To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By
Eric Friedman, School of Operations Research and Information Engineering Cornell University,
Paul Resnick, School of Information University of Michigan,
Rahul Sami, School of Information University of Michigan
This chapter is an overview of the design and analysis of reputation systems for strategic users. We consider three specific strategic threats to reputation systems: the possibility of users with poor reputations starting afresh (whitewashing); lack of effort or honesty in providing feedback; and sybil attacks, in which users create phantom feedback from fake identities to manipulate their own reputation. In each case, we present a simple analytical model that captures the essence of the strategy, and describe approaches to solving the strategic problem in the context of this model. We conclude with a discussion of open questions in this research area.
Introduction: Why Are Reputation Systems Important?
One of the major benefits of the Internet is that it enables potentially beneficial interactions, both commercial and noncommercial, between people, organizations, or computers that do not share any other common context. The actual value of an interaction, however, depends heavily on the ability and reliability of the entities involved. For example, an online shopper may obtain better or lower-cost items from remote traders, but she may also be defrauded by a low-quality product for which redress (legal or otherwise) is difficult. If each entity's history of previous interactions is made visible to potential new interaction partners, several benefits ensue. First, a history may reveal information about an entity's ability, allowing others to make choices about whether to interact with that entity, and on what terms.
This paper explores using Shannon's entropy of information to measure linkographs of 12 design sessions that involved six architects in two different experimental conditions. The aim is to find a quantitative tool to interpret the linkographs. This study examines if the differences in the design processes and the design outcomes can be reflected in the entropic interpretations. The results show that the overall entropy of one design condition is slightly higher than the other. Further, there are indications that the change of entropy might reflect design outcomes.
How can we characterize the promulgation of computing in design? At the outset, computing was conceived predominantly in terms of design automation. It was quickly realized that this medium offered a great deal more than automation, and computing rapidly become a mode of conception for designing. At the juncture of art, design, and computing, however, we recognize computing as becoming loaded with cultural meanings that are enacted through designed works, and designed works that reinterpret a range of assumptions about computing. Design and computing are intervening and lending each other ever-accruing layers of possibilities. The arena of design and computing is producing a new object of knowledge from which they effect: a mode of inquiry, a form of critique, a constitution of practices of subjectivities, and an articulation of objective and subjective investigations. The four papers selected for publication in this Special Issue triangulate these perspectives, providing a new vision for the direction of design and computing and emerging research themes.
Structural optimization is usually handled by iterative methods requiring repeated samples of a physics-based model, but this process can be computationally demanding. Given a set of previously optimized structures of the same topology, this paper uses inductive learning to replace this optimization process entirely by deriving a function that directly maps any given load to an optimal geometry. A support vector machine is trained to determine the optimal geometry of individual modules of a space frame structure given a specified load condition. Structures produced by learning are compared against those found by a standard gradient descent optimization, both as individual modules and then as a composite structure. The primary motivation for this is speed, and results show the process is highly efficient for cases in which similar optimizations must be performed repeatedly. The function learned by the algorithm can approximate the result of optimization very closely after sufficient training, and has also been found effective at generalizing the underlying optima to produce structures that perform better than those found by standard iterative methods.
This paper presents how the function–behavior–structure (FBS) ontology can be used to represent processes despite its original focus on representing objects. The FBS ontology provides a uniform framework for classifying processes, and includes higher level semantics in their representation. We show that this ontology supports a situated view of processes based on a model of three interacting worlds. The situated FBS framework is then used to describe the situated design of processes.
This paper describes research carried out to develop a parametric urban shape grammar for the Zaouiat Lakhdar quarter of the Medina of Marrakech in Morocco. The goal is to create the basis for a system that could capture some features of the existing urban fabric and apply them in contemporary urban planning and architectural design. The methodology used is described, from the initial historical analysis and fieldwork to the identification of three subgrammars necessary to encode the complexity of the urban preexistences: the urban grammar, the negotiation grammar, and the housing grammar. Top-down and bottom-up approaches to grammar design are analyzed and compared. The bottom-up urban grammar developed is then described, and a hand derivation of the existing urban fabric is proposed. Visual, symbolic, and tagged computer implementations of shape grammars are briefly discussed and a novel design generated by the tagged interpreter is presented.
We have given in earlier chapters several different proofs of Church's theorem to the effect that first-order logic is undecidable: there is no effective procedure that applied to any first-order sentence will in a finite amount of time tell us whether or not it is valid. This negative result leaves room on the one hand for contrasting positive results, and on the other hand for sharper negative results. The most striking of the former is the Löwenheim–Behmann theorem, to the effect that the logic of monadic (one-place) predicates is decidable, even when the two-place logical predicate of identity is admitted. The most striking of the latter is the Church–Herbrand theorem that the logic of a single dyadic (two-place) predicate is undecidable. These theorems are presented in sections 21.2 and 21.3 after some general discussion of solvable and unsolvable cases of the decision problem for logic in section 21.1. While the proof of Church's theorem requires the use of considerable computability theory (the theory of recursive functions, or of Turing machines), that is not so for the proof of the Löwenheim–Behmann theorem or for the proof that Church's theorem implies the Church–Herbrand theorem. The former uses only material developed by Chapter 11. The latter uses also the elimination of function symbols and identity from section 19.4, but nothing more than this. The proofs of these two results, positive and negative, are independent of each other.
