To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ability to understand and solve high-dimensional inference problems is essential for modern data science. This chapter examines high-dimensional inference problems through the lens of information theory and focuses on the standard linear model as a canonical example that is both rich enough to be practically useful and simple enough to be studied rigorously. In particular, this model can exhibit phase transitions where an arbitrarily small change in the model parameters can induce large changes in the quality of estimates. For this model, the performance of optimal inference can be studied using the replica method from statistical physics but, until recently, it was not known whether the resulting formulas were actually correct. In this chapter, we present a tutorial description of the standard linear model and its connection to information theory. We also describe the replica prediction for this model and outline the authors’ recent proof that it is exact.
Processing, storing, and communicating information that originates as an analog phenomenon involve conversion of the information to bits. This conversion can be described by the combined effect of sampling and quantization. The digital representation in this procedure is achieved by first sampling the analog signal so as to represent it by a set of discrete-time samples and then quantizing these samples to a finite number of bits. Traditionally, these two operations are considered separately. The sampler is designed to minimize information loss due to sampling based on prior assumptions about the continuous-time input. The quantizer is designed to represent the samples as accurately as possible, subject to the constraint on the number of bits that can be used in the representation. The goal of this chapter is to revisit this paradigm by considering the joint effect of these two operations and to illuminate the dependence between them.
One of the more challenging intersections of law and technology is the use of computers and associated systems to commit criminal offences. While terminology varies, the neologism cybercrime is widely used to refer to a range of offending that involves computers as targets (eg hacking); as instruments (eg online fraud and forgery); or as incidental to the commission of a crime (eg using the internet to plan or organise a more conventional crime).1 As noted in Chapter 2, some cybercrimes are essentially the same as their ‘terrestrial’ counterparts, but adopt modern technology for their commission (ie ‘old wine in new bottles’), while others represent significantly newer forms of criminality. Examples of the former might include cyberstalking and online fraud, where the message is much the same but the means of communication is more efficient; while the latter might include distributed denial-of-service (DDoS) attacks against websites.
With rapid development in hardware storage, precision instrument manufacturing, and economic globalization etc., data in various forms have become ubiquitous in human life. This enormous amount of data can be a double-edged sword. While it provides the possibility of modeling the world with a higher fidelity and greater flexibility, improper modeling choices can lead to false discoveries, misleading conclusions, and poor predictions. Typical data-mining, machine-learning, and statistical-inference procedures learn from and make predictions on data by fitting parametric or non-parametric models. However, there exists no model that is universally suitable for all datasets and goals. Therefore, a crucial step in data analysis is to consider a set of postulated candidate models and learning methods (the model class) and select the most appropriate one. We provide integrated discussions on the fundamental limits of inference and prediction based on model-selection principles from modern data analysis. In particular, we introduce two recent advances of model-selection approaches, one concerning a new information criterion and the other concerning modeling procedure selection.
The purpose of this chapter is to set the stage for the book and for the upcoming chapters. We first overview classical information-theoretic problems and solutions. We then discuss emerging applications of information-theoretic methods in various data-science problems and, where applicable, refer the reader to related chapters in the book. Throughout this chapter, we highlight the perspectives, tools, and methods that play important roles in classic information-theoretic paradigms and in emerging areas of data science. Table 1.1 provides a summary of the different topics covered in this chapter and highlights the different chapters that can be read as a follow-up to these topics.
Approximate computation methods with provable performance guarantees are becoming important and relevant tools in practice. In this chapter we focus on sketching methods designed to reduce data dimensionality in computationally intensive tasks. Sketching can often provide better space, time, and communication complexity trade-offs by sacrificing minimal accuracy. This chapter discusses the role of information theory in sketching methods for solving large-scale statistical estimation and optimization problems. We investigate fundamental lower bounds on the performance of sketching. By exploring these lower bounds, we obtain interesting trade-offs in computation and accuracy. We employ Fano’s inequality and metric entropy to understand fundamental lower bounds on the accuracy of sketching, which is parallel to the information-theoretic techniques used in statistical minimax theory.