Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T18:42:17.517Z Has data issue: false hasContentIssue false

6 - Ultrafast-laser interactions with materials

Published online by Cambridge University Press:  04 December 2009

Costas P. Grigoropoulos
Affiliation:
University of California, Berkeley
Get access

Summary

Introduction

Lasers that can produce coherent photon pulses with durations in the femtosecond regime have opened up new frontiers in materials research with extremely short temporal resolution and high photon intensity. The ultrafast nature of femtosecond lasers has been used to observe, in real time, phenomena including chemical reactions in gases (Zewail, 1994) and electron–lattice energy transfer in solids (Shah, 1996). On the other hand, ultra-short laser pulses impart extremely high intensities and provide precise laser-ablation thresholds at substantially reduced laser energy densities. The increasing availability of intense femtosecond lasers has sparked a growing interest in high-precision materials processing. In contrast to material modification using nanosecond or longer laser pulses, for which standard modes of thermal processes dominate, there is no heat exchange between the pulse and the material during femtosecond-laser–material interactions. As a consequence, femtosecond laser pulses can induce nonthermal structural changes driven directly by electronic excitation and associated nonlinear processes, before the material lattice has equilibrated with the excited carriers. This fast mode of material modification can result in vanishing thermal stress and minimal collateral damage for processing practically any solid-state material. Additionally, damage produced by femtosecond laser pulses is far more regular from shot to shot. These breakdown characteristics make femtosecond lasers ideal tools for precision material processing.

Thorough knowledge of the short-pulse-laser interaction with the target material is essential for controlling the resulting modification of the target's topography.

Type
Chapter
Information
Transport in Laser Microfabrication
Fundamentals and Applications
, pp. 146 - 201
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassi, D., 1984, “Phenomenological Model for Picosecond-Pulse Laser Annealing of Semiconductors,” J. Appl. Phys., 55, 4376–4383.CrossRefGoogle Scholar
Anisimov, S. I., Kapeliovich, B. L., and Perel'man, T. L., 1974, “Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses,” Sov. Phys. JETP, 39, 375–377.Google Scholar
Anisimov, S. I., and Rethfeld, B., 1997, “On the Theory of Ultrashort Laser Pulse Interaction with a Metal,” Proc. SPIE, 3093, 192–203.CrossRefGoogle Scholar
Arnold, D., and Cartier, E., 1992, “Theory of Laser-Induced Free-Electron Heating and Impact Ionization in Wide-Band-Gap Solids,” Phys. Rev. B, 46, 15102–15115.CrossRefGoogle ScholarPubMed
Bespalov, V. I., and Talanov, V. I., 1966, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett., 3, 307.Google Scholar
Bloembergen, N., 1974, “Laser-Induced Electric Breakdown in Solids,” IEEE J. Quant. Electron., QE-10, 375–386.CrossRefGoogle Scholar
Braun, A., Korn, G., Liu, X.et al., 1995, “Self-Channeling of High-Peak-Power Femtosecond Laser Pulses in Air,” Opt. Lett., 20, 73–75.CrossRefGoogle ScholarPubMed
Brodeur, A., Chien, C. Y., Ilkov, F. A.et al., 1997, “Moving Focus in the Propagation of Ultrashort Laser Pulses in Air,” Opt. Lett., 22, 304–306.CrossRefGoogle ScholarPubMed
