To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper describes a hierarchical architecture for rhythmic movement generation, which suits a juggling-like task involving sensory-motor coordination. Our approach, which is interpreted as a “bidirectional weak coupling” to the environment, does not require a continuous monitoring of the environment, but can adapt a robot to a change in the environment, owing to the interaction between the robot and the environment at the ball contact. The proposed architecture contains two passive-control mechanisms, the “entrainment mechanism” and the “open-loop stable mechanism,” that lead to the emergence of a self-organized temporal order in the whole system. This dynamic temporal pattern enables a robot to perform a stable rhythmic movement. We demonstrate a robot which juggles two balls rebounding off the wall and confirm the effectiveness of our approach.
In this paper, an optimal kinematic design method of a three translational DoFs parallel manipulator is presented. The design is based on the concept of performance chart, which can show the relationship between a criterion and design parameters graphically and globally. The normalization on the design parameters of the studied manipulator makes it possible that the design space, which is made up of the normalized parameters, is limited. The design space includes of all possible basic similarity manipulators (BSMs). As any one of the BSMs represents all of its similarity manipulators (SMs) in terms of performances, if one BSM is optimal, its SMs are optimized as well. The said optimal BSM is from the optimum region, which is the intersecting result of involved performance charts. In this paper, the related performance criteria are good-conditioning workspace (GCW), global conditioning index (GCI) and global stiffness index (GSI). As an applying example, a design result of the parallel manipulator with a desired task workspace is presented. The results of the paper are very useful for the design and application of a parallel manipulator.
The paper addresses kinematic and geometrical aspects of the Orthoglide, a three-DOF parallel mechanism. This machine consists of three fixed linear joints, which are mounted orthogonally, three identical legs and a mobile platform, which moves in the Cartesian x-y-z space with fixed orientation. New solutions to solve inverse/direct kinematics are proposed, and we perform a detailed workspace and singularity analysis, taking into account specific joint limit constraints.
In this article, impedance control of a two link flexible link manipulators is addressed. The concept of impedance control of flexible link robots is rather new and is being addressed for the first time by the authors. Impedance Control provides a universal approach to the control of flexible robots, in both constrained and unconstrained maneuvers. The initial part of the paper concerns the use of Hamilton's principle to derive the mathematical equations governing the dynamics of joint angles, vibration of the flexible links and the constraining forces. The approximate elastic deformations are then derived by means of the Assumed-Mode-Method (AMM). Using the singular perturbation method, the dynamic of the manipulator is decomposed into fast and slow subsystems. The slow dynamic corresponds to the rigid manipulator and the fast dynamic is due to vibrations of flexible links. The sliding mode control (SMC) theory has been used as the means to achieve the 2nd order target impedance for the slow dynamics. A controller based on state feedback is also designed to stabilize the fast dynamics. The composite controller is constructed by using the slow and fast controllers. Simulation results for a 2-DOF robot in which only the 2nd link is flexible confirm that the controller performs remarkably well under various simulation conditions.
We introduce 2-3 finger trees, a functional representation of persistent sequences supporting access to the ends in amortized constant time, and concatenation and splitting in time logarithmic in the size of the smaller piece. Representations achieving these bounds have appeared previously, but 2-3 finger trees are much simpler, as are the operations on them. Further, by defining the split operation in a general form, we obtain a general purpose data structure that can serve as a sequence, priority queue, search tree, priority search queue and more.
In this paper, a simple and convenient method – Recursive Matrix method – is proposed for kinematic and dynamic analysis of all types of complex manipulators. After addressing the principle of the method, an example – a 3-DOF parallel manipulator with prismatic actuators – is demonstrated for the efficiency of the method in solving kinematic and dynamic problems of complex manipulators. With the inverse kinematic solutions, the inverse dynamic problem is solved with the virtual powers method. Matrix relations and graphs of the acting forces and powers for all actuators are analysis and determined. It is shown that the proposed method is an effective mean for kinematic and dynamic modelling of parallel mechanisms.
This paper presents the design of a new low-cost, easy operation hand having three 1-dof anthropomorphic fingers of a human size. Experimental results on human cylindrical grasping have been used for designing a 1-dof anthropomorphic finger of a human size. The mechanical design of this finger has been mainly focused on a suitable articulated mechanism. This mechanism transmits the power to the phalanxes for a human-like grasping motion and it can be embedded in the body of the finger itself. The design of a three finger hand has been presented as based on the designed finger module. Experimental tests on a built hand prototype have been carried out in order to show the feasibility of the proposed design and validate its operation.
This paper provides a synthesis of ontology research and one of its most significant application areas, the business discipline of Knowledge Management (KM). Despite the fact such a synergy is in great demand between consumers and suppliers of ontology technology, there is a lack of understanding on one side and a lack of realism on the other. Due to the lack of communication and understanding between ontology research and applied KM there is the danger that mainstream KM will remain neutral to ontologies, while research develops as a largely unguided exploration.
