubMed
Stahl, D. A. and Amann, R. (1991). Development and application of nucleic acid probes. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Stahl, D. A., Flesher, B., Mansfield, H. R. and Montgomery, L. (1988). Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54, 1079–84Google ScholarPubMed
Stubner, S. and Meuser, K. (2000). Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol. Ecol., 34, 73–80CrossRefGoogle Scholar
Tonolla, M., Bottinelli, M., Demarta, A., Peduzzi, R. and Hahn, D. (2005). Molecular identification of an uncultured bacterium (“morphotype R”) in meromictic Lake Cadagno, Switzerland. FEMS Microbiol. Ecol., 53, 235–44CrossRefGoogle ScholarPubMed
Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D. and Peduzzi, R. (2000). In situ analysis of sulphate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl. Environ. Microbiol., 66, 820–4CrossRefGoogle Scholar
Maarel, M. J. E. C., Artz, R. R. E., Haanstra, R. and Forney, L. J. (1998). Association of marine Archaea with the digestive tracts of two marine fish species. Appl. Environ. Microbiol., 64, 2894–8Google ScholarPubMed
Wagner, M., Horn, M. and Daims, H. (2003). Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol., 6, 302–9CrossRefGoogle ScholarPubMed
Wagner, M., Loy, A., Klein, M.et al. (2005). Functional marker genes for identification of sulphate-reducing prokaryotes. Methods Enzymol., 397, 469–89CrossRefGoogle Scholar
Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L. and Daims, H. (2006). Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol., 17, 1–9CrossRefGoogle ScholarPubMed
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A. (1998a). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulphate respiration. J. Bacteriol., 180, 2975–82Google Scholar
Wagner, M., Schmid, M., Juretschko, S.et al. (1998b). In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett., 160, 159–68CrossRefGoogle Scholar
Wagner, M., Smidt, H., Loy, A. and Jizhong, Z. (2007). Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb. Ecol., in press.CrossRef
Watras, C. J., Morrison, K. A., Kent, A.et al. (2005). Sources of methylmercury to a wetland-dominated lake in northern Wisconsin. Environ. Sci. Technol., 39, 4747–58CrossRefGoogle ScholarPubMed
Wawer, C., Jetten, M. S. and Muyzer, G. (1997). Genetic diversity and expression of the NiFe hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Appl. Environ. Microbiol., 63, 4360–9Google ScholarPubMed
Wawer, C. and Muyzer, G. (1995). Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of NiFe hydrogenase gene fragments. Appl. Environ. Microbiol., 61, 2203–10Google ScholarPubMed
Wawrik, B., Paul, J. H. and Tabita, F. R. (2002). Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl. Environ. Microbiol., 68, 3771–9CrossRefGoogle ScholarPubMed
Wieland, A., Kuhl, M., McGowan, L.et al. (2003). Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition. Microb. Ecol., 46, 371–90CrossRefGoogle ScholarPubMed
Wu, M., Ren, Q., Durkin, A. S.et al. (2005). Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet., 1, e65.CrossRefGoogle ScholarPubMed
Zhou, J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol., 6, 288–94CrossRefGoogle ScholarPubMed
Zverlov, V., Klein, M., Lücker, S., Friedrich, M. W., Kellermann, J., Stahl, D. A., Loy, A. and Wagner, M. (2005). Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J. Bacteriol., 187, 2203–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×