Brorson, S. D., Fujimoto, J. G., and Ippen, E. P., 1987, “Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films,” Phys. Rev. Lett., 59, 1962–1965.CrossRefGoogle ScholarPubMed
Brorson, S. D., Kazeroonian, A., Moodera, J. S.et al., 1990, “Femtosecond Room-Temperature Measurement of the Electron–Phonon Coupling Constant l in Metallic Superconductors,” Phys. Rev. Lett., 64, 2172–2175.CrossRefGoogle Scholar
Cavalleri, A., Siders, C. W., Brown, F. L. H.et al., 2000, “Anharmonic Lattice Dynamics in Germanium Measured with Ultrafast X-Ray Diffraction,” Phys. Rev. Lett., 85, 586–589.CrossRefGoogle ScholarPubMed
Cheng, C., and Xu, X., 2005, “Material Decomposition near Critical Temperature during Femtosecond Laser Ablation,” Phys. Rev. B, 72, 165415-1–15.CrossRefGoogle Scholar
Chin, A. H., Schoenlein, R. W., Glover, T. E.et al., 1999, “Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction,” Phys. Rev. Lett., 83, 336–339.CrossRefGoogle Scholar
Choi, T.-Y., and Grigoropoulos, C. P., 2002, “Plasma and Ablation Dynamics in Ultrafast Laser Processing of Crystalline Silicon,” J. Appl. Phys., 92, 4918–4925.CrossRefGoogle Scholar
Davis, K. M., Miura, K., Sugimoto, N., and Hirao, K., 1996, “Writing Waveguides in Glass with a Femtosecond Laser”, Opt. Lett., 21, 1729–1731.CrossRefGoogle ScholarPubMed
Day, D., Min, Gu, and Smallridge, A., 1999, “Use of Two-photon Excitation for Erasable–Rewritable Three-Dimensional Bit Optical Data Storage in a Photorefractive Polymer,” Opt. Lett., 24, 948–950.CrossRefGoogle Scholar
Diddams, S. A., Eaton, H. K., Zozulya, A. A., and Clement, T. S., 1998, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Topics Quant. Electron., 4, 306–316.CrossRefGoogle Scholar
Downer, M., Fork, R., and Shank, C., 1985, “Femtosecond Imaging of Melting and Evaporation at a Photoexcited Silicon Surface,” J. Opt. Soc. Am. B, 2, 595–599.CrossRefGoogle Scholar
Du, D., Liu, X., Korn, G., Squier, J., and Mourou, G., 1994, “Laser-Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7 ns to 150 fs,” Appl. Phys. Lett., 64, 3071–3073.CrossRefGoogle Scholar
Elsayed-Ali, H. E., Norris, T. B., Pessot, M. A., and Mourou, G. A., 1987, “Time-Resolved Observation of Electron–Phonon Relaxation in Copper,” Phys. Rev. Lett., 58, 1212–1215.CrossRefGoogle ScholarPubMed
Fann, W. S., Storz, R., Tom, H. W. K., and Bokor, J., 1992a, “Direct Measurement of Nonequilibrium Electron-Energy Distributions in Subpicosecond Laser-Heated Gold Films,” Phys. Rev. Lett., 68, 2834–2837.CrossRefGoogle ScholarPubMed
Fann, W. S., Storz, R., Tom, H. W. K., and Bokor, J., 1992b, “Electron Thermalization in Gold,” Phys. Rev. B, 46, 13592–13595.CrossRefGoogle ScholarPubMed
Fibich, G., and Ilan, B., 2001, “Vectorial and Random Effects in Self-Focusing and in Multiple Filamentation,” Physica D, 157, 112–146.CrossRefGoogle Scholar
Fischetti, M. V., DiMaria, D. J., Brorson, S. D., Theis, T. N., and Kirtley, J. R., 1985, “Theory of High-Field Electron Transport in Silicon Dioxide,” Phys. Rev. B, 31, 8124–8142.CrossRefGoogle ScholarPubMed
Gaeta, A. L., 2000, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett., 84, 3582–3585.CrossRefGoogle ScholarPubMed
Geindre, J.-P., Audebert, P., Rebibo, S., and Gauthier, J.-C., 2001, “Single-Shot Spectral Interferometry with Chirped Pulses,” Opt. Lett., 26, 1612–1616.CrossRefGoogle ScholarPubMed
