Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T00:31:02.962Z Has data issue: false hasContentIssue false

5 - Response of sulphate-reducing bacteria to oxygen

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

PRESENCE OF SULPHATE-REDUCING BACTERIA IN OXIDISED HABITATS

During the second half of the nineteenth century the formation of sulphide from sulphate was recognised as a biogenic process (Meyer, 1864). While it was initially suggested that algae were the catalysing organisms (Cohn, 1867), Hoppe-Seyler demonstrated in 1886 that the process required anoxic conditions and was chemotrophic, requiring external electron donors. In 1895, Beijerinck proved that sulphate reduction is catalysed by bacteria and described the first pure culture, Spirillum desulfuricans. This organism was described as strictly anaerobic and was irreversibly inhibited by oxygen.

The view that sulphate-reducing bacteria (SRB) are extremely sensitive to oxygen started to change in the late 1970s when sulphate reduction was demonstrated to occur also in oxidised sediment layers which showed no traces of FeS and were considered oxic (Jørgensen, 1977). Similarly, cultivation-based studies revealed the presence of viable sulphate reducers within these layers (Laanbroek and Pfennig, 1981; Battersby et al., 1985; Jørgensen and Bak, 1991). However, it was found that oxygen did not penetrate as deep into sediments as previously assumed and that large parts of the oxidised, hence FeS-free layers, were in fact anoxic. In sediment layers that contain oxidised manganese or iron species, sulphide can be chemically reoxidised to elemental sulphur (Aller and Rude, 1988), or, in the case of manganese oxide, even to thiosulphate (Schippers and Jørgensen, 2001).

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 167 - 184
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, H. and Wimpenny, J. W. T. (1990). Effects of oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol, 136, 1025–30.CrossRefGoogle Scholar
Aller, R. C. and Rude, P. D. (1988). Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta, 52, 751–65.CrossRefGoogle Scholar
Bade, K., Manz, W. and Szewzyk, U. (2000). Behavior of sulphate-reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water. FEMS Microbiol Ecol, 32, 215–23.CrossRefGoogle Scholar
Battersby, N. S., Malcolm, S. J., Brown, C. M. and Stanley, S. O. (1985). Sulphate reduction in oxic and suboxic North East Atlantic sediments. FEMS Microbiol Ecol, 31, 225–8.CrossRefGoogle Scholar
Baughn, A. D. and Malamy, M. H. (2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature, 427, 441–4.CrossRefGoogle ScholarPubMed
Baumgarten, A., Redenius, I., Kranczoch, J. and Cypionka, H. (2001). Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol, 176, 306–9.CrossRefGoogle ScholarPubMed
Beijerinck, M. W. (1893). Über Atmungsfiguren beweglicher Bakterien. Zentralbl Bakteriol Parasitenkunde, 14, 827–45.Google Scholar
Beijerinck, M. W. (1895). Ueber Spirillum desulfuricans als Ursache von Sulfatreduction. Centralbl Bakteriol II Abt, 1, 1–9, 49–59, 104–14.Google Scholar
Berchtold, M., Chatzinotas, A., Schönhuber, W., et al. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol, 172, 407–16.CrossRefGoogle ScholarPubMed
Blaabjerg, V., Mouritsen, K. N. and Finster, K. (1998). Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat Microb Ecol, 15, 97–102.CrossRefGoogle Scholar
Canfield, D. E. and DesMarais, D. J. (1991). Aerobic sulphate reduction in microbial mats. Science, 251, 1471–3.CrossRefGoogle ScholarPubMed
Chen, L., Liu, M. Y., LeGall, J.et al. (1993). Purification and characterization of a NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem, 216, 443–8.CrossRefGoogle ScholarPubMed
Cohn, F. (1867). Beiträge zur Physiologie der Phycochromaceen und Florideen. Arch Mikroskopie Anatomie, 3, 1–60.CrossRefGoogle Scholar
Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. and Pye, K. (1993). Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361, 436–8.CrossRefGoogle Scholar
Cypionka, H. (2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 54, 827–48.CrossRefGoogle ScholarPubMed
