To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a numerical approach is proposed to solve the time-optimal path-planning (TOPP) problem of kinematically redundant manipulators between two end-points. The first step is to transform the TOPP problem into a nonlinear programming problem by an iterative procedure. Then an approach to find the initial feasible solutions of the problem is proposed. Since initial feasible solutions can be found easily, the optimization process of the nonlinear programming problem can be started from different points to find the global minimum. A planar three-link robotic manipulator is used to illustrate the validity of the proposed approach.
A complication to the process of remotely generating tool paths is that mechanism controllers are typically capable of commanding a robot or machine tool to move along linear and circular arc space segments. This paper considers the decomposition of parametrically described, higher-order curvilinear paths into piecewise linear and circular path segments, thereby reducing the data required to store a higher order path.
We suggest a new pretopological model for pattern recognition which was introduced to study complex economic systems. The model has its origin in the concept of “neighbour”, which is both primitive and fundamental in pattern recognition. Pretopology enables us to develop a perceptive and topological approach for patterns and to see that problems, apparently different, are in fact identical e.g. clustering and recognition, search of skeletons in image processing and search of an informative learning set. It should be noted that the suggeted model is more than a descriptive one.
This paper describes the development of assembly strategies based on hybrid force/position control. The assembly strategies developed are confined to the large class of assembly tasks defined as a peg-in-the-hole assembly having a plane of symmetry passing through the axis of insertion.
The basic idea to develop a robotic system for programmable assembly is presented. This system can currently operate controlled manipulators with minor modifications, i.e. if a force/torque sensor and proper software for hybrid control are provided.
The principles of writing assembly strategies are analysed and examples of more complex assembly tasks than the classic round peg-in-the-hole are discussed in detail.
Only hardware and software flexibility combined can yield the overall system flexibility required in newly designed FMSs in which the expected part mix is quite large and continually changing.
The paper shows how modular design and integration are fundamental steps in software design for the management and control of FMSs. The main subsystems of a control system, built up by putting together a number of standardized modules requiring little or no customization, are also described. An experimental control system designed according to these criteria is also presented.
Methods are described for computer analysis of image-data from a coded-stripe rangefinder. The main objective is to find vertex coordinates and connectivity information for a polyhedral object, enabling it to be represented by a wire-frame model. For each of several rangefinder viewpoints, the data is processed to extract three-dimensional edge and vertex positions. The emphasis is on estimation techniques that make good use of fairly sparse data-points. Results from different viewpoints are merged to produce a 3D model of the object.
An input shaping technique using a time-varying impulse sequence is presented to reduce the motion-induced vibration of flexible systems in a feedforward way.
The decoupled modal responses for a general linear time-varying system are firstly approximated. Upon this approximation, the time-varying impulse sequences to suppress the vibrational modes are found. The reference inputs to the systems are shaped by convolving with the time-varying impulse sequence to suppress the multimode vibrations. This technique can be also applied to suppress the vibration of nonlinear time-varying systems.
The performance of this method is demonstrated with two practical examples: a moving overhead crane and a two-link robot manipulator. Consequently, this study provides an input shaping technique applicable to the vibration suppression of broader classes of flexible systems.