Gibbon, P., and Forster, E., 1996, “Short-Pulse Laser–Plasma Interactions,” Plasma Phys. Contr. Fusion, 38, 769–793.CrossRefGoogle Scholar
Glezer, E. N., Milosavljevic, M., Huang, L.et al., 1996, “Three-Dimensional Optical Storage inside Transparent Materials,” Opt. Lett., 21, 2023–2025.CrossRefGoogle ScholarPubMed
Groeneveld, R. H. M., Sprik, R., Wittebrood, M., and Lagendijk, A., 1992, “Effect of a Nonthermal Electron Distribution on the Electron–Phonon Energy Relaxation Process in Noble Metals,” Phys. Rev. B, 45, 5079–5082.CrossRefGoogle ScholarPubMed
Guizard, S., Martin, P., Petite, G., D'Oliveira, P., and Meynadier, P., 1996, “Time-Resolved Study of Laser-Induced Colour Centres in SiO2,” J. Phys. – Condens. Matter, 8, 1281–1290.CrossRefGoogle Scholar
Guo, C., Rodriguez, G., and Taylor, A. J., 2001, “Ultrafast Dynamics of Electron Thermalization in Gold,” Phys. Rev. Lett., 86, 1638–1641.CrossRefGoogle ScholarPubMed
Haglund, R. F. Jr., and Itoh, N., 1994, “Electronic Processes in Laser Ablation of Semiconductors and Insulators,” in Laser Ablation. Principles and Applications, edited by Miller, J. C., Berlin, Springer-Verlag, pp. 11–52.CrossRefGoogle Scholar
Hwang, D., Choi, T., and Grigoropoulos, C. P., 2004, “Liquid-Assisted Femtosecond Laser Drilling of Straight and Three-Dimensional Microchannels in Glass,” Appl. Phys. A, 79, 605–612.CrossRefGoogle Scholar
Hwang, D. J., Choi, T.-Y., and Grigoropoulos, C. P., 2006, “Efficiency of Silicon Micromachining by Femtosecond Laser Pulses in Ambient Air,” J. Appl. Phys., 99, 083101–083106.CrossRefGoogle Scholar
Iaconis, C., andWalmsley, I. A., 1998, “Spectral Phase Interferometry for Direct Electric-Field Reconstruction of Ultrashort Optical Pulses, Opt. Lett., 23, 792–796.CrossRefGoogle Scholar
Kawata, S., and Sun, H. B., 2003, “Two-Photon Photopolymerization as a Tool for Making Micro-devices”, Appl. Surf. Sci., 208, 153–158.CrossRefGoogle Scholar
Kawata, Y., Ueki, H., Hastimoto, Y., and Kawata, S., 1995, Three-Dimensional Optical Memory with a Photorefractive Crystal,” Appl. Opt., 34, 4105–4110.CrossRefGoogle ScholarPubMed
Kelley, P. L., 1965, “Self-Focusing of Optical Beams,” Phys. Rev. Lett., 15, 1005–1008.CrossRefGoogle Scholar
Keldysh, L. V., 1965, “Ionization in Field of a Strong Electromagnetic Wave,” Sov. Phys. JETP, 20, 1307.Google Scholar
Kelly, R., and Miotello, A., 1996, “Comments on Explosive Mechanisms of Laser Sputtering,” Appl. Surf. Sci., 96–98, 205–215.CrossRefGoogle Scholar
Korte, F., Nolte, S., Chichkov, B. N.et al., 1999, “Far-Field and Near-Field Material Processing with Femtosecond Laser Pulses,” Appl. Phys. A, 69, S7–S11.CrossRefGoogle Scholar
Larsson, J., Heimann, P. A., Lindenberg, A. M.et al., 1998, “Ultrafast Structural Changes Measured by Time-Resolved X-Ray Diffraction,” Appl. Phys. A, 66, 587–591.CrossRefGoogle Scholar
Lenzner, M., 1999, “Femtosecond Laser-Induced Damage of Dielectrics,” Int. J. Mod. Phys. B, 13, 1559–1578.CrossRefGoogle Scholar
Lenzner, M., Krüger, J., Santania, S.et al., 1998, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett., 80, 4076–4079.CrossRefGoogle Scholar
Li, M., Menon, S., Nibarger, J. P., and Gibson, G. N., 1999, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett., 82, 2394–2397.CrossRefGoogle Scholar
Li, Y., Itoh, K., Watanabe, W.et al., 2001, “Three-Dimensional Hole Drilling of Silica Glass from the Rear Surface with Femtosecond Laser Pulses,” Opt. Lett., 26, 1912–1914.CrossRefGoogle ScholarPubMed