Cypionka, H. and Meyer, O. (1982). Influence of carbon monoxide on growth and respiration of carboxydotrophic and other aerobic organisms. FEMS Microbiol Lett, 15, 209–14.CrossRefGoogle Scholar
Cypionka, H., Widdel, F. and Pfennig, N. (1985). Survival of sulphate-reducing bacteria after oxygen stress, and growth in sulphate-free oxygen-sulfide gradients. FEMS Microbiol Ecol, 27, 189–93.CrossRefGoogle Scholar
Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158, 93–9.CrossRefGoogle Scholar
Das, A., Silaghi-Dumitrescu, R., Ljungdahl, L. G. and Kurtz, D. M. Jr. (2005). Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol, 187, 2020–9.CrossRefGoogle ScholarPubMed
Dilling, W. and Cypionka, H. (1990). Aerobic respiration in sulphate-reducing bacteria. Arch Microbiol, 71, 123–8.Google Scholar
Eschemann, A., Kühl, M. and Cypionka, H. (1999). Aerotaxis in Desulfovibrio. Environ Microbiol, 1, 489–94.CrossRefGoogle ScholarPubMed
Fareleira, P., Santos, B. S., António, C.et al. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology, 149, 1513–22.CrossRefGoogle ScholarPubMed
Fenchel, T. (1994). Motility and chemosensory behaviour of the sulphur bacterium Thiovulum majus. Microbiology, 140, 3109–16.CrossRefGoogle Scholar
Fischer, J. P. and Cypionka, H. (2005). Analysis of aerotactic band formation by Desulfovibrio desulfuricans in a stopped-flow diffusion chamber. FEMS Microbiol Ecol, 55, 186–94.CrossRefGoogle Scholar
Fitz, R. M. and Cypionka, H. (1991). Generation of a proton gradient in Desulfovibrio vulgaris. Arch Microbiol, 155, 444–8.CrossRefGoogle Scholar
Fournier, M., Zhang, Y., Wildschut, J. D.et al. (2003). Function of oxygen resistance proteins in the anaerobic sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol, 185, 71–9.CrossRefGoogle Scholar
Fröhlich, J., Sass, H., Babenzien, H.-D.et al. (1999). Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol, 45, 145–52.CrossRefGoogle ScholarPubMed
Fründ, C. and Cohen, Y. (1992). Diurnal cycles of sulphate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol, 58, 70–7.Google Scholar
Fu, R. and Voordouw, G. (1997). Targeted gene-replacement mutagenesis of dcrA encoding an oxygen sensor of the sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology, 143, 1815–26.Google Scholar
Fu, R., Wall, J. D. and Voordouw, G. (1994). DcrA a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol, 176, 344–50.CrossRefGoogle ScholarPubMed
Fukui, M. and Takii, S. (1990). Colony formation of free-living and particle-associated sulphate-reducing bacteria. FEMS Microbiol Ecol, 73, 85–90.CrossRefGoogle Scholar
Fukui, M. and Takii, S. (1994). Kinetics of sulphate respiration by free-living and particle-associated sulphate-reducing bacteria. FEMS Microbiol Ecol, 13, 241–7.CrossRefGoogle Scholar
Gomes, C. M., Silva, G., Oliveira, S.et al. (1997). Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem, 272, 22502–8.CrossRefGoogle ScholarPubMed
Gottschal, J. C. and Szewzyk, R. (1985). Growth of a facultative anaerobe under oxygen-limiting conditions in pure culture and in co-culture with a sulphate-reducing bacterium. FEMS Microbiol Ecol, 31, 159–70.CrossRefGoogle Scholar
Hardy, J. A. and Hamilton, W. A. (1981). The oxygen tolerance of sulphate-reducing bacteria isolated from North Sea waters. Curr Microbiol, 6, 259–62.CrossRefGoogle Scholar
Heidelberg, J. F., Seshadri, R., Haveman, S. A.et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 22, 554–9.CrossRefGoogle Scholar
Hoppe-Seyler, F. (1886). Ueber die Gährung der Cellulose mit Bildung von Methan und Kohlensäure. II. Der Zerfall der Cellulose durch Gährung unter Bildung von Methan und Kohlensäure und die Erscheinungen, welche dieser Process veranlasst. Z Physiol Chem, 10, 401–40.Google Scholar
Imlay, J. A. (2002). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol, 46, 111–53.CrossRefGoogle ScholarPubMed
Ito, T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002). Phylogenetic identification and substrate uptake patterns of sulphate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl Environ Microbiol, 68, 356–64.CrossRefGoogle Scholar
Johnson, M. S., Zhulin, I. G., Gapuzan, M. E. R. and Taylor, B. L. (1997). Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol, 179, 5598–601.CrossRefGoogle ScholarPubMed
