Skip to main content Accesibility Help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lerm, Stephanie Westphal, Anke Miethling-Graff, Rona Alawi, Mashal Seibt, Andrea Wolfgramm, Markus and Würdemann, Hilke 2013. Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles, Vol. 17, Issue. 2, p. 311.

  • Print publication year: 2007
  • Online publication date: August 2009

11 - The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance



Approximately 70% of the Earth's environment is marine, which includes substantial sediment deposits, some of which can be greater than 10 km in depth (Fowler, 1990). Although these sediments contain the largest global organic carbon reservoir (∼15 000 × 1018 g C, Hedges and Keil, 1995), apart from shallow margin sediments (to 200 m water depth), they have been considered to be relatively biogeochemically inactive. For example, Jørgensen (1983) calculated that margin sediments accounted for 83% of global marine sediment oxygen uptake whilst only representing 8.6% of global sediment area. In contrast, deeper sediments (200 to >4000 m water depths), despite being ∼91% of marine sediment area, accounted for only 17% of global oxygen uptake. The situation was considered even more extreme for rates of sulphate reduction, with this being responsible for, respectively, 50% and 0% of all organic matter being degraded in margin and deep water sediments (>4000 m water depths) (Jørgensen, 1983). This low activity was consistent with results demonstrating the limited depth distribution of prokaryotic populations in deep sediments. Morita and ZoBell (1955) concluded that the marine biosphere ended at 7.47 m deep, based on their inability to culture bacteria at this or greater depths. Reports of prokaryotes being isolated from deeper sediments were considered to be contaminants introduced during sampling, or dormant organisms being re-activated (ZoBell, 1938).

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Sulphate-Reducing Bacteria
  • Online ISBN: 9780511541490
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Anderson, R., Hobart, M. and Langseth, M. (1979). Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science, 204, 828–32
Bach, W. and Edwards, K. J. (2003). Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. et Cosmochim. Acta., 67, 3871–87
Baker, B. J., Moser, D. P., MacGregor, B. al. (2003). Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol., 5, 267–77
Bale, S. J., Goodman, K., Rochelle, P. al. (1997). Desulfovibrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47, 515–21
Barnes, S. P., Bradbrook, S. D., Cragg, B. al. (1998). Isolation of sulphate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J., 15, 67–83
Basso, O., Caumette, P. and Magot, M. (2005). Desulfovibrio putealis sp. nov., a novel sulphate-reducing bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol., 55, 101–4
Bekins, B. A., Godsy, E. M. and Warren, E. (1999). Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol., 37, 263–75
Bidle, K. A., Kastner, M. and Bartlett, D. H. (1999). A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia Margin (ODP site 892B). FEMS Microbiol. Lett., 177, 101–8
Boetius, A., Ravenschlag, K., Schubert, C. al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6
Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S. and Christen, R. (1996). Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol., 62, 3405–12
Bottrell, S. H., Parkes, R. J., Cragg, B. A. and Raiswell, R. (2000). Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc., 157, 711–14
Bradbrook, S. D. (2000). Physiological, metabolic, and genetic characteristics of sulphate-reducing bacteria from deep-sediment layers of the Cascadia Margin (ODP Leg 146). PhD thesis, University of Bristol.