Lindenberg, A. M., Kang, J., Johnson, S. L., 2000, “Time-Resolved X-Ray Diffraction from Coherent Phonons during a Laser-Induced Phase Transition,” Phys. Rev. Lett., 84, 111–116.CrossRefGoogle Scholar
Liu, X., Du, D., and Mourou, G., 1997, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quant. Electron., 33, 1706–1716.CrossRefGoogle Scholar
Mao, X. L., Mao, S. S., and Russo, R. E., 2003, “Imaging Femtosecond Laser-Induced Electronic Excitation in Glass,” Appl. Phys. Lett., 82, 697–699.CrossRefGoogle Scholar
Mao, S.S., Quéré, F., Guizard, S.et al., 2004, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys. A, 79, 1695–1709.CrossRefGoogle Scholar
Marcinkevicius, A., Juodkazis, S., Watanabe, M.et al., 2001, “Femtosecond Laser-Assisted Three-Dimensional Microfabrication in Silica,” Opt. Lett., 26, 277–279.CrossRefGoogle Scholar
Martin, P., Guizard, S., Daguzan, Ph.et al., 1997, “Subpicosecond Study of Carrier Trapping Dynamics in Wide-Band-Gap Crystals,” Phys. Rev. B, 55, 5799–5810.CrossRefGoogle Scholar
Milchberg, H. M., Freeman, R. R., and Davey, S. C., 1988, “Behavior of a Simple Metal under Utrashort Pulse High Intensity Laser Illumination,” Proc. SPIE, 913, 159–163.CrossRefGoogle Scholar
Momma, C., Nolte, S., Kamlage, G., Alvensleben, F., and Tunnermann, A., 1998, “Beam Delivery of Femtosecond Laser Radiation by Diffractive Optical Elements,” Appl. Phys. A, 67, 517–520.CrossRefGoogle Scholar
Perry, M. D., Stuart, B. C., Banks, P. S.et al., 1999, “Ultrashort-Pulse Laser Machining of Dielectric Materials,” J. Appl. Phys., 85, 6803–6810.CrossRefGoogle Scholar
Petite, G., Guizard, S., Martin, P., and Quéré, F., 1999, “Comment on ‘Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,’”Phys. Rev. Lett., 83, 5182.CrossRefGoogle Scholar
Pronko, P., Dutta, S., Squier, J.et al., 1995, “Machining of Sub-micron Holes using a Femtosecond Laser at 800 nm,” Opt. Commun., 114, 106–110.CrossRefGoogle Scholar
Pronko, P. P., VanRompay, P.A, Horvath, C.et al., 1998, “Avalanche Ionization and Dielectric Breakdown in Silicon with Ultrafast Laser Pulses,” Phys. Rev. B, 58, 2387–239.CrossRefGoogle Scholar
Qiu, T. Q., and Tien, C.-L., 1993, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” J. Heat Transfer, 115, 835–841.CrossRefGoogle Scholar
Quéré, F., Guizard, S., and Martin, P., 2001, “Time-Resolved Study of Laser-Breakdown in Dielectrics,” Europhys. Lett., 56, 138–144.CrossRefGoogle Scholar
Quéré, F., Itatani, J., Yudin, G. L., and Corkum, R. B., 2003, “Attosecond Spectral Shearing Interferometry, Phys. Rev. Lett., 90, 073902-1–6.CrossRefGoogle ScholarPubMed
Ranka, J. K., and Gaeta, A. L., 1998, “Breakdown of the Slowly Varying Envelope Approximation in the Self-Focusing of Ultrashort Pulses,” Opt. Lett., 23, 534–536.CrossRefGoogle ScholarPubMed
Rethfeld, B., Kaiser, A., Vicanek, M., and Simon, G., 1999, “Femtosecond Laser-Induced Heating of Electron Gas in Aluminum,” Appl. Phys. A, 69, 109–112.CrossRefGoogle Scholar
Rethfeld, B., Kaiser, A., Vicanek, M., and Simon, G., 2002, “Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation,” Phys. Rev. B, 65, 214303-11.CrossRefGoogle Scholar
Rose-Petruck, C., Jimenez, R., Guo, T.et al., 1999, “Picosecond–Milliångström Lattice Dynamics Measured by Ultrafast X-Ray Diffraction,” Nature, 398, 310–312.CrossRefGoogle Scholar