Jonkers, H. M., Koh, I. O., Behrend, P., Muyzer, G. and Beer, D. (2005). Aerobic organic carbon mineralization by sulphate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb Ecol, 49, 291–300.CrossRefGoogle Scholar
Jørgensen, B. B. (1977). Bacterial sulphate reduction within reduced microniches of oxidized marine sediments. Mar Biol, 41, 7–17.CrossRefGoogle Scholar
Jørgensen, B. B. (1994). Sulphate reduction and thiosulphate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol, 13, 303–12.CrossRefGoogle Scholar
Jørgensen, B. B. and Bak, F. (1991). Pathways and microbiology of thiosulphate transformations and sulphate reduction in a marine sediment (Kattegatt, Denmark). Appl Environ Microbiol, 57, 847–56.Google Scholar
Kjeldsen, K. U., Joulian, C. and Ingvorsen, K. (2004). Oxygen tolerance of sulphate-reducing bacteria in activated sludge. Environ Sci Technol, 38, 2038–43.CrossRefGoogle Scholar
Kolb, S., Seeliger, S., Springer, N., Ludwig, W. and Schink, B. (1998). The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulphate reducers. System Appl Microbiol, 21, 340–5.CrossRefGoogle Scholar
Krekeler, D. and Cypionka, H. (1995). The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol, 17, 271–8.CrossRefGoogle Scholar
Krekeler, D., Teske, A. and Cypionka, H. (1998). Strategies of sulphate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol, 25, 89–96.CrossRefGoogle Scholar
Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H. and König, H. (1996). A feasible role of sulphate-reducing bacteria in the termite gut. System Appl Microbiol, 19, 139–49.CrossRefGoogle Scholar
Laanbroek, H. J. and Pfennig, N. (1981). Oxidation of short-chain fatty acids by sulphate-reducing bacteria in freshwater and marine sediments. Arch Microbiol, 128, 330–5.CrossRefGoogle Scholar
LeGall, J. and Xavier, A. V. (1996). Anaerobes response to oxygen: the sulphate-reducing bacteria. Anaerobe, 2, 1–9.CrossRefGoogle Scholar
Lemos, R. S., Gomes, C. M., Santana, M.et al. (2001). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett, 496, 40–3.CrossRefGoogle ScholarPubMed
Marschall, C., Frenzel, P. and Cypionka, H. (1993). Influence of oxygen on sulphate reduction and growth of sulphate-reducing bacteria. Arch Microbiol, 159, 168–73.CrossRefGoogle Scholar
Meyer, L. (1864). Chemische Untersuchungen der Thermen zu Landeck in der Grafschaft Glatz. J Prakt Chem, 91, 1–15.CrossRefGoogle Scholar
Minz, D., Fishbain, S., Green, S. J.et al. (1999a). Unexpected population distribution in a microbial mat community: sulphate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol, 65, 4659–65.Google Scholar
Minz, D., Flax, J. L., Green, S. J.et al. (1999b). Diversity of sulphate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol, 65, 4666–71.Google Scholar
Mogensen, G. L., Kjeldsen, K. U. and Ingvorsen, K. (2005). Desulfovibrio aerotolerans sp. nov., an oxygen-tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe, 11, 339–49.CrossRefGoogle ScholarPubMed
Okabe, S., Ito, T. and Satoh, H. (2003). Sulphate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Appl Microbiol Biotechnol, 63, 322–34.CrossRefGoogle Scholar
Ploug, H., Kühl, M., Buchholz-Cleven, B. and Jørgensen, B. B. (1997). Anoxic aggregates – an ephemeral phenomenon in the pelagic environment?Aquat Microb Ecol, 13, 285–94.CrossRefGoogle Scholar
Ramsing, N. B., Fossing, H., Ferdelmann, T. G., Andersen, F. and Thamdrup, B. (1996). Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol, 62, 1391–404.Google Scholar
Ramsing, N. B., Kühl, M. and Jørgensen, B. B. (1993). Distribution of sulphate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol, 59, 3840–9.Google Scholar
Risatti, J. B., Capman, W. C. and Stahl, D. A. (1994). Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA, 91, 10173–7.CrossRefGoogle ScholarPubMed
Sass, A. M., Eschemann, A., Kühl, M.et al. (2002). Growth and chemosensory behavior of sulphate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiol Ecol, 40, 47–54.Google Scholar
Sass, H. (1997). Vorkommen und Aktivität sulfatreduzierender Bakterien in der Chemokline limnischer Sedimente. PhD thesis, University of Oldenburg.Google Scholar