Canfield, D. E. (1991). Sulphate reduction in deep-sea sediments. Am. J. Sci., 291, 177–88
Chapelle, F. H. and Bradley, P. M. (1996). Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments. Geology, 24, 925–8
Colwell, F. S., Onstott, T. C., Delwiche, M. al. (1997). Microorganisms from deep, high temperature sandstones: Constraints on microbial colonization. FEMS Microbiol. Rev., 20, 425–35
Coolen, M. J. L., Cypionka, H., Sass, A. M., Sass, H. and Overmann, J. (2002). Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science, 296, 2407–10
Cowen, J. P., Giovannoni, S. J., Kenig, al. (2003). Fluids from ageing ocean crust that support microbial life. Science, 299, 120–3
Cragg, B. A., Harvey, S. M., Fry, J. C., Herbert, R. A. and Parkes, R. J. (1992). Bacterial biomass and acyivity in the deep sediment layers of the Japan Sea, Hole 798B. Proc. ODP Sci. Res., 127/128, 761–76
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1997). Bacterial profiles in Amazon Fan sediments (Sites 934, 940). Proc. ODP Sci. Res., 155, 565–71
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1998). The response of bacterial populations to sapropels in deep sediments of the Eastern Medierranean (Site 969). Proc. ODP Sci. Res., 160, 303–7
Cragg, B. A., Parkes, R. J., Fry, J. al. (1996). Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Sci. Lett., 139, 497–507
Cragg, B. A., Parkes, R. J., Fry, J. al. (1995). The impact of fluid and gas venting on bacterial populations and processes in sediments from the Cascadia Margin Accretionary System (Sites 888–892) and the geochemical consequences. Proc. ODP Sci. Res., 146, 399–411
Cragg, B. A., Wellsbury, P., Murray, R. W. and Parkes, R. J. (2003). Bacterial populations in deep-water, low-sedimentation-rate marine sediments and evidence for subsurface bacterial manganese reduction (ODP Site 1149 Izu-Bonin Trench). Proc. ODP Sci. Res., v. Vol. 185, online,
Daumas, S., Cord-Ruwisch, R. and Garcia, J. L. (1988). Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulphate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek, 54, 165–78
D'Hondt, S., Jørgensen, B. B., Miller, D. al. (2004). Distributions of microbial activities in deep subseafloor sediments. Science, 306, 2216–21
D'Hondt, S., Rutherford, S. and Spivack, A. J. (2002). Metabolic activity of subsurface life in deep-sea sediments. Science, 295, 2067–70
Dickens, G. R., Paull, C. K., Wallace, P. and the ODP Leg 164 Scientific Party. (1997). Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385, 426–8
Egeberg, P. K. and Barth, T. (1998). Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol., 149, 25–35
Fisk, M. R., Giovannoni, S. J. and Thorseth, I. H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281, 978–80
Fowler, C. M. R. (1990). The solid earth, an introduction to global geophysics. Cambridge: Cambridge University Press.
Fry, N. K., Frederikson, J. K., Fishbain, S., Wagner, M. and Stahl, D. A. (1997). Population structure of microbial communities associated with two deep, anaerobic alkaline aquifers. Appl. Environ. Microbiol., 53, 1498–504
Furnes, H. and Staudigel, H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere?Earth Planet. Sci. Lett., 166, 97–103
Gogotova, G. I. and Vainshtein, M. B. (1989). Description of a sulphate-reducing bacterium, Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Microbiology, 58, 64–8
Haridon, S. L., Reysenbach, A., Glenat, P., Prieur, D. and Jeanthon, C. (1995). Hot subterranean biosphere in continental oil reservoir. Nature, 377, 223–4
Hedges, J. I. and Keil, R. G. (1995). Marine chemistry discussion paper. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 4, 81–115
Inagaki, F., Suzuki, M., Takai, al. (2003). Microbial communities associated with geological horizons in coastal subseafloor sediment from the Sea of Okhotsk. Appl. Environ. Microbiol., 69, 7224–35
Ingle, J. C. Jr., Suyehiro, K. and Breymann, M. T. (1990). Initial Reports Sites 794, 798–799 Japan Sea. Proceedings of the Ocean Drilling Program, Initial Reports, v 128, College Station, TX.
Jørgensen, B. B. (1983). Processes at the sediment-water interface. In Bolin, B. and Cook, R. B. (eds.), The Major Biogeochemical Cycles and their Interactions, Chichester: John Wiley. pp. 477–515.
Kallmeyer, J. and Boetius, A. (2004). Effects of temperature and pressure on sulphate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol., 70, 1231–3
Kemp, P. F. and Aller, J. Y. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol., 47, 161–77
Kennicutt, M. C., Brooks, J. M. and Cox, B. C. (1993). The origin and distribution of gas hydrates in marine sediments. In Engel, M. H. and Macko, S. A. (eds.), Organic Geochemistry. New York: Plenum Press. pp. 535–44.
