To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Organised around problem solving, this book gently introduces the reader to computational simulation of biomedical transport processes, bridging fundamental theory with real-world applications. Using this book the reader will gain a complete foundation to the subject, starting with problem simplification, implementing it in software, through to interpreting the results, validation, and optimisation. Ten case studies, focusing on emerging areas such as thermal therapy and drug delivery, with easy to follow step-by-step instructions, provide ready-to-use templates for further applications. Solution process using the commonly used tool COMSOL Multiphysics is described in detail; useful biomedical property data and correlations are included; and background theory information is given at the end of the book for easy reference. A mixture of short and extended exercises make this book a complete course package for undergraduate and beginning graduate students in biomedical and biochemical engineering curricula, as well as a self-study guide.
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
Students taking their first chemical engineering course plunge into the 'nuts and bolts' of mass and energy balances and often miss the broad view of what chemical engineers do. This 1998 text offers a well-paced introduction to chemical engineering. Students are first introduced to the fundamental steps in design and three methods of analysis: mathematical modeling, graphical methods, and dimensional analysis. The book then describes how to apply engineering skills, such as how to simplify calculations through assumptions and approximations; how to verify calculations, significant figures, spreadsheets, graphing (standard, semi-log and log-log); and how to use data maps. In addition, the book teaches engineering skills through the design and analysis of chemical processes and process units in order to assess product quality, economics, safety, and environmental impact. This text will help undergraduate students in chemical engineering develop engineering skills early in their studies. Lecturer's solution manual available from the publisher on request.
Thermodynamics: Fundamentals and Applications is a 2005 text for a first graduate course in Chemical Engineering. The focus is on macroscopic thermodynamics; discussions of modeling and molecular situations are integrated throughout. Underpinning this text is the knowledge that while thermodynamics describes natural phenomena, those descriptions are the products of creative, systematic minds. Nature unfolds without reference to human concepts of energy, entropy, or fugacity. Natural complexity can be organized and studied by thermodynamics methodology. The power of thermodynamics can be used to advantage if the fundamentals are understood. This text's emphasis is on fundamentals rather than modeling. Knowledge of the basics will enhance the ability to combine them with models when applying thermodynamics to practical situations. While the goal of an engineering education is to teach effective problem solving, this text never forgets the delight of discovery, the satisfaction of grasping intricate concepts, and the stimulation of the scholarly atmosphere.
This booklet is an ideal supplement for any course in thermodynamics or the thermal fluid sciences and a handy reference for the practising engineer. The tables in the booklet complement and extend the property tables in the appendices to Stephen Turn's Thermodynamics: Concepts and Applications and Thermal-Fluid Sciences: An Integrated Approach. In addition to duplicating the SI tables in these books it extends the tables to cover US customary units as well. The booklet also contains property data for the refrigerant R-134a and properties of the atmosphere at high altitudes.
This book was developed during Professor Ghiaasiaan's twelve years of teaching a graduate-level course on convection heat and mass transfer. It is ideal for a graduate course covering the theory and practice of convection heat and mass transfer. The book treats well-established theory and practice but is also enriched by its coverage of modern areas such as flow in microchannels, computational fluid dynamics-based design and analysis methods. It is primarily concerned with convection heat transfer, with the essentials of mass transfer also covered. The mass transfer material and problems are presented in such a way that they can be skipped if not required. The book is richly enhanced by examples and end-of-chapter exercises. A complete solutions manual is available to qualified instructors. The book includes eighteen appendices providing compilations of most essential property and mathematical information for analysis of convective heat and mass transfer processes.
The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.
Students learn by doing, perhaps engineering students especially, and they will better understand the principles of heat transfer and thermodynamics by conducting experiments and seeing results. This book is a collection of experiments in heat transfer and thermodynamics contributed by leading engineering educators. The experiments have been tested, evaluated, and proved successful for classroom use. Each experiment follows the same step-by-step format which includes the objective of the experiment, apparatus needed, procedure, suggested headings, and references. The experiments use apparatus that is easily built or attainable. Among the topics covered are heat conduction, convection, boiling, mixing, diffusion, radiation, heat pipes and exchangers, and thermodynamics. The book will be especially useful as a companion to standard heat transfer and thermodynamics texts.
