To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this comprehensive textbook about robot grasping, readers will discover an integrated look at the major concepts and technical results in robot grasp mechanics. A large body of prior research, including key theories, graphical techniques, and insights on robot hand designs, is organized into a systematic review, using common notation and a common analytical framework. With introductory and advanced chapters that support senior undergraduate and graduate level robotics courses, this book provides a full introduction to robot grasping principles that are needed to model and analyze multi-finger robot grasps, and serves as a valuable reference for robotics students, researchers, and practicing robot engineers. Each chapter contains many worked-out examples, exercises with full solutions, and figures that highlight new concepts and help the reader master the use of the theories and equations presented.
The new research field of Ambient/Active Assisted Living (AAL) is quickly evolving. Ambient Integrated Robotics provides an easy-to-understand medical perspective to architects, designers, and engineers, bridging the different disciplines and showing how they fuse together to create the future of AAL technology. Using robotics as an example, the book illustrates how embedding its subsystems results in unique ambient technology that can be used to help people, particularly in adapting to the needs of the unwell and elderly populations. You will be provided with the knowledge and tools to contribute to the future of AAL. The Cambridge Handbooks on Construction Robotics series gives professionals, researchers, lecturers, and students basic conceptual and technical skills and strategies to manage, research, or teach the implementation of advanced automation, and robot-technology-based processes and technologies in construction. Books discuss progress in robot systems theory and demonstrates their integration using real applications and projections.
In this chapter, we present a background on the state of the art regarding Ambient/Active Assisted Living (AAL) related topics (i.e., Ambient Sensing, Medical Technology, and Geriatrics and Sociology). Later in the book we present the basis for current, new, and common technologies on the market (presented in Chapter 4), and ongoing research in AAL (examples presented in Chapter 5). The presented interdisciplinary content consists of social, engineering, medical, electrical, and mechatronics science, and together, they encompass the field of AAL, as well as eHealth.
In this chapter, several technological, or to be more detailed, robotic solutions from different companies and developers will be presented. This allows an overview of the state of Ambient/Active Assisted Living (AAL), which can be categorized into home care (for independent living in old age), social interaction, health and wellness, interaction and learning, working, and mobility.
In this chapter, a possible outlook into the future is provided. Considering the newest technology on the market in the young research field of AAL (see Chapter 4), and the youngest research projects (see Chapter 5), new possibilities will exist in the future design of buildings. Buildings mainly consist of four walls and a ceiling, with water and electrical supply. However, with increasing demand for assistive technologies, and with an increasing technology readiness level (TRL) [187] for assistive technologies, there will be a time when this new technology approach will fuse with future building design and construction.
Aging: no one wants to, but everyone does. Many people are scared of aging mostly because they think of ending up in a bed, doing nothing other than staring at the ceiling and depending on other people who have to sacrifice their free time and strength to care for them. Under these circumstances, not only is the quality of life gone, but also the relationship with relatives can suffer because someone might become a burden.
Scared about this fate, the elderly (and disabled) sometimes wish for suicide or euthanasia. Many need help if their independence is affected because of advanced age. Additionally, euthanasia is illegal in most modern countries.