Kimura, H., Sugihara, M., Yamamoto, al. (2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles, 9, 407–14
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005). Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., 71, 467–79
Köpke, B., Wilms, R., Engelen, B., Cypionka, H. and Sass, H. (2005). Microbial diversity in coastal subsurface sediments – a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71, 7819–30
Kormas, K. A., Smith, D. C., Edgcomb, V. and Teske, A. (2003). Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol. Ecol., 45, 115–25
Krumholz, L. R., McKinley, J. P., Ulrich, F. A. and Suflita, J. M. (1997). Confined subsurface microbial communities in Cretaceous rock. Nature, 386, 64–6
Li, L., Guenzennec, J., Nichols, al. (1999). Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanogr., 55, 635–42
Ludvigsen, L., Albrechtsen, H. J., Ringelberg, D. B., Ekelund, F. and Christensen, T. H. (1999). Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microb. Ecol. 37, 197–207
Mangelsdorf, K., Zink, K.-G., Birrien, J.-L. and Toffin, L. (2005). A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of a piezosensitive deep sub-seafloor bacterium. Org. Geochem., 36, 1459–79
Mather, I. D. and Parkes, R. J. (2000). Bacterial populations in sediments of the eastern flank of the Juan de Fuca Ridge, Sites 1026 and 1027. Proc. ODP Sci. Res. 168, 161–5
Mauclaire, L., Zepp, K., Meister, P. and Mckenzie, J. (2004). Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology, 2, 217–23
Morita, R. Y. and ZoBell, C. E. (1955). Occurence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res., 3, 66–73
Moser, D. P., Onstott, T. C., Fredrickson, J. al. (2003). Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiol. J., 20, 517–48
Nazina, T. N., Ivanova, A. E., Kanchveli, L. P. and Rozanova, E. P. (1989). A new spore-forming thermophilic methylotrophic sulphate-reducing bacterium, Desulfotomaculum kuznetsovii. Microbiology, 57, 659–63
Nedwell, D. B., Embley, T. M. and Purdy, K. J. (2004). Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquat. Microb. Ecol., 37, 209–17
Parkes, R. J., Cragg, B. A., Bale, S. al. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–13
Parkes, R. J., Cragg, B. A., Bale, S. J., Goodman, K. and Fry, J. C. (1995). A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J. Microbiol. Meth., 23, 235–49
Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. and Wimpenny, J. W. T. (1990). Bacterial biomass and activity in deep sediment layers from the Peru Margin. Phil. Trans. R. Soc. Lond. A., 331, 139–53
Parkes, R. J., Cragg, B. A. and Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J., 8, 11–28
Parkes, R. J., Webster, G., Cragg, B. al. (2005). Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 436, 390–4
Paull, C. K., Buelow, W. J., Ussler, W. and Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–6
Pedersen, K., Arlinger, J., Ekendahl, S. and Hallbeck, L. (1996). 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden. FEMS Microbiol. Ecol., 19, 249–62
Postgate, J. R. and Hunter, J. R. (1963). Acceleration of bacterial death by growth substrate. Nature, 198, 273.
Quigley, T. M. and Mackenzie, A. S. (1988). The temperatures of oil and gas formation in the sub-surface. Nature, 333, 549–52
Reed, D. W., Fujita, Y., Delwiche, M. al. (2002). Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol., 68, 3759–70
Sass, H. and Cypionka, H. (2004). Isolation of sulphate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. System. Appl. Microbiol., 27, 541–8
Schippers, A., Neretin, L. N., Kallmeyer, al. (2005). Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433, 861–4
Süß, J., Engelen, B., Cypionka, H. and Sass, H. (2004). Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol. Ecol., 51, 109–21
Tasaki, M., Kamagata, Y., Nakamura, K. and Mikami, E. (1991). Isolation and characterization of a thermophilic benzoate-degrading, sulphate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol., 155, 348–52
Thomsen, T. R., Finster, K. and Ramsing, N. B. (2001). Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol., 67, 1646–56
Toffin, L., Webster, G., Weightman, A. J., Fry, J. C. and Prieur, D. (2004). Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol. Ecol., 48, 357–67
Wellsbury, P., Goodman, K., Barth, al. (1997). Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388, 573–6
Wellsbury, P., Goodman, K., Cragg, B. A. and Parkes, R. J. (2000). The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). Proc. ODP Sci. Res., 164, 379–91
Wellsbury, P., Mather, I. and Parkes, R. J. (2002). Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol. Ecol., 42, 59–70
Wellsbury, P. and Parkes, R. J. (2000). Deep biosphere: source of methane for oceanic hydrate. In Max, M. D. (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht: Kluwer. pp. 91–104.
Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998). Prokaryotes: the unseen majority: Proc. Natl. Acad. Sci. USA., 95, 6578–83
Wilms, R., Köpke, B., Sass, H. et al. (2006). Deep-biosphere bacteria within the subsurface of tidal flat sediments. Environ. Microbiol., 8, 709–19.
ZoBell, C. E. (1938). Studies on the bacterial flora of marine bottom sediments. J. Sed. Petrol., 8, 10–18