Sass, H., Berchtold, M., Branke, J.et al. (1998a). Psychrotolerant sulphate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. System Appl Microbiol, 21, 212–19.CrossRefGoogle Scholar
Sass, H., Cypionka, H. and Babenzien, H.-D. (1996). Sulphate-reducing bacteria from the oxic layers of the oligotrophic Lake Stechlin. Arch Hydrobiol – Spec Iss Adv Limnol, 48, 241–6.Google Scholar
Sass, H., Cypionka, H. and Babenzien, H.-D. (1997). Vertical distribution of sulphate-reducing bacteria at the oxic–anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol, 22, 245–55.CrossRefGoogle Scholar
Sass, H., Wieringa, E., Cypionka, H., Babenzien, H.-D. and Overmann, J. (1998b). High genetic and physiological diversity of sulphate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol, 170, 243–51.CrossRefGoogle Scholar
Schippers, A. and Jørgensen, B. B. (2001). Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochim Cosmochim Acta, 65, 915–22.CrossRefGoogle Scholar
Schramm, A., Santegoeds, C. M., Nielsen, H. K.et al. (1999). On the occurrence of anoxic microniches, denitrification, and sulphate reduction in aerated activated sludge. Appl Environ Microbiol, 65, 4189–96.Google Scholar
Schulz, H. N. and Jørgensen, B. B. (2001). Big bacteria. Annu Rev Microbiol, 55, 105–37.CrossRefGoogle ScholarPubMed
Seitz, H. J. and Cypionka, H. (1986). Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol, 146, 63–7.CrossRefGoogle Scholar
Sigalevich, P., Meshorer, E., Helman, Y. and Cohen, Y. (2000). Transition from anaerobic to aerobic growth conditions for the sulphate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl Environ Microbiol, 66, 5005–12.CrossRefGoogle Scholar
Stams, A. J. M. and Hansen, T. A. (1982). Oxygen-labile L(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett, 13, 389–94.Google Scholar
Tebo, B. M. and Obraztsova, A. Y. (1998). Sulphate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett, 162, 193–8.CrossRefGoogle Scholar
Teske, A., Ramsing, N. B., Habicht, K.et al. (1998). Sulphate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol, 64, 2943–51.Google Scholar
Teske, A., Wawer, C., Muyzer, G. and Ramsing, N. B. (1996). Distribution of sulphate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol, 62, 1405–15.Google Scholar
Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D. and Peduzzi, R. (2000). In situ analysis of sulphate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol, 66, 820–4.CrossRefGoogle Scholar
Ende, F. P., Meier, J. and Gemerden, H. (1997). Syntrophic growth of sulphate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol Ecol, 23, 65–80.CrossRefGoogle Scholar
Niel, E. W. J. and Gottschal, J. C. (1998). Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol, 64, 1034–9.Google ScholarPubMed
Niel, E. W. J., Pedro Gomez, T. M., Willems, A.et al. (1996). The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens. FEMS Microbiol Ecol, 21, 243–53.CrossRefGoogle Scholar
Visscher, P. T., Prins, R. A. and Gemerden, H. (1992). Rates of sulphate reduction and thiosulphate consumption in a marine microbial mat. FEMS Microbiol Ecol, 86, 283–94.CrossRefGoogle Scholar
Voordouw, J. K. and Voordouw, G. (1998). Deletion of the rbo gene increases the oxygen sensitivity of the sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol, 64, 2882–7.Google Scholar
Widdel, F. (1988). Microbiology and ecology of sulphate-reducing and sulfur-reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganisms, New York, NY: John Wiley and Sons. pp. 469–585.Google Scholar
Widdel, F. and Hansen, T. A. (1992). Dissimilatory sulphate- and sulfur-reducing bacteria. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H. (eds.), The prokaryotes, vol. 1, 2nd edn. New York, NY: Springer. pp. 583–24.CrossRefGoogle Scholar
Widdel, F. and Pfennig, N. (1982). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol, 131, 360–5.CrossRefGoogle Scholar
Wieringa, E. B. A., Overmann, J. and Cypionka, H. (2000). Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ Microbiol, 2, 417–27.CrossRefGoogle ScholarPubMed
Wind, T. and Conrad, R. (1995). Sulfur compounds, potential turnover of sulphate and thiosulphate, and numbers of sulphate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol, 18, 257–66.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×