Many researchers have demonstrated that the organizational design employed by an agent system can have a significant, quantitative effect on its performance characteristics. A range of organizational strategies have emerged from this line of research, each with different strengths and weaknesses. In this article we present a survey of the major organizational paradigms used in multi-agent systems. These include hierarchies, holarchies, coalitions, teams, congregations, societies, federations, markets, and matrix organizations. We will provide a description of each, discuss their advantages and disadvantages, and provide examples of how they may be instantiated and maintained. This summary will facilitate the comparative evaluation of organizational styles, allowing designers to first recognize the spectrum of possibilities, and then guiding the selection of an appropriate organizational design for a particular domain and environment.
One of the key issues in spoken-language translation is how to deal with unrestricted expressions in spontaneous utterances. We have developed a paraphraser for use as part of a translation system, and in this paper we describe the implementation of a Chinese paraphraser for a Chinese-Japanese spoken-language translation system. When an input sentence cannot be translated by the transfer engine, the paraphraser automatically transforms the sentence into alternative expressions until one of these alternatives can be translated by the transfer engine. Two primary issues must be dealt with in paraphrasing: how to determine new expressions, and how to retain the meaning of the input sentence. We use a pattern-based approach in which the meaning is retained to the greatest possible extent without deep parsing. The paraphrase patterns are acquired from a paraphrase corpus and human experience. The paraphrase instances are automatically extracted and then generalized into paraphrase patterns. A total of 1719 paraphrase patterns obtained using this method and an implemented paraphraser were used in a paraphrasing experiment. The results showed that the implemented paraphraser generated 1.7 paraphrases on average for each test sentence and achieved an accuracy of 88%.
Fuzzy logic has features that are particular attractive in light of the problems posed by autonomous robot navigation. Fuzzy logic allows us to model different types of uncertainty and imprecision. In this paper, the implementation of a hexapod mobile robot with a fuzzy controller navigating in unknown environments is presented. The robot, MKIII, interprets input sensor data through the comparison of values in its fuzzy rule base and moves accordingly to avoid obstacles. Results of trial run experiments are presented.
In this paper a novel approach to dynamic formulation of rovers has been presented. The complexity of these multi-body systems especially on rough terrain, challenged us to use the Kane's method which has been preferred to others in these cases. As an example, symbolic equations of a six-wheeled rover, named CEDRA Rescue Robot which uses a shrimp like mechanism, have been derived and a simulation of forward and inverse dynamics has been presented. Due to the clear form of equations, each term defines a physical meaning which represents the effect of each parameter, resulting in a frame-work for performance comparison of rovers. Although the method has been described for a 2-D non-slipping case, it is also very useful for dimensional and dynamical optimization, high speed motion analysis, and checking various control algorithms. Furthermore, it can be extended to 3-D cases and other complicated mechanisms and rovers while conserving its inherent benefits and adding to the ease of handling nonholonomic constraints.
A new 3-DOF translational parallel manipulator is presented in this paper. This manipulator has decoupled motion in for x, y, and z axes, and employs only revolute joints. The structure and kinematics of the manipulator are studied. The mechanism singularity is examined and the calibration methods are presented.
We examine the implementation of clarification dialogues, a mechanism for ensuring that question answering systems take into account user goals by allowing them to ask series of related questions either by refining or expanding on previous questions with follow-up questions, in the context of open domain Question Answering systems. We develop an algorithm for clarification dialogue recognition through the analysis of collected data on clarification dialogues and examine the importance of clarification dialogue recognition for question answering. The algorithm is evaluated and shown to successfully recognize the start and continuation of clarification dialogues in 94% of cases. We then show the usefulness of the algorithm by demonstrating how the recognition of clarification dialogues can simplify the task of answer retrieval.
This paper deals with a method for robot navigation towards a moving goal. The goal maneuvers are not a priori known to the robot. Our method is based on the use of the kinematics equations of the robot and the goal combined with geometrical rules. First a kinematics model for the tracking problem is derived and two strategies are suggested for robot navigation, namely the velocity pursuit guidance law and the deviated pursuit guidance law. It turns out that in both cases, the robot's angular velocity is equal to the line of sight angle rate. Important properties of the navigation strategies are discussed and proven. In the presence of obstacles, two navigation modes are used: the tracking mode, which has a global aspect and the obstacle avoidance mode, which has a local aspect. In the obstacle avoidance mode, a polar diagram combining information about obstacles and directions corresponding to the pursuit is constructed. An extensive simulation study is carried out, where the efficiency of both strategies is illustrated for different scenarios.