Schaffer, C. B., Brodeur, A., Garcia, J. F., and Mazur, E., 2001, “Micromachining Bulk Glass by Use of Femtosecond Laser Pulses with Nanojoule Energy,” Opt. Lett., 26, 93–95.CrossRefGoogle ScholarPubMed
Seideman, T., Ivanov, M. Yu, and Corkum, P. B., 1995, “Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett., 75, 2819–2822.CrossRefGoogle Scholar
Shah, J., 1996, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Shank, C. V., Yen, R., and Hirlimann, C., 1983, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett., 50, 454–457.CrossRefGoogle Scholar
Shen, Y. R., 1984, The Principles of Nonlinear Optics, New York, Wiley.Google Scholar
Shibata, T., Iwai, S., Tokisaki, T.et al., 1994, “Femtosecond Spectroscopic Studies of the Lattice-Relaxation Initiated by Interacting Electron–Hole Pairs under Relaxation in Alkali-Halides,” Phys. Rev. B, 49, 13255–13258.CrossRefGoogle ScholarPubMed
Siders, C. W., Cavalleri, A., Sokolowski-Tinten, K.et al., 1999, “Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction,” Science, 286, 1340–1342.CrossRefGoogle Scholar
Silvestrelli, P. L., Alavi, A., Parrinello, M., and Frenkel, D., 1996, “Ab Initio Molecular Dynamics Simulation of Laser Melting of Silicon,” Phys. Rev. Lett., 77, 3149–3152.CrossRefGoogle Scholar
Skripov, V. P., and Skripov, A. V., 1979, “Spinodal Decomposition (Phase-Transition via Unstable States),” Usp. Fiz. Nauk, 128, 193–231.CrossRefGoogle Scholar
Sokolowski-Tinten, K., Bialkowski, J., and der Linde, D., 1995, “Ultrafast Laser-Induced Order–Disorder Transitions in Semiconductors,” Phys. Rev. B, 51, 14186–14198.CrossRefGoogle ScholarPubMed
Sokolowski-Tinten, K., Cavalleri, A., and der Linde, D., 1999, “Single-Pulse Time- and Fluence-Resolved Optical Measurements at Femtosecond Excited Surfaces,” Appl. Phys. A, 69, 577–579.CrossRefGoogle Scholar
Sokolowski-Tinten, K., and der Linde, D., 2000, “Generation of Dense Electron–Hole Plasmas in Silicon,” Phys. Rev. B, 61, 2643–2650.CrossRefGoogle Scholar
Song, K. H., and Xu, X., 1998, “Explosive Phase Transformation in Excimer Laser Ablation,” Appl. Surf. Sci., 127, 111–116.CrossRefGoogle Scholar
Song, K. S., and Williams, R. T., 1993, Self-Trapped Excitons, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Stampfli, P., and Bennemann, K. H., 1990, “Theory for the Instability of the Diamond Structure of Si, Ge, and C Induced by a Dense Electron–Hole Plasma,” Phys. Rev. B, 42, 7163–7173.CrossRefGoogle Scholar
Stampfli, P., and Bennemann, K. H., 1992, “Dynamical Theory of the Laser-Induced Lattice Instability of Silicon,” Phys. Rev. B, 46, 10686–10692.CrossRefGoogle ScholarPubMed
Stuart, B. C., Feit, M. D., Herman, S.et al., 1995, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett., 74, 2248–2251.CrossRefGoogle ScholarPubMed
Stuart, B. C., Feit, M. D., Herman, S.et al., 1996, “Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics,” Phys. Rev. B, 53, 1749–1761.CrossRefGoogle ScholarPubMed
Sun, H.-B., Xu, Y., Juodkazis, S.et al., 2001, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett., 26, 325–327.CrossRefGoogle ScholarPubMed
Sundaram, S. K., and Mazur, E., 2002, “Inducing and Probing Non-thermal Transitions in Semiconductors using Femtosecond Laser Pulses,” Nature Mater., 1, 217–224.CrossRefGoogle Scholar
Thoma, E. D., Yochum, H. M., and William, R. T., 1997, “Subpicosecond Spectroscopy of Hole and Exciton Self-Trapping in Alkali-Halide Crystals,” Phys. Rev. B, 56, 8001–8011.CrossRefGoogle Scholar