This is a textbook for courses and independent study in environmental and chemical engineering, as well as in many other disciplines concerned with transport and diffusion of all manner of chemicals. Estimating the transport and fate of chemicals released into the environment is an interesting and challenging task. The global environment is large, on the chemical transport and fate scale. This text applies the mathematics of diffusion, turbulent diffusion and dispersion to the atmosphere, lakes, rivers, groundwater and the ocean, as well as transport between these media. The required theory is explained as a solution technique to solve the case studies and example problems. A large portion of the book is dedicated to examples and case studies, from which the important principles are derived.
The chemical industry is changing, going beyond commodity chemicals to a palette of higher value added products. This groundbreaking book, now revised and expanded, documents this change and shows how to meet the challenges implied. Presenting a four-step design process - needs, ideas, selection, manufacture - the authors supply readers with a simple design template that can be applied to a wide variety of products. Four new chapters on commodities, devices, molecules/drugs and microstructures show how this template can be applied to products including oxygen for emphysema patients, pharmaceuticals like taxol, dietary supplements like lutein, and beverages which are more satisfying. For different groups of products the authors supply both strategies for design and summaries of relevant science. Economic analysis is expanded, emphasizing the importance of speed-to-market, selling ideas to investors and an expectation of limited time in the market. Extra examples, homework problems and a solutions manual are available.
An introductory 2002 textbook, Process Control covers the most essential aspects of process control suitable for a two-semester course. While classical techniques are discussed, also included is a discussion of state space modeling and control, a modern control topic lacking in most introductory texts. MATLAB, a popular engineering software package, is employed as a powerful yet approachable computational tool. Text examples demonstrate how root locus, Bode plots, and time domain simulations can be integrated to tackle a control problem. Classical control and state space designs are compared. Despite the reliance on MATLAB, theory and analysis of process control are well-presented, creating a well-rounded pedagogical text. Each chapter concludes with problem sets, to which hints or solutions are provided. A web site provides excellent support in the way of MATLAB outputs of text examples and MATLAB sessions, references, and supplementary notes. Students and professionals will find it a useful text and reference.
Instability of flows and their transition to turbulence are widespread phenomena in engineering and the natural environment, and are important in applied mathematics, astrophysics, biology, geophysics, meteorology, oceanography and physics as well as engineering. This is a textbook to introduce these phenomena at a level suitable for a graduate course, by modelling them mathematically, and describing numerical simulations and laboratory experiments. The visualization of instabilities is emphasized, with many figures, and in references to more still and moving pictures. The relation of chaos to transition is discussed at length. Many worked examples and exercises for students illustrate the ideas of the text. Readers are assumed to be fluent in linear algebra, advanced calculus, elementary theory of ordinary differential equations, complex variables and the elements of fluid mechanics. The book is aimed at graduate students but will also be very useful for specialists in other fields.
This overview of diffusion and separation processes brings unsurpassed, engaging clarity to this complex topic. Diffusion is a key part of the undergraduate chemical engineering curriculum and at the core of understanding chemical purification and reaction engineering. This spontaneous mixing process is also central to our daily lives, with importance in phenomena as diverse as the dispersal of pollutants to digestion in the small intestine. For students, Diffusion goes from the basics of mass transfer and diffusion itself, with strong support through worked examples and a range of student questions. It also takes the reader right through to the cutting edge of our understanding, and the new examples in this third edition will appeal to professional scientists and engineers. Retaining the trademark enthusiastic style, the broad coverage now extends to biology and medicine.
