To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The proton conducting perovskites are widely investigated due to their high potential as electrolyte membranes of fuel cells, water steam electrolysers and CO2/syngas converters. Our comprehensive spectroscopic (Raman, IR, neutron), thermogravimetric, elastic and quasi-elastic neutron diffusion as well as conductivity studies performed on Ln/RE- modified zirconate ceramics with controlled densification (90-99% of theoretical density) reveal the important differences between the surface and bulk protonic species. The results clearly show that trivialization of the protonation process complexity can favorite the adsorption of the surface protonic species (hydroxide, hydrocarbonates, etc), prohibit the incorporation of bulk protons, i.e. species responsible for the proton conduction and confuse the understanding of fundamental aspects concerning the proton conductors such as the true nature of conducting species. Our studies reveal that OH- ions are located at the surface of poor densified ceramic and the bulk conducting protons exhibit an ionic, free of covalent-bonded nature.
We have investigated the reliability of the inverted-staggered etch stopper structure oxide-based TFTs under negative gate bias stress combined with 400 nm wavelength light illumination and the relationship between the carrier concentration at the channel and the extent of Vth shift. It was found that the photo-induced holes cause the severe Vth degradation at the beginning of stress and the hole trapping rate of a single hole is not altered with the increase of the hole concentration. In oxide-based TFTs, the hole concentration at the channel is the determinant factor of the reliability.
The heat shield is part of a thermal protective system (TPS) essential in shielding the cargo of a spacecraft during reentry to the earth’s atmosphere. The ablated surface of the heat shield is a testimony to the harsh reentry environment, evidenced in melting and charring among other phenomena that occur during reentry at velocity of 9-11 km/sec. The aim of this study was to extrapolate information about atmospheric reentry from the surface of the ablated material. A sample of the heat shield from the test vehicle of the Apollo Program, AS-202, was the subject of the analysis.
For the preliminary studies, selected investigation modes from the Global Optimal Strategy model, developed to identify wear of engineering surfaces, were applied: examination of structure, optical observation, physico-chemical characterization and surface morphology. Instrumentation used included: microscopic surface analysis with Extended Depth of Field composite images (EDF), Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance (ATR), confocal scanning laser microscopy and laser scanning microscopy. The Apollo Program testing vehicle AS-202 (1966) ablated specimen sample was obtained from the collection of the National Air and Space Museum (NASM), Smithsonian Institution, Washington DC. The authors combine their diverse experiences in tribology and in artifacts’ museum conservation so as to contribute to the space heritage material science. This study represents one of the building blocks of a larger project, the Fundamental Model of public outreach and perception (FAM-pop) of complex aerospace technologies.
The prospects for increased cooling capacity from the use of nanofluid coolants has created a tremendous amount of interest. However, in the years since the initial thermal conductivity measurements of nanoparticle suspensions were reported, there has been much inconsistency in data published in the literature. The International Nanofluids Benchmarking Exercise was a significant step towards creating a reliable set of data on the thermal conductivity enhancement of stable nanofluids, however there remain many unanswered questions. Most significant, perhaps, is the contradictory results on the effects of particle size and temperature. In the past year alone it is possible to find published reports on nominally identical samples claiming precisely opposing trends in thermal conductivity with decreasing particle size at room temperature. Some studies also claim an increasing enhancement at higher temperatures, sometimes linking this to small particle sizes. In this work we review the literature claims for particle size and temperature results, the theories used to support those claims, as well as presenting new data with the aim of resolving the dispute and identifying the origins of the evidence for contradictory claims.
Garnet films based on (BiPrGdLu) (FeGa) have been grown on (210) and (100) oriented SGGG substrates. (210) films with an easy plane of magnetization provided optimal imaging contrast. Incorporation of Au nanoparticles into an epitaxially grown film was done and these films show an increase in Faraday rotation, ostensibly due to the plasmon resonance effect.
Three techniques based on transmission electron microscope (TEM) have been successfully applied to measure strain/stress in the channel area of PMOS semiconductor devices with embedded SiGe in the source/drain areas: convergent beam electron diffraction (CBED), nano beam diffraction (NBD) and dark-filed holography (DFH). Consistent channel strain measurements from the three techniques on the same TEM sample (eSiGe PMOS with 17%Ge) were obtained. Reliable strain/stress measurement results in the channel area have been achieved with very good agreement with computer-aided design (TCAD) calculations.