Tien, An-Chun, Backus, S., Kapteyn, H., Murnane, M., and Mourou, G., 1999, “Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration,” Phys. Rev. Lett., 82, 3883–3886.CrossRefGoogle Scholar
Toyozawa, Y., 1980, Relaxation of Elementary Excitations, edited by Kubo, R. and Hanamura, E., Berlin, Springer-Verlag, pp. 3–18.CrossRefGoogle ScholarPubMed
Trukhin, A. N., 1992, “Excitons in SiO2: A Review,” J. Non-Cryst. Solids, 149, 32–45.CrossRefGoogle Scholar
Tzortzakis, S., Sudrie, L., Franco, M.et al., 2001, Self-Guided Propagation of Ultrashort IR Laser Pulses in Fused Silica,” Phys. Rev. Lett., 87, 213902/1–4CrossRefGoogle ScholarPubMed
Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y., and Hanamura, E., eds., 1986, Excitonic Processes in Solids, Berlin, Springer-Verlag.CrossRef
Driel, H. M., 1987, “Kinetics of High-Density Plasmas Generated in Si by 1.06- and 0.53-μm Picosecond Laser Pulses,” Phys. Rev. B, 35, 8166–8176.CrossRefGoogle Scholar
Stryland, E. W., Vanherzeele, H., Woodall, M. A.et al., 1985, “Two Photon Absorption, Nonlinear Refraction, and Optical Limiting in Semiconductors,” Opt. Eng., 24, 613–623.Google Scholar
Vechten, J., Tsu, R., and Saris, F., 1979, “Nonthermal Pulsed Laser Annealing of Si, Plasma Annealing,” Phys. Lett. A, 74, 422–426.CrossRefGoogle Scholar
Vasil'ev, A. N., Fang, Y., and Mikhailin, V. V. 1999, “Impact Production of Secondary Electronic Excitations in Insulators: Multiple-Parabolic-Branch Band Model,” Phys. Rev. B, 60, 5340–5347.CrossRef
der Linde, D., Sokolowski-Tinten, K., Blome, C.et al., 2001, “Generation and Application of Ultrashort X-Ray Pulses,” Laser Part. Beams, 19, 15–22.CrossRefGoogle Scholar
Will, M., Nolte, S., Chichkov, B. N., and Tünnermann, A., 2002, “Optical Properties of Waveguides Fabricated in Fused Silica by Femtosecond Laser Pulses,” Appl. Opt., 41, 4360–4364.CrossRefGoogle ScholarPubMed
Williams, R. T., Craig, B. B., and Faust, W. L., 1984, “F-Center Formation in NaCl – Picosecond Spectroscopic Evidence for Halogen Diffusion on the Lowest Excitonic Potential Surface,” Phys. Rev. Lett., 52, 1709–1712.CrossRefGoogle Scholar
Wu, M., 1997, “Micromachining for Optical and Optoelectronic Systems,” Proc. IEEE, 85, 1833–1856.CrossRefGoogle Scholar
Xu, X., 2001, “Heat Transfer and Phase Change during High Power Pulsed Laser Ablation of Metal,” in Annual Review of Heat Transfer, edited by Tien, C.-L., Prasad, V., and Incropera, F. P., 12, New York, Begell House, 79.Google Scholar
Ye, M., and Grigoropoulos, C. P., 2001, “Time-of-Flight and Emission Spectroscopy Study of Femtosecond Laser Ablation of Titanium,” J. Appl. Phys., 89, 5183–5190.CrossRefGoogle Scholar
Yoo, K. M.Zhao, X. M., Siddique, M.et al., 1990, “Femtosecond Thermal Modulation Measurements of Electron–Phonon Relaxation in Niobium,” Appl. Phys. Lett., 56, 1908–1910.CrossRefGoogle Scholar
Zewail, A. H., 1994, Femtochemistry: Ultrafast Dynamics of the Chemical Bond, Singapore, World Scientific.CrossRefGoogle Scholar
Ziman, J. M., 1964, Principles of the Theory of Solids, Cambridge, Cambridge University Press.Google Scholar
Zozulya, A. A., Diddams, S. A., Engen, A. G., and Clement, T. S., 1999, “Propagation Dynamics of Intense Femtosecond Pulses: Multiple Splittings, Coalescence, and Continuum Generation,” Phys. Rev. Lett., 82, 1430–1433.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×