This book differs from other thermodynamics texts in its objective, which is to provide engineers with the concepts, tools, and experience needed to solve practical real-world energy problems. The presentation integrates computer tools (such as EES) with thermodynamic concepts to allow engineering students and practising engineers to solve problems they would otherwise not be able to solve. The use of examples, solved and explained in detail, and supported with property diagrams that are drawn to scale, is ubiquitous in this textbook. The examples are not trivial, drill problems, but rather complex and timely real-world problems that are of interest by themselves. As with the presentation, the solutions to these examples are complete and do not skip steps. Similarly the book includes numerous end-of-chapter problems, both typeset and online. Most of these problems are more detailed than those found in other thermodynamics textbooks. The supplements include complete solutions to all exercises, software downloads, and additional content on selected topics. These are available on the book's website www.cambridge.org/KleinandNellis.
The world is currently faced with two significant problems: fossil fuel depletion and environmental degradation, which are continuously being exacerbated due to increasing global energy consumption. As a substitute for petroleum, renewable fuels have been receiving increasing attention due a variety of environmental, economic, and societal benefits. The first-generation biofuels - ethanol from sugar or corn and biodiesel from vegetable oils - are already on the market. The goal of this book is to introduce readers to second-generation biofuels obtained from non-food biomass, such as forest residue, agricultural residue, switch grass, corn stover, waste wood, municipal solid wastes, and so on. Various technologies are discussed, including cellulosic ethanol, biomass gasification, synthesis of diesel and gasoline, bio-crude by hydrothermal liquefaction, bio-oil by fast pyrolysis, and the upgradation of biofuel. This book strives to serve as a comprehensive document presenting various technological pathways and environmental and economic issues related to biofuels.
This text allows instructors to teach a course on heat and mass transfer that will equip students with the pragmatic, applied skills required by the modern chemical industry. This new approach is a combined presentation of heat and mass transfer, maintaining mathematical rigor while keeping mathematical analysis to a minimum. This allows students to develop a strong conceptual understanding, and teaches them how to become proficient in engineering analysis of mass contactors and heat exchangers and the transport theory used as a basis for determining how critical coefficients depend upon physical properties and fluid motions. Students will first study the engineering analysis and design of equipment important in experiments and for the processing of material at the commercial scale. The second part of the book presents the fundamentals of transport phenomena relevant to these applications. A complete teaching package includes a comprehensive instructor's guide, exercises, case studies, and project assignments.
Suitable for a first year graduate course, this textbook unites the applications of numerical mathematics and scientific computing to the practice of chemical engineering. Written in a pedagogic style, the book describes basic linear and nonlinear algebric systems all the way through to stochastic methods, Bayesian statistics and parameter estimation. These subjects are developed at a level of mathematics suitable for graduate engineering study without the exhaustive level of the theoretical mathematical detail. The implementation of numerical methods in MATLAB is integrated within each chapter and numerous examples in chemical engineering are provided, with a library of corresponding MATLAB programs. This book will provide the graduate student with essential tools required by industry and research alike. Supplementary material includes solutions to homework problems set in the text, MATLAB programs and tutorial, lecture slides, and complicated derivations for the more advanced reader. These are available online at www.cambridge.org/9780521859714.
Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.
This chapter provides an insight into the physical nature of turbulence and the mathematical framework that is used in numerical simulations of turbulent flows. The aim is to explain why turbulence must be modelled and how turbulence can be modelled, and also to explain what is modelled with different turbulence models. In addition, the limitations of the turbulence models are discussed. The intention is to give you such an understanding of turbulence modelling that you can actually suggest appropriate turbulence models for different kinds of turbulent flows depending upon their complexity and the required level of description.
The physics of fluid turbulence
Turbulence is encountered in most flows in nature and in industrial applications. Natural turbulent flows can be found in oceans, in rivers and in the atmosphere, whereas industrial turbulent flows can be found in heat exchangers, chemical reactors etc. Most flows encountered in industrial applications are turbulent, since turbulence significantly enhances heat- and mass-transfer rates. In industry a variety of turbulent multiphase flows can be encountered. Turbulence plays an important role in these types of flows since it affects processes such as break-up and coalescence of bubbles and drops, thereby controlling the interfacial area between the phases. Thus, turbulence modelling becomes one of the key elements in CFD.