Phase equilibria among γ-Fe, ε-Fe2Nb Laves and δ-Ni3Nb phases in Fe-Ni-Nb ternary system at 1473 K and 1373 K were experimentally examined, and also assessed by calculation in order to calculate the phase equilibria among these phases at 973 K. A ternary compound with hP24 structure with its limited composition range of Fe-21.5Nb- (56.8-59.8) Ni exists between Fe2Nb and Ni3Nb phase regions at both temperatures. Including the hP24 phase, the calculated isotherms at both temperatures are in good agreement with experimental ones. By using the optimized interaction parameters among the three elements in each phase, the isothermal section calculated at 973 K revealed a γ-Fe+ Fe2Nb + Ni3Nb three-phase coexisting region extended to Fe-rich composition of 80 at. % Fe. This suggests a possibility to develop austenitic heatresistant steels strengthened by both intermetallics phases.
During the decade 2000 to 2009, the diversity trends for bachelor’s, master’s and doctoral degrees and faculty underwent very different changes in the number and fraction of women represented compared to men in the field of materials science and engineering (MSE). Although the number and fraction of women increased substantially in graduate programs and within faculties, the fraction of women receiving bachelor’s of science degrees in engineering (BSE) in this field was significantly lower in 2009 than in 2000. In contrast with gender, the outcomes for diversity in terms of underrepresented minorities (URMs) across the decade are more disappointing. The potential implications are discussed with respect to ongoing limited degree attainment of URMs in many engineering and science disciplines
Electroless synthesis and hierarchical organization of 1.4 nm Pd and Ptnanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described.The nucleated NPs are nearly monodisperse and reveal supramolecularorganizations guided by RNT templates. Interestingly, the narrow sizedistribution is attributable to unique templating behavior of RNTs. Theresulting metal NP-RNT composites were characterized by Atomic ForceMicroscopy (AFM), Scanning Electron Microscopy (SEM) and TransmissionElectron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was alsoperformed to confirm the nature and composition of RNT-templated NPs.
Transparent conducting ZnO/Au/ZnO thin film structures were grown by the magnetron sputtering technique on flexible polymer substrates. These films displayed a seven orders of magnitude drop in resistivity (200 to 5.2×10-5 Ω-cm) upon increase of the Au layer thickness from 0 nm to 12 nm. The sheet resistance also showed a substantial decrease to a value of 6.5 _/sq. These films displayed a photopically average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 Ω−1. As the Au layer thickness was increased, the conduction changed from conduction through the substrate when the nanometal islands are small and far apart to activated tunneling between discontinuous islands, and finally to direct tunneling between larger islands and metallic conduction through a near-continuous layer. Optical transmission behavior of the films was described in terms of the Au’s absorption due to interband electronic transitions in the shorter visible wavelengths, and free carrier absorption losses at the longer red wavelengths. This was combined with the limitation of the mean free path in discontinuous films and the size-dependent dielectric constant of the Au particles that enhances absorption in the longer visible wavelengths.
We report the fabrication and characterization of a microstrip patch antenna composed entirely out of multi-walled carbon nanotubes on a silicon substrate. The antenna showed excellent response in the X-band, for which it was designed. In addition, an observed left-shift resonance effect points towards significant potential for miniaturization. The antenna also showed very promising reliability under different operating conditions. Such antennas may therefore have significant promise for system-on-chip, space application, and other specialized applications.
Titanium diboride (TiB2) has been sintered using spark plasma sintering (SPS). With the addition of Al3Ti, the Vickers hardness, Hv, of TiB2 increases up to as high as 2100 by the sintering at 1273K, while that of the sample sintered without Al3Ti is as low as 20. Such a remarkable improvement is caused by the formation of rigid direct contacts between TiB2 grains in addition to the effect that Al3Ti fills in the space between TiB2 grains and acts as a binder.
In this letter, single stranded Deoxyribonucleic Acids (ssDNA) are found to act as negative potential gating agents that increase the hole density in single layer graphene (SLG). Current-voltage measurement of the hybrid ssDNA/graphene system indicates a shift in the Dirac point and “intrinsic” conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8×1012 cm-2. This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full-width half maximum. This patterning of DNA on graphene layers could provide new avenues to modulate their electrical properties and for novel electronic devices.