This chapter and the next contain a summary of material, mainly definitions, needed for later chapters, of a kind that can be found expounded more fully and at a more relaxed pace in introductory-level logic textbooks. Section 9.1 gives an overview of the two groups of notions from logical theory that will be of most concern: notions pertaining to formulas and sentences, and notions pertaining to truth under an interpretation. The former group of notions, called syntactic, will be further studied in section 9.2, and the latter group, called semantic, in the next chapter.
First-Order Logic
Logic has traditionally been concerned with relations among statements, and with properties of statements, that hold by virtue of ‘form’ alone, regardless of ‘content’. For instance, consider the following argument:
(1) A mother or father of a person is an ancestor of that person.
(2) An ancestor of an ancestor of a person is an ancestor of that person.
(3) Sarah is the mother of Isaac, and Isaac is the father of Jacob.
(4) Therefore, Sarah is an ancestor of Jacob.
Logic teaches that the premisses (1)–(3) (logically) imply or have as a (logical) consequence the conclusion (4), because in any argument of the same form, if the premisses are true, then the conclusion is true.
In the preceding several chapters we have introduced the intuitive notion of effective computability, and studied three rigorously defined technical notions of computability: Turing computability, abacus computability, and recursive computability, noting along the way that any function that is computable in any of these technical senses is computable in the intuitive sense. We have also proved that all recursive functions are abacus computable and that all abacus-computable functions are Turing computable. In this chapter we close the circle by showing that all Turing-computable functions are recursive, so that all three notions of computability are equivalent. It immediately follows that Turing's thesis, claiming that all effectively computable functions are Turing computable, is equivalent to Church's thesis, claiming that all effectively computable functions are recursive. The equivalence of these two theses, originally advanced independently of each other, does not amount to a rigorous proof of either, but is surely important evidence in favor of both. The proof of the recursiveness of Turing-computable functions occupies section 8.1. Some consequences of the proof of equivalence of the three notions of computability are pointed out in section 8.2, the most important being the existence of a universal Turing machine, a Turing machine capable of simulating the behavior of any other Turing machine desired. The optional section 8.3 rounds out the theory of computability by collecting basic facts about recursively enumerable sets, sets of natural numbers that can be enumerated by a recursive function. […]
In the preceding chapter we introduced the classes of primitive recursive and recursive functions. In this chapter we introduce the related notions of primitive recursive and recursive sets and relations, which help provide many more examples of primitive recursive and recursive functions. The basic notions are developed in section 7.1. Section 7.2 introduces the related notion of a semirecursive set or relation. The optional section 7.3 presents examples of recursive total functions that are not primitive recursive.
Recursive Relations
A set of, say, natural numbers is effectively decidable if there is an effective procedure that, applied to a natural number, in a finite amount of time gives the correct answer to the question whether it belongs to the set. Thus, representing the answer ‘yes’ by 1 and the answer ‘no’ by 0, a set is effectively decidable if and only if its characteristic function is effectively computable, where the characteristic function is the function that takes the value 1 for numbers in the set, and the value 0 for numbers not in the set. A set is called recursively decidable, or simply recursive for short, if its characteristic function is recursive, and is called primitive recursive if its characteristic function is primitive recursive. Since recursive functions are effectively computable, recursive sets are effectively decidable. Church's thesis, according to which all effectively computable functions are recursive, implies that all effectively decidable sets are recursive.
Ramsey's theorem is a combinatorial result about finite sets with a proof that has interesting logical features. To prove this result about finite sets, we are first going to prove, in section 26.1, an analogous result about infinite sets, and are then going to derive, in section 26.2, the finite result from the infinite result. The derivation will be an application of the compactness theorem. Nothing in the proof of Ramsey's theorem to be presented requires familiarity with logic beyond the statement of the compactness theorem, but at the end of the chapter we indicate how Ramsey theory provides an example of a sentence undecidable in P that is more natural mathematically than any we have encountered so far.
Ramsey's Theorem: Finitary and Infinitary
There is an old puzzle about a party attended by six persons, at which any two of the six either like each other or dislike each other: the problem is to show that at the party there are three persons, any two of whom like each other, or there are three persons, any two of whom dislike each other.
The solution: Let a be one of the six. Since there are five others, either there will be (at least) three others that a likes or there will be three others that a dislikes. Suppose a likes them. (The argument is similar if a dislikes them.) Call the three b, c, d.
This chapter connects our work on computability with questions of logic. Section 11.1 presupposes familiarity with the notions of logic from Chapter 9 and 10 and of Turing computability from Chapters 3–4, including the fact that the halting problem is not solvable by any Turing machine, and describes an effective procedure for producing, given any Turing machine M and input n, a set of sentences Г and a sentence D such that M given input n will eventually halt if and only if Г implies D. It follows that if there were an effective procedure for deciding when a finite set of sentences implies another sentence, then the halting problem would be solvable; whereas, by Turing's thesis, the latter problem is not solvable, since it is not solvable by a Turing machine. The upshot is, one gets an argument, based on Turing's thesis for (the Turing–Büchi proof of) Church's theorem, that the decision problem for implication is not effectively solvable. Section 11.2 presents a similar argument–the Gödel-style proof of Church's theorem–this time using not Turing machines and Turing's thesis, but primitive recursive and recursive functions and Church's thesis, as in Chapters 6–7. The constructions of the two sections, which are independent of each other, are both instructive; but an entirely different proof, not dependent on Turing's or Church's thesis, will be given in a later chapter, and in that sense the present chapter is optional. […]