To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses mobile molecular communication. In most foreseeable applications, bionanomachines must move to accomplish their task, and this chapter discusses the problems related to maintaining communication links while moving. Models of mobility are given, and a case study of mobile molecular communication involving cells is discussed.
This chapter gives basic information about molecular communication. It introduces the concept and gives simple examples, explores the history of molecular communication, and discusses several examples to motivate the rest of the book.
This chapter discusses the formation of large-scale structures composed of bionanomachines. Building on material presented in the Chapter 13, this chapter considers mathematical models for collective motion involving potentially millions of bionanomachines. The model may be applied to cancer biology, particularly to model the formation of tumors.
Fully revised and updated, this second edition is a comprehensive introduction to molecular communication including the theory, applications, and latest developments. Written with accessibility in mind, it requires little background knowledge, and carefully introduces the relevant aspects of biology and information theory, as well as practical systems. Capturing the significant changes and developments in the past decade, this edition includes seven new chapters covering: the architecture of molecular communication; modelling of biological molecular communication; mobile molecular communication; macroscale systems; design of components and bio-nanomachine formations. The authors present the biological foundations followed by analyses of biological systems in terms of communication theory, and go on to discuss the practical aspects of designing molecular communication systems such as drug delivery, lab-on-a-chip, and tissue engineering. Including case studies and experimental techniques, this remains a definitive guide to molecular communication for graduate students and researchers in electrical engineering, computer science, and molecular biology.
Introducing the fundamentals of digital communication with a robust bottom-up approach, this textbook is designed to equip senior undergraduate and graduate students in communications engineering with the core skills they need to assess, compare, and design state-of-the-art digital communication systems. Delivering a fast, concise grounding in key algorithms, concepts, and mathematical principles, this textbook provides all the mathematical tools for understanding state-of-the-art digital communications. The authors prioritise readability and accessibility, to quickly get students up to speed on key topics in digital communication, and includes all relevant derivations. Presenting over 70 carefully designed multi-part end-of-chapter problems with over 360 individual questions, this textbook gauges student understanding and translates knowledge to real-world problem solving. Accompanied online by interactive visualizations of signals, downloadable Matlab code, and solutions for instructors.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.