In this work, the behavior of molecules in thin-film lubricants, several tens of nanometers thick, is studied by in situ reflection infrared spectroscopy and by molecular dynamics simulations. The effect of fatty acid additives on the properties of these interfacial films is also studied. The results of these experiments are presented and interpreted, and the latest outcomes of molecular dynamics simulations are discussed. It is concluded that the molecular orientation in thin films of interfacial materials is markedly affected by the use of additives.
Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. In this work, microfluidic devices have been fabricated from elastomeric scaffolds with tunable degradation properties for applications in tissue engineering and regenerative medicine. Most biodegradable polymers suffer from short half life resulting from rapid and poorly controlled degradation upon implantation, exceedingly high stiffness, and limited compatibility with chemical functionalization. Here we report the first microfluidic devices constructed from a recently developed class of biodegradable elastomeric poly(ester amide)s, poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s (APS), showing a much longer and highly tunable in vivo degradation half-life comparing to many other commonly used biodegradable polymers. The device is molded in a similar approach to that reported previously for conventional biodegradable polymers, and the bonded microfluidic channels are shown to be capable of supporting physiologic levels of flow and pressure. The device has been tested for degradation rate and gas permeation properties in order to predict performance in the implantation environment. This device is high resolution and fully biodegradable; the fabrication process is fast, inexpensive, reproducible, and scalable, making it the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds and vasculature and tissue and organ replacements.
Utilizing magnetostrictive effect, the metallic glass is used to form mechanical resonators with different configurations. The resonance behaviors of these resonators are studied under different conditions, including different dc magnetic bias fields and different ac magnetic driving field. It is found that the resonators made of metallic glass exhibit a higher quality merit factor. Based on the results, it is also found that the acoustic wave velocity of the metallic glass decreases with increasing frequency. The application of these resonators as sensor platform is investigated. It is found that both odd and even vibration modes can be detected. Therefore, it provides a unique device that is capable to detect the target species on the sensor surface without “blind point(s)”, which is a challenge for all sensors based on other types of resonators. For the biosensors based on these resonators, a high sensitivity was observed. The advantages of these sensors over the current devices are demonstrated by the detection of Salmonella typhimurium (S. typhimurium) in water.
Chemotaxis is one of the essential mechanisms responsible for variouscomplex biological processes. For a crawling cell, the interface between thecell and the substrate plays an important role in the chemotactic migration.This paper presents a three-dimensional dynamic model to investigate theeffect of the interface between a crawling cell and a substrate on itschemotaxis. The coupled mechanisms of chemotaxis, the surface energy of thecell, and the interface between the cell and the substrate are incorporatedinto a diffuse interface model. Simulations reveal rich dynamics of acrawling cell associated with the interfacial condition, and confirm thehigh possibility of adequate predictions.
The properties of radio frequency, rf magnetron sputtered Barium Strontium Titanate (Ba1-xSrxTiO3), BST, thin films were investigated and compared with BST thin films deposited by sol-gel method with the aim of determining relationships between the oxide deposition parameters, the film structure, and the electric field dependence. This work presents noncontact electrical characterization of BST films using Corona Kelvin metrology (C-KM) which has been employed earlier only in the silicon industry. The films were structurally characterized using thickness profilometer, X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques. The use of sol-gel technique to fabricate small area metal-insulator-metal (MIM) structures is found to be beneficial from the point of saving fabrication time and production costs.
Undoped Bi2FeCrO6, 5%Ti- and 10%La-doped Bi2FeCrO6 were prepared by a high pressure solid-state sintering method. The phase structure, electrical, ferroelectric and magnetic properties have been investigated. It is shown that undoped Bi2FeCrO6 has a serious leakage current problem, and doping either Ti or La can enhance the resistivity by 2-3 orders of magnitude. Furthermore, both Ti- and La-doped Bi2FeCrO6 show an antiferromagnetic spin order due to disordered B-site cation alignment. Weak ferromagnetism was only observed in undoped Bi2FeCrO6 and the reason is tentatively explained.