Published online by Cambridge University Press: 21 July 2017
Abstract
This survey deals with some aspects of combinatorics of permutations which are inspired by notions from structural Ramsey theory. Its first main focus is the overview of known results on Ramsey-type and Fraïssé-type properties of hereditary permutation classes, with particular emphasis on the concept of splittability. Secondly, we look at known estimates for Ramsey numbers of permutation matrices, and their relationship to Ramsey numbers of ordered graphs.
Introduction
About this survey
Combinatorics of permutations is an old and well-established field of discrete mathematics. So is Ramsey theory. For a long time these two fields have followed their own separate ways without affecting each other much. However, in the first decade of this century, the situation started to slowly change, as concepts originating from the research on relational structures and on Ramsey classes became adopted (or, occasionally, reinvented) in the study of hereditary permutation classes.
The purpose of this paper is to give an introductory overview of the Ramsey-theoretic and relation-theoretic aspects of combinatorics of permutations, with particular focus on hereditary permutation classes. I do not assume any familiarity with either structural Ramsey theory or permutation combinatorics. In the rest of this first chapter, the reader will find a condensed introduction to the relevant notions from these fields.
Chapter 2 will then present a survey of the known results related to amalgamation, Ramseyness and other related properties of hereditary permutation classes.
The remaining two chapters contain a more detailed treatment of two specific topics related to amalgamation and Ramsey properties of permutations.
Chapter 3 focuses on the notion of unsplittability, a weak form of Ramsey property that has recently found applications in enumerative combinatorics of permutations, and appears to be a promising research direction.
Consequently, splittability and unsplittability play a prominent role in this survey; indeed, Chapter 3 is the longest of the four chapters.
Chapter 4 deals with estimates on Ramsey numbers of permutations. This topic, which is closely connected to graph theory, has received interest only very recently, with only a few nontrivial results known, and many basic questions still open.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.